Bochs/bochs/cpu/shift16.cc

483 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: shift16.cc,v 1.41 2008-01-10 19:37:55 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPU_C::SHLD_EwGw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, result_16;
Bit32u temp_32, result_32;
unsigned count;
unsigned of, cf;
/* op1:op2 << count. result stored in op1 */
if (i->b1() == 0x1a4)
count = i->Ib();
else // 0x1a5
count = CL;
count &= 0x1f; // use only 5 LSB's
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if (!count) return;
op2_16 = BX_READ_16BIT_REG(i->nnn());
/* count < 32, since only lower 5 bits used */
temp_32 = ((Bit32u)(op1_16) << 16) | (op2_16); // double formed by op1:op2
result_32 = temp_32 << count;
// hack to act like x86 SHLD when count > 16
if (count > 16) {
// when count > 16 actually shifting op1:op2:op2 << count,
// it is the same as shifting op2:op2 by count-16
result_32 |= (op1_16 << (count - 16));
}
result_16 = result_32 >> 16;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
SET_FLAGS_OSZAPC_LOGIC_16(result_16); /* handle SF, ZF and AF flags */
cf = (temp_32 >> (32 - count)) & 0x1;
of = cf ^ (result_16 >> 15); // of = cf ^ result15
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SHRD_EwGw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, result_16;
Bit32u temp_32, result_32;
unsigned count;
unsigned cf, of;
if (i->b1() == 0x1ac)
count = i->Ib();
else // 0x1ad
count = CL;
count &= 0x1f; /* use only 5 LSB's */
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if (!count) return;
op2_16 = BX_READ_16BIT_REG(i->nnn());
/* count < 32, since only lower 5 bits used */
temp_32 = (op2_16 << 16) | op1_16; // double formed by op2:op1
result_32 = temp_32 >> count;
// hack to act like x86 SHRD when count > 16
if (count > 16) {
// when count > 16 actually shifting op2:op2:op1 >> count,
// it is the same as shifting op2:op2 by count-16
result_32 |= (op1_16 << (32 - count));
}
result_16 = result_32;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
SET_FLAGS_OSZAPC_LOGIC_16(result_16); /* handle SF, ZF and AF flags */
cf = (op1_16 >> (count - 1)) & 0x1;
of = ((result_16 << 1) ^ result_16) >> 15; // of = result14 ^ result15
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::ROL_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
unsigned bit0, bit15;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if ((count & 0x0f) == 0) {
if (count & 0x10) {
bit0 = (op1_16 & 0x1);
bit15 = (op1_16 >> 15);
// of = cf ^ result15
SET_FLAGS_OxxxxC(bit0 ^ bit15, bit0);
}
return;
}
count &= 0x0f; // only use bottom 4 bits
result_16 = (op1_16 << count) | (op1_16 >> (16 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
bit0 = (result_16 & 0x1);
bit15 = (result_16 >> 15);
// of = cf ^ result15
SET_FLAGS_OxxxxC(bit0 ^ bit15, bit0);
}
void BX_CPU_C::ROR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
unsigned bit14, bit15;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if ((count & 0x0f) == 0) {
if (count & 0x10) {
bit14 = (op1_16 >> 14) & 1;
bit15 = (op1_16 >> 15) & 1;
// of = result14 ^ result15
SET_FLAGS_OxxxxC(bit14 ^ bit15, bit15);
}
return;
}
count &= 0x0f; // use only 4 LSB's
result_16 = (op1_16 >> count) | (op1_16 << (16 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
bit14 = (result_16 >> 14) & 1;
bit15 = (result_16 >> 15) & 1;
// of = result14 ^ result15
SET_FLAGS_OxxxxC(bit14 ^ bit15, bit15);
}
void BX_CPU_C::RCL_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
unsigned of, cf;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count = (count & 0x1f) % 17;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if (!count) return;
if (count==1) {
result_16 = (op1_16 << 1) | getB_CF();
}
else if (count==16) {
result_16 = (getB_CF() << 15) | (op1_16 >> 1);
}
else { // 2..15
result_16 = (op1_16 << count) | (getB_CF() << (count - 1)) |
(op1_16 >> (17 - count));
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
cf = (op1_16 >> (16 - count)) & 0x1;
of = cf ^ (result_16 >> 15); // of = cf ^ result15
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::RCR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
unsigned of, cf;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count = (count & 0x1f) % 17;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if (! count) return;
result_16 = (op1_16 >> count) | (getB_CF() << (16 - count)) |
(op1_16 << (17 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
cf = (op1_16 >> (count - 1)) & 0x1;
of = ((result_16 << 1) ^ result_16) >> 15; // of = result15 ^ result14
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SHL_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
unsigned of = 0, cf = 0;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x1f; /* use only 5 LSB's */
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if (!count) return;
if (count <= 16) {
result_16 = (op1_16 << count);
cf = (op1_16 >> (16 - count)) & 0x1;
of = cf ^ (result_16 >> 15); // of = cf ^ result15
}
else {
result_16 = 0;
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
SET_FLAGS_OSZAPC_LOGIC_16(result_16); /* handle SF, ZF and AF flags */
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SHR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
unsigned of, cf;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x1f; /* use only 5 LSB's */
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if (!count) return;
result_16 = (op1_16 >> count);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
cf = (op1_16 >> (count - 1)) & 0x1;
// note, that of == result15 if count == 1 and
// of == 0 if count >= 2
of = ((result_16 << 1) ^ result_16) >> 15;
SET_FLAGS_OSZAPC_LOGIC_16(result_16); /* handle SF, ZF and AF flags */
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SAR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count, cf;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x1f; /* use only 5 LSB's */
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), RMAddr(i));
}
if (!count) return;
if (count < 16) {
if (op1_16 & 0x8000) {
result_16 = (op1_16 >> count) | (0xffff << (16 - count));
}
else {
result_16 = (op1_16 >> count);
}
cf = (op1_16 >> (count - 1)) & 0x1;
}
else {
if (op1_16 & 0x8000) {
result_16 = 0xffff;
}
else {
result_16 = 0;
}
cf = (result_16 & 0x1);
}
SET_FLAGS_OSZAPC_LOGIC_16(result_16); /* handle SF, ZF and AF flags */
/* signed overflow cannot happen in SAR instruction */
SET_FLAGS_OxxxxC(0, cf);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
write_RMW_virtual_word(result_16);
}
}