Bochs/bochs/cpu/bit32.cc
Stanislav Shwartsman 002c86660a reword all the CPU code in preparation for future CPU speedup implementation.
Bochs emulation can be another 10-15% faster using technique described in paper
"Fast Microcode Interpretation with Transactional Commit/Abort"
http://amas-bt.cs.virginia.edu/2011proceedings/amasbt2011-p3.pdf
2011-07-06 20:01:18 +00:00

370 lines
8.9 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2011 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 3
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BSF_GdEdR(bxInstruction_c *i)
{
Bit32u op2_32 = BX_READ_32BIT_REG(i->rm());
if (op2_32 == 0) {
assert_ZF(); /* op1_32 undefined */
}
else {
Bit32u op1_32 = 0;
while ((op2_32 & 0x01) == 0) {
op1_32++;
op2_32 >>= 1;
}
SET_FLAGS_OSZAPC_LOGIC_32(op1_32);
clear_ZF();
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BSR_GdEdR(bxInstruction_c *i)
{
Bit32u op2_32 = BX_READ_32BIT_REG(i->rm());
if (op2_32 == 0) {
assert_ZF(); /* op1_32 undefined */
}
else {
Bit32u op1_32 = 31;
while ((op2_32 & 0x80000000) == 0) {
op1_32--;
op2_32 <<= 1;
}
SET_FLAGS_OSZAPC_LOGIC_32(op1_32);
clear_ZF();
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
/* pointer, segment address pair */
op1_32 = read_virtual_dword(i->seg(), op1_addr & i->asize_mask());
set_CF((op1_32 >> index) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
bx_bool bit_i;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
/* pointer, segment address pair */
op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr & i->asize_mask());
bit_i = (op1_32 >> index) & 0x01;
op1_32 |= (1 << index);
write_RMW_virtual_dword(op1_32);
set_CF(bit_i);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 |= (1 << op2_32);
/* now write result back to the destination */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
/* pointer, segment address pair */
op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr & i->asize_mask());
bx_bool temp_cf = (op1_32 >> index) & 0x01;
op1_32 &= ~(1 << index);
/* now write back to destination */
write_RMW_virtual_dword(op1_32);
set_CF(temp_cf);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 &= ~(1 << op2_32);
/* now write result back to the destination */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdGdM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit32u op1_32, op2_32, index_32;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_32 = BX_READ_32BIT_REG(i->nnn());
index_32 = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32;
op1_addr = eaddr + 4 * displacement32;
op1_32 = read_RMW_virtual_dword(i->seg(), op1_addr & i->asize_mask());
bx_bool temp_CF = (op1_32 >> index_32) & 0x01;
op1_32 ^= (1 << index_32); /* toggle bit */
set_CF(temp_CF);
write_RMW_virtual_dword(op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 &= 0x1f;
bx_bool temp_CF = (op1_32 >> op2_32) & 0x01;
op1_32 ^= (1 << op2_32); /* toggle bit */
set_CF(temp_CF);
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdIbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_virtual_dword(i->seg(), eaddr);
Bit8u op2_8 = i->Ib() & 0x1f;
set_CF((op1_32 >> op2_8) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EdIbR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
Bit8u op2_8 = i->Ib() & 0x1f;
set_CF((op1_32 >> op2_8) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 |= (1 << op2_8);
write_RMW_virtual_dword(op1_32);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EdIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 |= (1 << op2_8);
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 ^= (1 << op2_8); /* toggle bit */
write_RMW_virtual_dword(op1_32);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EdIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 ^= (1 << op2_8); /* toggle bit */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(1 << op2_8);
write_RMW_virtual_dword(op1_32);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EdIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x1f;
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(1 << op2_8);
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
/* F3 0F B8 */
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POPCNT_GdEdR(bxInstruction_c *i)
{
Bit32u op2_32 = BX_READ_32BIT_REG(i->rm());
Bit32u op1_32 = 0;
while (op2_32 != 0) {
if (op2_32 & 1) op1_32++;
op2_32 >>= 1;
}
Bit32u flags = op1_32 ? 0 : EFlagsZFMask;
setEFlagsOSZAPC(flags);
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
BX_NEXT_INSTR(i);
}
#endif // (BX_CPU_LEVEL >= 3)