Bochs/bochs/cpu/cpu.h
2002-12-12 15:29:45 +00:00

3569 lines
122 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: cpu.h,v 1.120 2002-12-12 15:28:29 cbothamy Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef BX_CPU_H
# define BX_CPU_H 1
#include <setjmp.h>
#include "cpu/lazy_flags.h"
// segment register encoding
#define BX_SEG_REG_ES 0
#define BX_SEG_REG_CS 1
#define BX_SEG_REG_SS 2
#define BX_SEG_REG_DS 3
#define BX_SEG_REG_FS 4
#define BX_SEG_REG_GS 5
// NULL now has to fit in 3 bits.
#define BX_SEG_REG_NULL 7
#define BX_NULL_SEG_REG(seg) ((seg) == BX_SEG_REG_NULL)
#ifdef BX_LITTLE_ENDIAN
#define BX_REG8L_OFFSET 0
#define BX_REG8H_OFFSET 1
#define BX_REG16_OFFSET 0
#else // BX_BIG_ENDIAN
#define BX_REG8L_OFFSET 3
#define BX_REG8H_OFFSET 2
#define BX_REG16_OFFSET 2
#endif // ifdef BX_LITTLE_ENDIAN
#define BX_8BIT_REG_AL 0
#define BX_8BIT_REG_CL 1
#define BX_8BIT_REG_DL 2
#define BX_8BIT_REG_BL 3
#define BX_8BIT_REG_AH 4
#define BX_8BIT_REG_CH 5
#define BX_8BIT_REG_DH 6
#define BX_8BIT_REG_BH 7
#define BX_16BIT_REG_AX 0
#define BX_16BIT_REG_CX 1
#define BX_16BIT_REG_DX 2
#define BX_16BIT_REG_BX 3
#define BX_16BIT_REG_SP 4
#define BX_16BIT_REG_BP 5
#define BX_16BIT_REG_SI 6
#define BX_16BIT_REG_DI 7
#define BX_32BIT_REG_EAX 0
#define BX_32BIT_REG_ECX 1
#define BX_32BIT_REG_EDX 2
#define BX_32BIT_REG_EBX 3
#define BX_32BIT_REG_ESP 4
#define BX_32BIT_REG_EBP 5
#define BX_32BIT_REG_ESI 6
#define BX_32BIT_REG_EDI 7
#if defined(NEED_CPU_REG_SHORTCUTS)
/* WARNING:
Only BX_CPU_C member functions can use these shortcuts safely!
Functions that use the shortcuts outside of BX_CPU_C might work
when BX_USE_CPU_SMF=1 but will fail when BX_USE_CPU_SMF=0
(for example in SMP mode).
*/
// access to 8 bit general registers
#define AL (BX_CPU_THIS_PTR gen_reg[0].word.byte.rl)
#define CL (BX_CPU_THIS_PTR gen_reg[1].word.byte.rl)
#define DL (BX_CPU_THIS_PTR gen_reg[2].word.byte.rl)
#define BL (BX_CPU_THIS_PTR gen_reg[3].word.byte.rl)
#define AH (BX_CPU_THIS_PTR gen_reg[0].word.byte.rh)
#define CH (BX_CPU_THIS_PTR gen_reg[1].word.byte.rh)
#define DH (BX_CPU_THIS_PTR gen_reg[2].word.byte.rh)
#define BH (BX_CPU_THIS_PTR gen_reg[3].word.byte.rh)
// access to 16 bit general registers
#define AX (BX_CPU_THIS_PTR gen_reg[0].word.rx)
#define CX (BX_CPU_THIS_PTR gen_reg[1].word.rx)
#define DX (BX_CPU_THIS_PTR gen_reg[2].word.rx)
#define BX (BX_CPU_THIS_PTR gen_reg[3].word.rx)
#define SP (BX_CPU_THIS_PTR gen_reg[4].word.rx)
#define BP (BX_CPU_THIS_PTR gen_reg[5].word.rx)
#define SI (BX_CPU_THIS_PTR gen_reg[6].word.rx)
#define DI (BX_CPU_THIS_PTR gen_reg[7].word.rx)
// access to 16 bit instruction pointer
#define IP (* (Bit16u *) (((Bit8u *) &BX_CPU_THIS_PTR dword.eip) + BX_REG16_OFFSET))
// accesss to 32 bit general registers
#define EAX BX_CPU_THIS_PTR gen_reg[0].dword.erx
#define ECX BX_CPU_THIS_PTR gen_reg[1].dword.erx
#define EDX BX_CPU_THIS_PTR gen_reg[2].dword.erx
#define EBX BX_CPU_THIS_PTR gen_reg[3].dword.erx
#define ESP BX_CPU_THIS_PTR gen_reg[4].dword.erx
#define EBP BX_CPU_THIS_PTR gen_reg[5].dword.erx
#define ESI BX_CPU_THIS_PTR gen_reg[6].dword.erx
#define EDI BX_CPU_THIS_PTR gen_reg[7].dword.erx
#if BX_SUPPORT_X86_64
// accesss to 64 bit general registers
#define RAX BX_CPU_THIS_PTR gen_reg[0].rrx
#define RCX BX_CPU_THIS_PTR gen_reg[1].rrx
#define RDX BX_CPU_THIS_PTR gen_reg[2].rrx
#define RBX BX_CPU_THIS_PTR gen_reg[3].rrx
#define RSP BX_CPU_THIS_PTR gen_reg[4].rrx
#define RBP BX_CPU_THIS_PTR gen_reg[5].rrx
#define RSI BX_CPU_THIS_PTR gen_reg[6].rrx
#define RDI BX_CPU_THIS_PTR gen_reg[7].rrx
#define R8 BX_CPU_THIS_PTR gen_reg[8].rrx
#define R9 BX_CPU_THIS_PTR gen_reg[9].rrx
#define R10 BX_CPU_THIS_PTR gen_reg[10].rrx
#define R11 BX_CPU_THIS_PTR gen_reg[11].rrx
#define R12 BX_CPU_THIS_PTR gen_reg[12].rrx
#define R13 BX_CPU_THIS_PTR gen_reg[13].rrx
#define R14 BX_CPU_THIS_PTR gen_reg[14].rrx
#define R15 BX_CPU_THIS_PTR gen_reg[15].rrx
#endif
// access to 32 bit instruction pointer
#define EIP BX_CPU_THIS_PTR dword.eip
#if BX_SUPPORT_X86_64
// access to 64 bit instruction pointer
#define RIP BX_CPU_THIS_PTR rip
// access to 64 bit MSR registers
#define MSR_FSBASE (BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base)
#define MSR_GSBASE (BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base)
#define MSR_STAR (BX_CPU_THIS_PTR msr.star)
#define MSR_LSTAR (BX_CPU_THIS_PTR msr.lstar)
#define MSR_CSTAR (BX_CPU_THIS_PTR msr.cstar)
#define MSR_FMASK (BX_CPU_THIS_PTR msr.fmask)
#define MSR_KERNELGSBASE (BX_CPU_THIS_PTR msr.kernelgsbase)
#endif
#if BX_SUPPORT_X86_64
#define BX_READ_8BIT_REGx(index,extended) ((((index) < 4) || (extended)) ? \
(BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \
(BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh))
#define BX_READ_16BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].word.rx)
#define BX_READ_32BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].dword.erx)
#define BX_READ_64BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].rrx)
#else
#define BX_READ_8BIT_REG(index) (((index) < 4) ? \
(BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \
(BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh))
#define BX_READ_8BIT_REGx(index,ext) BX_READ_8BIT_REG(index)
#define BX_READ_16BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].word.rx)
#define BX_READ_32BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].dword.erx)
#endif
#define BX_READ_16BIT_BASE_REG(var, index) {\
var = *BX_CPU_THIS_PTR _16bit_base_reg[index];\
}
#define BX_READ_16BIT_INDEX_REG(var, index) {\
var = *BX_CPU_THIS_PTR _16bit_index_reg[index];\
}
#if BX_SUPPORT_X86_64
#define BX_WRITE_8BIT_REGx(index, extended, val) {\
if (((index) < 4) || (extended)) \
BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \
else \
BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \
}
#define BX_WRITE_16BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].word.rx = val; \
}
#define BX_WRITE_32BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = val; \
}
#define BX_WRITE_32BIT_REGZ(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].rrx = (Bit32u) val; \
}
#define BX_WRITE_64BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].rrx = val; \
}
#else
#define BX_WRITE_8BIT_REG(index, val) {\
if ((index) < 4) \
BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \
else \
BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \
}
#define BX_WRITE_8BIT_REGx(index, ext, val) BX_WRITE_8BIT_REG(index, val)
#define BX_WRITE_16BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].word.rx = val; \
}
#define BX_WRITE_32BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = val; \
}
// For x86-32, I just pretend this one is like the macro above,
// so common code can be used.
#define BX_WRITE_32BIT_REGZ(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = (Bit32u) val; \
}
#endif
#if BX_SMP_PROCESSORS==1
#define CPU_ID 0
#else
#define CPU_ID (BX_CPU_THIS_PTR local_apic.get_id())
#endif
#ifndef CPL
#define CPL (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl)
#endif
#endif // defined(NEED_CPU_REG_SHORTCUTS)
#define BX_DE_EXCEPTION 0 // Divide Error (fault)
#define BX_DB_EXCEPTION 1 // Debug (fault/trap)
#define BX_BP_EXCEPTION 3 // Breakpoint (trap)
#define BX_OF_EXCEPTION 4 // Overflow (trap)
#define BX_BR_EXCEPTION 5 // BOUND (fault)
#define BX_UD_EXCEPTION 6
#define BX_NM_EXCEPTION 7
#define BX_DF_EXCEPTION 8
#define BX_TS_EXCEPTION 10
#define BX_NP_EXCEPTION 11
#define BX_SS_EXCEPTION 12
#define BX_GP_EXCEPTION 13
#define BX_PF_EXCEPTION 14
#define BX_MF_EXCEPTION 16
#define BX_AC_EXCEPTION 17
#define BX_MC_EXCEPTION 18
#define BX_XF_EXCEPTION 19
/* MSR registers */
#define BX_MSR_P5_MC_ADDR 0x0000
#define BX_MSR_MC_TYPE 0x0001
#define BX_MSR_TSC 0x0010
#define BX_MSR_CESR 0x0011
#define BX_MSR_CTR0 0x0012
#define BX_MSR_CTR1 0x0013
#define BX_MSR_APICBASE 0x001b
#define BX_MSR_EBL_CR_POWERON 0x002a
#define BX_MSR_TEST_CTL 0x0033
#define BX_MSR_BIOS_UPDT_TRIG 0x0079
#define BX_MSR_BBL_CR_D0 0x0088
#define BX_MSR_BBL_CR_D1 0x0089
#define BX_MSR_BBL_CR_D2 0x008a
#define BX_MSR_BBL_CR_D3 0x008b /* = BIOS_SIGN */
#define BX_MSR_PERFCTR0 0x00c1
#define BX_MSR_PERFCTR1 0x00c2
#define BX_MSR_MTRRCAP 0x00fe
#define BX_MSR_BBL_CR_ADDR 0x0116
#define BX_MSR_BBL_DECC 0x0118
#define BX_MSR_BBL_CR_CTL 0x0119
#define BX_MSR_BBL_CR_TRIG 0x011a
#define BX_MSR_BBL_CR_BUSY 0x011b
#define BX_MSR_BBL_CR_CTL3 0x011e
#define BX_MSR_MCG_CAP 0x0179
#define BX_MSR_MCG_STATUS 0x017a
#define BX_MSR_MCG_CTL 0x017b
#define BX_MSR_EVNTSEL0 0x0186
#define BX_MSR_EVNTSEL1 0x0187
#define BX_MSR_DEBUGCTLMSR 0x01d9
#define BX_MSR_LASTBRANCHFROMIP 0x01db
#define BX_MSR_LASTBRANCHTOIP 0x01dc
#define BX_MSR_LASTINTOIP 0x01dd
#define BX_MSR_ROB_CR_BKUPTMPDR6 0x01e0
#define BX_MSR_MTRRPHYSBASE0 0x0200
#define BX_MSR_MTRRPHYSMASK0 0x0201
#define BX_MSR_MTRRPHYSBASE1 0x0202
#if BX_SUPPORT_X86_64
#define BX_MSR_EFER 0xc0000080
#define BX_MSR_STAR 0xc0000081
#define BX_MSR_LSTAR 0xc0000082
#define BX_MSR_CSTAR 0xc0000083
#define BX_MSR_FMASK 0xc0000084
#define BX_MSR_FSBASE 0xc0000100
#define BX_MSR_GSBASE 0xc0000101
#define BX_MSR_KERNELGSBASE 0xc0000102
#endif
#define BX_MODE_IA32 0x0
#define BX_MODE_LONG_COMPAT 0x1
#define BX_MODE_LONG_64 0x2
#if BX_SUPPORT_APIC
#define BX_CPU_INTR (BX_CPU_THIS_PTR INTR || BX_CPU_THIS_PTR local_apic.INTR)
#else
#define BX_CPU_INTR BX_CPU_THIS_PTR INTR
#endif
class BX_CPU_C;
#if BX_USE_CPU_SMF == 0
// normal member functions. This can ONLY be used within BX_CPU_C classes.
// Anyone on the outside should use the BX_CPU macro (defined in bochs.h)
// instead.
# define BX_CPU_THIS_PTR this->
# define BX_CPU_THIS this
# define BX_SMF
# define BX_CPU_C_PREFIX BX_CPU_C::
// with normal member functions, calling a member fn pointer looks like
// object->*(fnptr)(arg, ...);
// Since this is different from when SMF=1, encapsulate it in a macro.
# define BX_CPU_CALL_METHOD(func, args) \
(this->*((BxExecutePtr_t) (func))) args
#else
// static member functions. With SMF, there is only one CPU by definition.
# define BX_CPU_THIS_PTR BX_CPU(0)->
# define BX_CPU_THIS BX_CPU(0)
# define BX_SMF static
# define BX_CPU_C_PREFIX
# define BX_CPU_CALL_METHOD(func, args) \
((BxExecutePtr_t) (func)) args
#endif
#if BX_SMP_PROCESSORS==1
// single processor simulation, so there's one of everything
BOCHSAPI extern BX_CPU_C bx_cpu;
#else
// multiprocessor simulation, we need an array of cpus and memories
BOCHSAPI extern BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS];
#endif
typedef struct {
/* 31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16
* ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|==
* 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP|VF|AC|VM|RF
*
* 15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0
* ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|==
* 0|NT| IOPL|OF|DF|IF|TF|SF|ZF| 0|AF| 0|PF| 1|CF
*/
Bit32u val32; // Raw 32-bit value in x86 bit position. Used to store
// some eflags which are not cached in separate fields.
Bit32u VM_cached;
#define DECLARE_EFLAGS_ACCESSORS() \
BX_CPP_INLINE void setEFlags(Bit32u val);
#define IMPLEMENT_EFLAGS_ACCESSORS() \
BX_CPP_INLINE void BX_CPU_C::setEFlags(Bit32u val) { \
BX_CPU_THIS_PTR eflags.val32 = val; \
BX_CPU_THIS_PTR eflags.VM_cached = val & (1<<17); \
if ( BX_CPU_THIS_PTR cr0.pe) { \
BX_CPU_THIS_PTR v8086Mode = BX_CPU_THIS_PTR eflags.VM_cached; \
BX_CPU_THIS_PTR protectedMode = ! BX_CPU_THIS_PTR v8086Mode; \
} \
}
// accessors for all eflags in bx_flags_reg_t
// The macro is used once for each flag bit.
#define DECLARE_EFLAG_ACCESSOR(name,bitnum) \
BX_CPP_INLINE void assert_##name (); \
BX_CPP_INLINE void clear_##name (); \
BX_CPP_INLINE Bit32u get_##name (); \
BX_CPP_INLINE bx_bool getB_##name (); \
BX_CPP_INLINE void set_##name (Bit8u val);
#define IMPLEMENT_EFLAG_ACCESSOR(name,bitnum) \
BX_CPP_INLINE void BX_CPU_C::assert_##name () { \
BX_CPU_THIS_PTR eflags.val32 |= (1<<bitnum); \
} \
BX_CPP_INLINE void BX_CPU_C::clear_##name () { \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<bitnum); \
} \
BX_CPP_INLINE bx_bool BX_CPU_C::getB_##name () { \
return 1 & (BX_CPU_THIS_PTR eflags.val32 >> bitnum); \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_##name () { \
return BX_CPU_THIS_PTR eflags.val32 & (1 << bitnum); \
} \
BX_CPP_INLINE void BX_CPU_C::set_##name (Bit8u val) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32&~(1<<bitnum)) | ((!!val)<<bitnum); \
}
#define DECLARE_EFLAG_ACCESSOR_VM(bitnum) \
BX_CPP_INLINE void assert_VM(); \
BX_CPP_INLINE void clear_VM(); \
BX_CPP_INLINE Bit32u get_VM(); \
BX_CPP_INLINE bx_bool getB_VM(); \
BX_CPP_INLINE void set_VM(Bit32u val);
#define IMPLEMENT_EFLAG_ACCESSOR_VM(bitnum) \
BX_CPP_INLINE void BX_CPU_C::assert_VM() { \
BX_CPU_THIS_PTR eflags.val32 |= (1<<bitnum); \
BX_CPU_THIS_PTR eflags.VM_cached = 1; \
if ( BX_CPU_THIS_PTR cr0.pe) { \
BX_CPU_THIS_PTR protectedMode = 0; \
BX_CPU_THIS_PTR v8086Mode = 1; \
} \
} \
BX_CPP_INLINE void BX_CPU_C::clear_VM() { \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<bitnum); \
BX_CPU_THIS_PTR eflags.VM_cached = 0; \
if ( BX_CPU_THIS_PTR cr0.pe) { \
BX_CPU_THIS_PTR protectedMode = 1; \
BX_CPU_THIS_PTR v8086Mode = 0; \
} \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_VM() { \
return BX_CPU_THIS_PTR eflags.VM_cached; \
} \
BX_CPP_INLINE bx_bool BX_CPU_C::getB_VM() { \
return (BX_CPU_THIS_PTR eflags.VM_cached>0); \
} \
BX_CPP_INLINE void BX_CPU_C::set_VM(Bit32u val) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32&~(1<<bitnum)) | (val ? (1<<bitnum) : 0); \
BX_CPU_THIS_PTR eflags.VM_cached = val; \
if ( BX_CPU_THIS_PTR cr0.pe) { \
BX_CPU_THIS_PTR v8086Mode = val; \
BX_CPU_THIS_PTR protectedMode = ! BX_CPU_THIS_PTR v8086Mode; \
} \
}
#define DECLARE_EFLAG_ACCESSOR_IOPL(bitnum) \
BX_CPP_INLINE void set_IOPL(Bit32u val); \
BX_CPP_INLINE Bit32u get_IOPL(void);
#define IMPLEMENT_EFLAG_ACCESSOR_IOPL(bitnum) \
BX_CPP_INLINE void BX_CPU_C::set_IOPL(Bit32u val) { \
BX_CPU_THIS_PTR eflags.val32 &= ~(3<<12); \
BX_CPU_THIS_PTR eflags.val32 |= ((3&val) << 12); \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_IOPL() { \
return 3 & (BX_CPU_THIS_PTR eflags.val32 >> 12); \
}
#define EFlagsOSZAPCMask 0x000008d5
#define EFlagsOSZAPMask 0x000008d4
} bx_flags_reg_t;
#define DECLARE_8BIT_REGISTER_ACCESSORS(name) \
BX_SMF BX_CPP_INLINE Bit8u get_##name(void); \
BX_SMF BX_CPP_INLINE void set_##name(Bit8u val)
#define DECLARE_16BIT_REGISTER_ACCESSORS(name) \
BX_SMF BX_CPP_INLINE Bit16u get_##name(void); \
BX_SMF BX_CPP_INLINE void set_##name(Bit16u val)
#define DECLARE_32BIT_REGISTER_ACCESSORS(name) \
BX_SMF BX_CPP_INLINE Bit32u get_##name(void); \
BX_SMF BX_CPP_INLINE void set_##name(Bit32u val)
#define IMPLEMENT_8LBIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit8u val) { \
BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name].word.byte.rl = val; \
} \
BX_CPP_INLINE Bit8u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name].word.byte.rl); \
}
#define IMPLEMENT_8HBIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit8u val) { \
BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name-4].word.byte.rh = val; \
} \
BX_CPP_INLINE Bit8u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_8BIT_REG_##name-4].word.byte.rh); \
}
#define IMPLEMENT_16BIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit16u val) { \
BX_CPU_THIS_PTR gen_reg[BX_16BIT_REG_##name].word.rx = val; \
} \
BX_CPP_INLINE Bit16u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_16BIT_REG_##name].word.rx); \
}
#define IMPLEMENT_32BIT_REGISTER_ACCESSORS(name) \
BX_CPP_INLINE void BX_CPU_C::set_##name(Bit32u val) { \
BX_CPU_THIS_PTR gen_reg[BX_32BIT_REG_##name].dword.erx = val; \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_##name(void) { \
return (BX_CPU_THIS_PTR gen_reg[BX_32BIT_REG_##name].dword.erx); \
}
#if BX_CPU_LEVEL >= 2
typedef struct {
Bit32u val32; // 32bit value of register
// bitfields broken out for efficient access
#if BX_CPU_LEVEL >= 3
bx_bool pg; // paging
#endif
// CR0 notes:
// Each x86 level has its own quirks regarding how it handles
// reserved bits. I used DOS DEBUG.EXE in real mode on the
// following processors, tried to clear bits 1..30, then tried
// to set bits 1..30, to see how these bits are handled.
// I found the following:
//
// Processor try to clear bits 1..30 try to set bits 1..30
// 386 7FFFFFF0 7FFFFFFE
// 486DX2 00000010 6005003E
// Pentium 00000010 7FFFFFFE
// Pentium-II 00000010 6005003E
//
// My assumptions:
// All processors: bit 4 is hardwired to 1 (not true on all clones)
// 386: bits 5..30 of CR0 are also hardwired to 1
// Pentium: reserved bits retain value set using mov cr0, reg32
// 486DX2/Pentium-II: reserved bits are hardwired to 0
#if BX_CPU_LEVEL >= 4
bx_bool cd; // cache disable
bx_bool nw; // no write-through
bx_bool am; // alignment mask
bx_bool wp; // write-protect
bx_bool ne; // numerics exception
#endif
bx_bool ts; // task switched
bx_bool em; // emulate math coprocessor
bx_bool mp; // monitor coprocessor
bx_bool pe; // protected mode enable
} bx_cr0_t;
#endif
#if BX_CPU_LEVEL >= 4
typedef struct {
Bit32u registerValue; // 32bit value of register
// Accessors for all cr4 bitfields.
#define IMPLEMENT_CR4_ACCESSORS(name,bitnum) \
BX_CPP_INLINE bx_bool get_##name () { \
return 1 & (registerValue >> bitnum); \
} \
BX_CPP_INLINE void set_##name (Bit8u val) { \
registerValue = (registerValue&~(1<<bitnum)) | (val ? (1<<bitnum) : 0); \
}
IMPLEMENT_CR4_ACCESSORS(VME, 0);
IMPLEMENT_CR4_ACCESSORS(PVI, 1);
IMPLEMENT_CR4_ACCESSORS(TSD, 2);
IMPLEMENT_CR4_ACCESSORS(DE, 3);
IMPLEMENT_CR4_ACCESSORS(PSE, 4);
IMPLEMENT_CR4_ACCESSORS(PAE, 5);
IMPLEMENT_CR4_ACCESSORS(MCE, 6);
IMPLEMENT_CR4_ACCESSORS(PGE, 7);
IMPLEMENT_CR4_ACCESSORS(PCE, 8);
IMPLEMENT_CR4_ACCESSORS(OSFXSR, 9);
IMPLEMENT_CR4_ACCESSORS(OSXMMEXCPT, 10);
BX_CPP_INLINE Bit32u getRegister() { return registerValue; }
BX_CPP_INLINE void setRegister(Bit32u r) { registerValue = r; }
} bx_cr4_t;
#endif // #if BX_CPU_LEVEL >= 4
#if BX_CPU_LEVEL >= 5
typedef struct {
Bit64u apicbase;
#if BX_SUPPORT_X86_64
// x86-64 EFER bits
bx_bool sce;
bx_bool lme;
bx_bool lma;
Bit64u star;
Bit64u lstar;
Bit64u cstar;
Bit64u fmask;
Bit64u kernelgsbase;
#endif
/* TODO finish of the others */
} bx_regs_msr_t;
#endif
typedef struct { /* bx_selector_t */
Bit16u value; /* the 16bit value of the selector */
#if BX_CPU_LEVEL >= 2
/* the following fields are extracted from the value field in protected
mode only. They're used for sake of efficiency */
Bit16u index; /* 13bit index extracted from value in protected mode */
Bit8u ti; /* table indicator bit extracted from value */
Bit8u rpl; /* RPL extracted from value */
#endif
} bx_selector_t;
typedef struct {
#define SegValidCache 0x1
#define SegAccessROK 0x2
#define SegAccessWOK 0x4
bx_bool valid; // Holds above values, Or'd together. Used to
// hold only 0 or 1.
bx_bool p; /* present */
Bit8u dpl; /* descriptor privilege level 0..3 */
bx_bool segment; /* 0 = system/gate, 1 = data/code segment */
Bit8u type; /* For system & gate descriptors, only
* 0 = invalid descriptor (reserved)
* 1 = 286 available Task State Segment (TSS)
* 2 = LDT descriptor
* 3 = 286 busy Task State Segment (TSS)
* 4 = 286 call gate
* 5 = task gate
* 6 = 286 interrupt gate
* 7 = 286 trap gate
* 8 = (reserved)
* 9 = 386 available TSS
* 10 = (reserved)
* 11 = 386 busy TSS
* 12 = 386 call gate
* 13 = (reserved)
* 14 = 386 interrupt gate
* 15 = 386 trap gate */
union {
struct {
bx_bool executable; /* 1=code, 0=data or stack segment */
bx_bool c_ed; /* for code: 1=conforming,
for data/stack: 1=expand down */
bx_bool r_w; /* for code: readable?, for data/stack: writeable? */
bx_bool a; /* accessed? */
bx_address base; /* base address: 286=24bits, 386=32bits, long=64 */
Bit32u limit; /* limit: 286=16bits, 386=20bits */
Bit32u limit_scaled; /* for efficiency, this contrived field is set to
* limit for byte granular, and
* (limit << 12) | 0xfff for page granular seg's
*/
#if BX_CPU_LEVEL >= 3
bx_bool g; /* granularity: 0=byte, 1=4K (page) */
bx_bool d_b; /* default size: 0=16bit, 1=32bit */
#if BX_SUPPORT_X86_64
bx_bool l; /* long mode: 0=compat, 1=64 bit */
#endif
bx_bool avl; /* available for use by system */
#endif
} segment;
struct {
Bit8u word_count; /* 5bits (0..31) #words to copy from caller's stack
* to called procedure's stack. (call gates only)*/
Bit16u dest_selector;
Bit16u dest_offset;
} gate286;
struct { // type 5: Task Gate Descriptor
Bit16u tss_selector; // TSS segment selector
} taskgate;
#if BX_CPU_LEVEL >= 3
struct {
Bit8u dword_count; /* 5bits (0..31) #dwords to copy from caller's stack
* to called procedure's stack. (call gates only)*/
Bit16u dest_selector;
Bit32u dest_offset;
} gate386;
#endif
struct {
Bit32u base; /* 24 bit 286 TSS base */
Bit16u limit; /* 16 bit 286 TSS limit */
} tss286;
#if BX_CPU_LEVEL >= 3
struct {
bx_address base; /* 32/64 bit 386 TSS base */
Bit32u limit; /* 20 bit 386 TSS limit */
Bit32u limit_scaled; // Same notes as for 'segment' field
bx_bool g; /* granularity: 0=byte, 1=4K (page) */
bx_bool avl; /* available for use by system */
} tss386;
#endif
struct {
bx_address base; /* 286=24 386+ =32/64 bit LDT base */
Bit16u limit; /* 286+ =16 bit LDT limit */
} ldt;
} u;
} bx_descriptor_t;
typedef struct {
bx_selector_t selector;
bx_descriptor_t cache;
} bx_segment_reg_t;
typedef void * (*BxVoidFPtr_t)(void);
class BX_CPU_C;
class bxInstruction_c {
public:
// Function pointers; a function to resolve the modRM address
// given the current state of the CPU and the instruction data,
// and a function to execute the instruction after resolving
// the memory address (if any).
#if BX_USE_CPU_SMF
void (*ResolveModrm)(bxInstruction_c *);
void (*execute)(bxInstruction_c *);
#else
void (BX_CPU_C::*ResolveModrm)(bxInstruction_c *);
void (BX_CPU_C::*execute)(bxInstruction_c *);
#endif
// 26..23 ilen (0..15). Leave this one on top so no mask is needed.
// 22..22 mod==c0 (modrm)
// 21..13 b1 (9bits of opcode; 1byte-op=0..255, 2byte-op=256..511.
// 12..12 BxRepeatableZF (pass-thru from fetchdecode attributes)
// 11..11 BxRepeatable (pass-thru from fetchdecode attributes)
// 10...9 repUsed (0=none, 2=0xF2, 3=0xF3).
// 8...8 extend8bit
// 7...7 as64
// 6...6 os64
// 5...5 as32
// 4...4 os32
// 3...3 (unused)
// 2...0 seg
unsigned metaInfo;
union {
// Form (longest case): [opcode+modrm+sib/displacement32/immediate32]
struct {
// Note: if you add more bits, mask the previously upper field,
// in the accessor.
// 27..20 modRM (modrm)
// 19..16 index (sib)
// 15..12 base (sib)
// 11...8 nnn (modrm)
// 7...6 mod (modrm)
// 5...4 scale (sib)
// 3...0 rm (modrm)
Bit32u modRMData;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
union {
Bit16u displ16u; // for 16-bit modrm forms
Bit32u displ32u; // for 32-bit modrm forms
};
} modRMForm;
struct {
Bit32u dummy;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
union {
Bit32u Id2; // Not used (for alignment)
Bit16u Iw2;
Bit8u Ib2;
};
} IxIxForm;
struct {
// For opcodes which don't use modRM, but which encode the
// register in the low 3 bits of the opcode, extended by the
// REX.B bit on x86-64, the register value is cached in opcodeReg.
Bit32u opcodeReg;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
Bit32u dummy;
} IxForm;
#if BX_SUPPORT_X86_64
// Form: [opcode/Iq]. These opcode never use a modrm sequence.
struct {
Bit32u opcodeReg;
Bit64u Iq; // for MOV Rx,imm64
} IqForm;
#endif
};
BX_CPP_INLINE unsigned opcodeReg() {
// The opcodeReg form (low 3 bits of the opcode byte (extended
// by REX.B on x86-64) can be accessed by IxForm or IqForm. They
// are aligned in the same place, so it doesn't matter.
return IxForm.opcodeReg;
}
BX_CPP_INLINE unsigned modrm() { return (modRMForm.modRMData>>20) & 0xff; }
BX_CPP_INLINE unsigned mod() { return modRMForm.modRMData & 0xc0; }
BX_CPP_INLINE unsigned modC0()
{
// This is a cheaper way to test for modRM instructions where
// the mod field is 0xc0. FetchDecode flags this condition since
// it is quite common to be tested for.
return metaInfo & (1<<22);
}
BX_CPP_INLINE unsigned nnn() {
return (modRMForm.modRMData >> 8) & 0xf;
}
BX_CPP_INLINE unsigned rm() { return modRMForm.modRMData & 0xf; }
BX_CPP_INLINE unsigned sibScale() {
return (modRMForm.modRMData >> 4) & 0x3;
}
BX_CPP_INLINE unsigned sibIndex() {
return (modRMForm.modRMData >> 16) & 0xf;
}
BX_CPP_INLINE unsigned sibBase() {
return (modRMForm.modRMData >> 12) & 0xf;
}
BX_CPP_INLINE Bit32u displ32u() { return modRMForm.displ32u; }
BX_CPP_INLINE Bit16u displ16u() { return modRMForm.displ16u; }
BX_CPP_INLINE Bit32u Id() { return modRMForm.Id; }
BX_CPP_INLINE Bit16u Iw() { return modRMForm.Iw; }
BX_CPP_INLINE Bit8u Ib() { return modRMForm.Ib; }
BX_CPP_INLINE Bit16u Iw2() { return IxIxForm.Iw2; } // Legacy
BX_CPP_INLINE Bit8u Ib2() { return IxIxForm.Ib2; } // Legacy
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u Iq() { return IqForm.Iq; }
#endif
// Info in the metaInfo field.
// Note: the 'L' at the end of certain flags, means the value returned
// is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you
// want a bx_bool value, use os32B() etc. This makes for smaller
// code, when a strict 0 or 1 is not necessary.
BX_CPP_INLINE void initMetaInfo(unsigned seg,
unsigned os32, unsigned as32,
unsigned os64, unsigned as64,
unsigned extend8bit, unsigned repUsed) {
metaInfo = seg | (os32<<4) | (as32<<5) |
(os64<<6) | (as64<<7) | (extend8bit<<8) | (repUsed<<9);
}
BX_CPP_INLINE unsigned seg(void) {
return metaInfo & 7;
}
BX_CPP_INLINE void setSeg(unsigned val) {
metaInfo = (metaInfo & ~7) | val;
}
BX_CPP_INLINE unsigned os32L(void) {
return metaInfo & (1<<4);
}
BX_CPP_INLINE unsigned os32B(void) {
return (metaInfo >> 4) & 1;
}
BX_CPP_INLINE void setOs32B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<4)) | (bit<<4);
}
BX_CPP_INLINE void assertOs32(void) {
metaInfo |= (1<<4);
}
BX_CPP_INLINE unsigned as32L(void) {
return metaInfo & (1<<5);
}
BX_CPP_INLINE unsigned as32B(void) {
return (metaInfo >> 5) & 1;
}
BX_CPP_INLINE void setAs32B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<5)) | (bit<<5);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned os64L(void) {
return metaInfo & (1<<6);
}
BX_CPP_INLINE void setOs64B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<6)) | (bit<<6);
}
BX_CPP_INLINE void assertOs64(void) {
metaInfo |= (1<<6);
}
#else
BX_CPP_INLINE unsigned os64L(void) { return 0; }
#endif
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned as64L(void) {
return metaInfo & (1<<7);
}
BX_CPP_INLINE void setAs64B(unsigned bit) {
metaInfo = (metaInfo & ~(1<<7)) | (bit<<7);
}
#else
BX_CPP_INLINE unsigned as64L(void) { return 0; }
#endif
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned extend8bitL(void) {
return metaInfo & (1<<8);
}
BX_CPP_INLINE void assertExtend8bit(void) {
metaInfo |= (1<<8);
}
#endif
BX_CPP_INLINE unsigned repUsedL(void) {
return metaInfo & (3<<9);
}
BX_CPP_INLINE unsigned repUsedValue(void) {
return (metaInfo >> 9) & 3;
}
BX_CPP_INLINE void setRepUsed(unsigned value) {
metaInfo = (metaInfo & ~(3<<9)) | (value<<9);
}
BX_CPP_INLINE void setRepAttr(unsigned value) {
// value is expected to be masked, and only contain bits
// for BxRepeatable and BxRepeatableZF. We don't need to
// keep masking out these bits before we add in new ones,
// since the fetch process won't start with repeatable attributes
// and then delete them.
metaInfo |= value;
}
BX_CPP_INLINE unsigned repeatableL(void) {
return metaInfo & (1<<11);
}
BX_CPP_INLINE unsigned repeatableZFL(void) {
return metaInfo & (1<<12);
}
BX_CPP_INLINE unsigned b1(void) {
return (metaInfo >> 13) & 0x1ff;
}
BX_CPP_INLINE void setB1(unsigned b1) {
metaInfo = (metaInfo & ~(0x1ff<<13)) | (b1<<13);
}
// Note this is the highest field, and thus needs no masking.
// DON'T PUT ANY FIELDS HIGHER THAN THIS ONE WITHOUT ADDING A MASK.
BX_CPP_INLINE unsigned ilen(void) {
return metaInfo >> 23;
}
BX_CPP_INLINE void setILen(unsigned ilen) {
metaInfo |= (ilen<<23);
}
};
#if BX_USE_CPU_SMF
typedef void (*BxExecutePtr_t)(bxInstruction_c *);
#else
typedef void (BX_CPU_C::*BxExecutePtr_t)(bxInstruction_c *);
#endif
// ========== iCache =============================================
#if BX_SupportICache
#define BxICacheEntries (32 * 1024) // Must be a power of 2.
// bit31: 1=CS is 32/64-bit, 0=CS is 16-bit.
// bit30: 1=Long Mode, 0=not Long Mode.
// bit29: 1=iCache page, 0=Data.
#define ICacheWriteStampInvalid 0x1fffffff
#define ICacheWriteStampMax 0x1fffffff // Decrements from here.
#define ICacheWriteStampMask 0x1fffffff
class bxICacheEntry_c {
public:
Bit32u pAddr; // Physical address of the instruction.
Bit32u writeStamp; // Generation ID. Each write to a physical page
// decrements this value.
bxInstruction_c i; // The instruction decode information.
};
class BOCHSAPI bxICache_c {
public:
bxICacheEntry_c entry[BxICacheEntries];
// A table (dynamically allocated) to store write-stamp
// generation IDs. Each time a write occurs to a physical page,
// a generation ID is decremented. Only iCache entries which have
// write stamps matching the physical page write stamp are valid.
Bit32u *pageWriteStampTable; // Allocated later.
Bit32u fetchModeMask;
bxICache_c() {
// Initially clear the iCache;
memset(this, 0, sizeof(*this));
pageWriteStampTable = NULL;
for (unsigned i=0; i<BxICacheEntries; i++) {
entry[i].writeStamp = ICacheWriteStampInvalid;
}
}
BX_CPP_INLINE void alloc(unsigned memSizeInBytes) {
pageWriteStampTable =
(Bit32u*) malloc(sizeof(Bit32u) * (memSizeInBytes>>12));
for (unsigned i=0; i<(memSizeInBytes>>12); i++) {
pageWriteStampTable[i] = ICacheWriteStampInvalid;
}
}
BX_CPP_INLINE void decWriteStamp(BX_CPU_C *cpu, Bit32u a20Addr);
BX_CPP_INLINE void clear(void) {
memset(this, 0, sizeof(*this));
}
BX_CPP_INLINE unsigned hash(Bit32u pAddr) {
// A pretty dumb hash function for now.
return pAddr & (BxICacheEntries-1);
}
BX_CPP_INLINE Bit32u createFetchModeMask(BX_CPU_C *cpu);
};
#endif
// ===============================================================
#if BX_CPU_LEVEL < 2
/* no GDTR or IDTR register in an 8086 */
#else
typedef struct {
bx_address base; /* base address: 24bits=286,32bits=386,64bits=x86-64 */
Bit16u limit; /* limit, 16bits */
} bx_global_segment_reg_t;
#endif
#if BX_USE_TLB
typedef struct {
bx_address lpf; // linear page frame
Bit32u ppf; // physical page frame
Bit32u accessBits; // Page Table Address for updating A & D bits
Bit32u hostPageAddr;
} bx_TLB_entry;
#endif // #if BX_USE_TLB
#if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u dword_filler;
Bit16u word_filler;
union {
Bit16u rx;
struct {
Bit8u rh;
Bit8u rl;
} byte;
};
} word;
Bit64u rrx;
struct {
Bit32u hrx; // hi 32 bits
Bit32u erx; // low 32 bits
} dword;
};
} bx_gen_reg_t;
#else
typedef struct {
union {
struct {
union {
Bit16u rx;
struct {
Bit8u rl;
Bit8u rh;
} byte;
};
Bit16u word_filler;
Bit32u dword_filler;
} word;
Bit64u rrx;
struct {
Bit32u erx; // low 32 bits
Bit32u hrx; // hi 32 bits
} dword;
};
} bx_gen_reg_t;
#endif
#else // #if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u erx;
} dword;
struct {
Bit16u word_filler;
union {
Bit16u rx;
struct {
Bit8u rh;
Bit8u rl;
} byte;
};
} word;
};
} bx_gen_reg_t;
#else
typedef struct {
union {
struct {
Bit32u erx;
} dword;
struct {
union {
Bit16u rx;
struct {
Bit8u rl;
Bit8u rh;
} byte;
};
Bit16u word_filler;
} word;
};
} bx_gen_reg_t;
#endif
#endif // #if BX_SUPPORT_X86_64
typedef enum {
APIC_TYPE_NONE,
APIC_TYPE_IOAPIC,
APIC_TYPE_LOCAL_APIC
} bx_apic_type_t;
#define APIC_BASE_ADDR 0xfee00000 // default APIC address
#if BX_SUPPORT_APIC
class BOCHSAPI bx_generic_apic_c : public logfunctions {
protected:
Bit32u base_addr;
Bit8u id;
#define APIC_UNKNOWN_ID 0xff
#define APIC_VERSION_ID 0x00170011 // same version as 82093 IOAPIC
public:
bx_generic_apic_c ();
virtual ~bx_generic_apic_c ();
virtual void init ();
virtual void hwreset () { }
Bit32u get_base (void) { return base_addr; }
void set_base (Bit32u newbase);
void set_id (Bit8u newid);
Bit8u get_id () { return id; }
static void reset_all_ids ();
virtual char *get_name();
bx_bool is_selected (Bit32u addr, Bit32u len);
void read (Bit32u addr, void *data, unsigned len);
virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len);
virtual void write(Bit32u address, Bit32u *value, unsigned len);
virtual void startup_msg (Bit32u vector);
// on local APIC, trigger means deliver to the CPU.
// on I/O APIC, trigger means direct to another APIC according to table.
virtual void trigger_irq (unsigned num, unsigned from);
virtual void untrigger_irq (unsigned num, unsigned from);
virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode);
virtual bx_bool deliver (Bit8u destination, Bit8u dest_mode, Bit8u delivery_mode, Bit8u vector, Bit8u polarity, Bit8u trig_mode);
virtual bx_bool match_logical_addr (Bit8u address);
virtual bx_apic_type_t get_type ();
virtual void set_arb_id (int newid); // only implemented on local apics
};
class BOCHSAPI bx_local_apic_c : public bx_generic_apic_c {
#define BX_LOCAL_APIC_MAX_INTS 256
// TMR=trigger mode register. Cleared for edge-triggered interrupts
// and set for level-triggered interrupts. If set, local APIC must send
// EOI message to all other APICs. EOI's are not implemented.
Bit8u tmr[BX_LOCAL_APIC_MAX_INTS];
// IRR=interrupt request register. When an interrupt is triggered by
// the I/O APIC or another processor, it sets a bit in irr. The bit is
// cleared when the interrupt is acknowledged by the processor.
Bit8u irr[BX_LOCAL_APIC_MAX_INTS];
// ISR=in-service register. When an IRR bit is cleared, the corresponding
// bit in ISR is set. The ISR bit is cleared when
Bit8u isr[BX_LOCAL_APIC_MAX_INTS];
Bit32u arb_id, arb_priority, task_priority, log_dest, dest_format, spurious_vec;
Bit32u lvt[6];
#define APIC_LVT_TIMER 0
#define APIC_LVT_THERMAL 1
#define APIC_LVT_PERFORM 2
#define APIC_LVT_LINT0 3
#define APIC_LVT_LINT1 4
#define APIC_LVT_ERROR 5
Bit32u timer_initial, timer_current, timer_divconf;
bx_bool timer_active; // internal state, not accessible from bus
Bit32u timer_divide_counter, timer_divide_factor;
Bit32u icr_high, icr_low;
Bit32u err_status;
#define APIC_ERR_ILLEGAL_ADDR 0x80
#define APIC_ERR_RX_ILLEGAL_VEC 0x40
#define APIC_ERR_TX_ILLEGAL_VEC 0x20
#define APIC_ERR_RX_ACCEPT_ERR 0x08
#define APIC_ERR_TX_ACCEPT_ERR 0x04
#define APIC_ERR_RX_CHECKSUM 0x02
#define APIC_ERR_TX_CHECKSUM 0x01
int timer_handle; // KPL
Bit64u ticksInitial; // System ticks count when APIC timer is started.
public:
bx_bool INTR;
bx_local_apic_c(BX_CPU_C *mycpu);
virtual ~bx_local_apic_c(void);
BX_CPU_C *cpu;
virtual void hwreset ();
virtual void init ();
BX_CPU_C *get_cpu (Bit8u id);
void set_id (Bit8u newid); // redefine to set cpu->name
virtual char *get_name();
virtual void write (Bit32u addr, Bit32u *data, unsigned len);
virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len);
virtual void startup_msg (Bit32u vector);
// on local APIC, trigger means raise the CPU's INTR line. For now
// I also have to raise pc_system.INTR but that should be replaced
// with the cpu-specific INTR signals.
virtual void trigger_irq (unsigned num, unsigned from);
virtual void untrigger_irq (unsigned num, unsigned from);
Bit8u acknowledge_int (); // only the local CPU should call this
int highest_priority_int (Bit8u *array);
void service_local_apic ();
void print_status ();
virtual bx_bool match_logical_addr (Bit8u address);
virtual bx_bool is_local_apic () { return true; }
virtual bx_apic_type_t get_type () { return APIC_TYPE_LOCAL_APIC; }
virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode);
virtual bx_bool deliver (Bit8u destination, Bit8u dest_mode, Bit8u delivery_mode, Bit8u vector, Bit8u polarity, Bit8u trig_mode);
Bit8u get_ppr ();
Bit8u get_apr ();
static void periodic_smf(void *); // KPL
void periodic(void); // KPL
void set_divide_configuration (Bit32u value);
virtual void update_msr_apicbase(Bit32u newaddr);
virtual void set_arb_id (int newid);
};
#define APIC_MAX_ID 16
extern bx_generic_apic_c *apic_index[APIC_MAX_ID];
#endif // if BX_SUPPORT_APIC
typedef void (*BxDTShim_t)(void);
class BX_MEM_C;
#include "cpu/i387.h"
#if BX_SUPPORT_SSE != 0
#include "cpu/xmm.h"
#endif
class BOCHSAPI BX_CPU_C : public logfunctions {
public: // for now...
char name[64];
// General register set
// eax: accumulator
// ebx: base
// ecx: count
// edx: data
// ebp: base pointer
// esi: source index
// edi: destination index
// esp: stack pointer
#if BX_SUPPORT_X86_64
bx_gen_reg_t gen_reg[16];
union {
#ifdef BX_BIG_ENDIAN
struct {
Bit32u rip_upper;
Bit32u eip;
} dword;
#else
struct {
Bit32u eip;
Bit32u rip_upper;
} dword;
#endif
Bit64u rip;
};
#else
bx_gen_reg_t gen_reg[8];
union {
Bit32u eip; // instruction pointer
} dword;
#endif
#if BX_CPU_LEVEL > 0
// so that we can back up when handling faults, exceptions, etc.
// we need to store the value of the instruction pointer, before
// each fetch/execute cycle.
bx_address prev_eip;
#endif
// A few pointer to functions for use by the dynamic translation
// code. Keep them close to the gen_reg declaration, so I can
// use an 8bit offset to access them.
#if BX_DYNAMIC_TRANSLATION
BxDTShim_t DTWrite8vShim;
BxDTShim_t DTWrite16vShim;
BxDTShim_t DTWrite32vShim;
BxDTShim_t DTRead8vShim;
BxDTShim_t DTRead16vShim;
BxDTShim_t DTRead32vShim;
BxDTShim_t DTReadRMW8vShim;
BxDTShim_t DTReadRMW16vShim;
BxDTShim_t DTReadRMW32vShim;
BxDTShim_t DTWriteRMW8vShim;
BxDTShim_t DTWriteRMW16vShim;
BxDTShim_t DTWriteRMW32vShim;
BxDTShim_t DTSetFlagsOSZAPCPtr;
BxDTShim_t DTIndBrHandler;
BxDTShim_t DTDirBrHandler;
#endif
// status and control flags register set
Bit32u lf_flags_status;
bx_flags_reg_t eflags;
bx_lf_flags_entry oszapc;
bx_lf_flags_entry oszap;
bx_address prev_esp;
#define BX_INHIBIT_INTERRUPTS 0x01
#define BX_INHIBIT_DEBUG 0x02
// What events to inhibit at any given time. Certain instructions
// inhibit interrupts, some debug exceptions and single-step traps.
unsigned inhibit_mask;
/* user segment register set */
bx_segment_reg_t sregs[6];
/* system segment registers */
#if BX_CPU_LEVEL >= 2
bx_global_segment_reg_t gdtr; /* global descriptor table register */
bx_global_segment_reg_t idtr; /* interrupt descriptor table register */
#endif
bx_segment_reg_t ldtr; /* interrupt descriptor table register */
bx_segment_reg_t tr; /* task register */
/* debug registers 0-7 (unimplemented) */
#if BX_CPU_LEVEL >= 3
Bit32u dr0;
Bit32u dr1;
Bit32u dr2;
Bit32u dr3;
Bit32u dr6;
Bit32u dr7;
#endif
/* TR3 - TR7 (Test Register 3-7), unimplemented */
/* Control registers */
#if BX_CPU_LEVEL >= 2
bx_cr0_t cr0;
// Some cached values, so we don't have to do the checks in real time
// in code that needs them.
unsigned protectedMode; // CR0.PE=1, EFLAGS.VM=0
unsigned v8086Mode; // CR0.PE=1, EFLAGS.VM=1
unsigned realMode; // CR0.PE=1
Bit32u cr1;
bx_address cr2;
bx_address cr3;
#endif
#if BX_CPU_LEVEL >= 4
bx_cr4_t cr4;
#endif
#if BX_CPU_LEVEL >= 5
bx_regs_msr_t msr;
#endif
i387_t the_i387;
#if BX_SUPPORT_SSE != 0
bx_xmm_reg_t xmm[BX_XMM_REGISTERS];
bx_mxcsr_t mxcsr;
#endif
// pointer to the address space that this processor uses.
BX_MEM_C *mem;
bx_bool EXT; /* 1 if processing external interrupt or exception
* or if not related to current instruction,
* 0 if current CS:IP caused exception */
unsigned errorno; /* signal exception during instruction emulation */
Bit32u debug_trap; // holds DR6 value to be set as well
volatile bx_bool async_event;
volatile bx_bool INTR;
volatile bx_bool kill_bochs_request;
/* wether this CPU is the BSP always set for UP */
bx_bool bsp;
// for accessing registers by index number
Bit16u *_16bit_base_reg[8];
Bit16u *_16bit_index_reg[8];
Bit32u empty_register;
// for decoding instructions; accessing seg reg's by index
unsigned sreg_mod00_rm16[8];
unsigned sreg_mod01_rm16[8];
unsigned sreg_mod10_rm16[8];
#if BX_SUPPORT_X86_64
unsigned sreg_mod01_rm32[16];
unsigned sreg_mod10_rm32[16];
unsigned sreg_mod0_base32[16];
unsigned sreg_mod1or2_base32[16];
#else
unsigned sreg_mod01_rm32[8];
unsigned sreg_mod10_rm32[8];
unsigned sreg_mod0_base32[8];
unsigned sreg_mod1or2_base32[8];
#endif
// for exceptions
jmp_buf jmp_buf_env;
Bit8u curr_exception[2];
static const bx_bool is_exception_OK[3][3];
bx_segment_reg_t save_cs;
bx_segment_reg_t save_ss;
Bit32u save_eip;
Bit32u save_esp;
// Boundaries of current page, based on EIP
bx_address eipPageBias;
bx_address eipPageWindowSize;
Bit8u *eipFetchPtr;
Bit32u pAddrA20Page; // Guest physical address of current instruction
// page with A20() already applied.
#if BX_SUPPORT_X86_64
// for x86-64 (MODE_IA32,MODE_LONG,MODE_64)
unsigned cpu_mode;
#else
// x86-32 is always in IA32 mode.
enum { cpu_mode = BX_MODE_IA32 };
#endif
#if BX_DEBUGGER
Bit32u watchpoint;
Bit8u break_point;
#ifdef MAGIC_BREAKPOINT
Bit8u magic_break;
#endif
Bit8u stop_reason;
Bit8u trace;
Bit8u trace_reg;
Bit8u mode_break; /* BW */
bx_bool debug_vm; /* BW contains current mode*/
Bit8u show_eip; /* BW record eip at special instr f.ex eip */
Bit8u show_flag; /* BW shows instr class executed */
bx_guard_found_t guard_found;
#endif
#if BX_SUPPORT_X86_64
#define TLB_GENERATION_MAX (BX_TLB_SIZE-1)
#endif
// for paging
#if BX_USE_TLB
struct {
bx_TLB_entry entry[BX_TLB_SIZE] BX_CPP_AlignN(16);
#if BX_USE_QUICK_TLB_INVALIDATE
# define BX_TLB_LPF_VALUE(lpf) (lpf | BX_CPU_THIS_PTR TLB.tlb_invalidate)
Bit32u tlb_invalidate;
#else
# define BX_TLB_LPF_VALUE(lpf) (lpf)
#endif
} TLB;
#endif // #if BX_USE_TLB
// An instruction cache. Each entry should be exactly 32 bytes, and
// this structure should be aligned on a 32-byte boundary to be friendly
// with the host cache lines.
#if BX_SupportICache
bxICache_c iCache BX_CPP_AlignN(32);
#endif
struct {
bx_address rm_addr; // The address offset after resolution.
Bit32u paddress1; // physical address after translation of 1st len1 bytes of data
Bit32u paddress2; // physical address after translation of 2nd len2 bytes of data
Bit32u len1; // Number of bytes in page 1
Bit32u len2; // Number of bytes in page 2
Bit32u pages; // Number of pages access spans (1 or 2). Also used
// for the case when a native host pointer is
// available for the R-M-W instructions. The host
// pointer is stuffed here. Since this field has
// to be checked anyways (and thus cached), if it
// is greated than 2 (the maximum possible for
// normal cases) it is a native pointer and is used
// for a direct write access.
} address_xlation;
#if BX_SUPPORT_X86_64
// data upper 32 bits - not used any longer
//Bit32s daddr_upper; // upper bits must be canonical (-virtmax --> + virtmax)
// instruction upper 32 bits - not used any longer
//Bit32s iaddr_upper; // upper bits must be canonical (-virtmax --> + virtmax)
#endif
#if BX_EXTERNAL_DEBUGGER
void ask (int level, const char *prefix, const char *fmt, va_list ap);
#endif
#define ArithmeticalFlag(flag, lfMaskShift, eflagsBitShift) \
BX_SMF bx_bool get_##flag##Lazy(void); \
BX_SMF bx_bool getB_##flag(void) { \
if ( (BX_CPU_THIS_PTR lf_flags_status & (0xf<<lfMaskShift)) == \
((Bit32u) (BX_LF_INDEX_KNOWN<<lfMaskShift)) ) \
return (BX_CPU_THIS_PTR eflags.val32 >> eflagsBitShift) & 1; \
else \
return get_##flag##Lazy(); \
} \
BX_SMF bx_bool get_##flag(void) { \
if ( (BX_CPU_THIS_PTR lf_flags_status & (0xf<<lfMaskShift)) == \
((Bit32u) (BX_LF_INDEX_KNOWN<<lfMaskShift)) ) \
return BX_CPU_THIS_PTR eflags.val32 & (1<<eflagsBitShift); \
else \
return get_##flag##Lazy(); \
}
ArithmeticalFlag(OF, 20, 11);
ArithmeticalFlag(SF, 16, 7);
ArithmeticalFlag(ZF, 12, 6);
ArithmeticalFlag(AF, 8, 4);
ArithmeticalFlag(PF, 4, 2);
ArithmeticalFlag(CF, 0, 0);
// constructors & destructors...
BX_CPU_C();
~BX_CPU_C(void);
void init (BX_MEM_C *addrspace);
// prototypes for CPU instructions...
BX_SMF void ADD_EbGb(bxInstruction_c *);
BX_SMF void ADD_EdGd(bxInstruction_c *);
BX_SMF void ADD_GbEb(bxInstruction_c *);
BX_SMF void ADD_GdEEd(bxInstruction_c *);
BX_SMF void ADD_GdEGd(bxInstruction_c *);
BX_SMF void ADD_ALIb(bxInstruction_c *);
BX_SMF void ADD_EAXId(bxInstruction_c *);
BX_SMF void OR_EbGb(bxInstruction_c *);
BX_SMF void OR_EdGd(bxInstruction_c *);
BX_SMF void OR_EwGw(bxInstruction_c *);
BX_SMF void OR_GbEb(bxInstruction_c *);
BX_SMF void OR_GdEd(bxInstruction_c *);
BX_SMF void OR_GwEw(bxInstruction_c *);
BX_SMF void OR_ALIb(bxInstruction_c *);
BX_SMF void OR_EAXId(bxInstruction_c *);
BX_SMF void OR_AXIw(bxInstruction_c *);
BX_SMF void PUSH_CS(bxInstruction_c *);
BX_SMF void PUSH_DS(bxInstruction_c *);
BX_SMF void POP_DS(bxInstruction_c *);
BX_SMF void PUSH_ES(bxInstruction_c *);
BX_SMF void POP_ES(bxInstruction_c *);
BX_SMF void PUSH_FS(bxInstruction_c *);
BX_SMF void POP_FS(bxInstruction_c *);
BX_SMF void PUSH_GS(bxInstruction_c *);
BX_SMF void POP_GS(bxInstruction_c *);
BX_SMF void PUSH_SS(bxInstruction_c *);
BX_SMF void POP_SS(bxInstruction_c *);
BX_SMF void ADC_EbGb(bxInstruction_c *);
BX_SMF void ADC_EdGd(bxInstruction_c *);
BX_SMF void ADC_GbEb(bxInstruction_c *);
BX_SMF void ADC_GdEd(bxInstruction_c *);
BX_SMF void ADC_ALIb(bxInstruction_c *);
BX_SMF void ADC_EAXId(bxInstruction_c *);
BX_SMF void SBB_EbGb(bxInstruction_c *);
BX_SMF void SBB_EdGd(bxInstruction_c *);
BX_SMF void SBB_GbEb(bxInstruction_c *);
BX_SMF void SBB_GdEd(bxInstruction_c *);
BX_SMF void SBB_ALIb(bxInstruction_c *);
BX_SMF void SBB_EAXId(bxInstruction_c *);
BX_SMF void AND_EbGb(bxInstruction_c *);
BX_SMF void AND_EdGd(bxInstruction_c *);
BX_SMF void AND_EwGw(bxInstruction_c *);
BX_SMF void AND_GbEb(bxInstruction_c *);
BX_SMF void AND_GdEd(bxInstruction_c *);
BX_SMF void AND_GwEw(bxInstruction_c *);
BX_SMF void AND_ALIb(bxInstruction_c *);
BX_SMF void AND_EAXId(bxInstruction_c *);
BX_SMF void AND_AXIw(bxInstruction_c *);
BX_SMF void DAA(bxInstruction_c *);
BX_SMF void SUB_EbGb(bxInstruction_c *);
BX_SMF void SUB_EdGd(bxInstruction_c *);
BX_SMF void SUB_GbEb(bxInstruction_c *);
BX_SMF void SUB_GdEd(bxInstruction_c *);
BX_SMF void SUB_ALIb(bxInstruction_c *);
BX_SMF void SUB_EAXId(bxInstruction_c *);
BX_SMF void DAS(bxInstruction_c *);
BX_SMF void XOR_EbGb(bxInstruction_c *);
BX_SMF void XOR_EdGd(bxInstruction_c *);
BX_SMF void XOR_EwGw(bxInstruction_c *);
BX_SMF void XOR_GbEb(bxInstruction_c *);
BX_SMF void XOR_GdEd(bxInstruction_c *);
BX_SMF void XOR_GwEw(bxInstruction_c *);
BX_SMF void XOR_ALIb(bxInstruction_c *);
BX_SMF void XOR_EAXId(bxInstruction_c *);
BX_SMF void XOR_AXIw(bxInstruction_c *);
BX_SMF void AAA(bxInstruction_c *);
BX_SMF void CMP_EbGb(bxInstruction_c *);
BX_SMF void CMP_EdGd(bxInstruction_c *);
BX_SMF void CMP_GbEb(bxInstruction_c *);
BX_SMF void CMP_GdEd(bxInstruction_c *);
BX_SMF void CMP_ALIb(bxInstruction_c *);
BX_SMF void CMP_EAXId(bxInstruction_c *);
BX_SMF void AAS(bxInstruction_c *);
BX_SMF void PUSHAD32(bxInstruction_c *);
BX_SMF void PUSHAD16(bxInstruction_c *);
BX_SMF void POPAD32(bxInstruction_c *);
BX_SMF void POPAD16(bxInstruction_c *);
BX_SMF void BOUND_GvMa(bxInstruction_c *);
BX_SMF void ARPL_EwGw(bxInstruction_c *);
BX_SMF void PUSH_Id(bxInstruction_c *);
BX_SMF void PUSH_Iw(bxInstruction_c *);
BX_SMF void IMUL_GdEdId(bxInstruction_c *);
BX_SMF void INSB_YbDX(bxInstruction_c *);
BX_SMF void INSW_YvDX(bxInstruction_c *);
BX_SMF void OUTSB_DXXb(bxInstruction_c *);
BX_SMF void OUTSW_DXXv(bxInstruction_c *);
BX_SMF void TEST_EbGb(bxInstruction_c *);
BX_SMF void TEST_EdGd(bxInstruction_c *);
BX_SMF void TEST_EwGw(bxInstruction_c *);
BX_SMF void XCHG_EbGb(bxInstruction_c *);
BX_SMF void XCHG_EdGd(bxInstruction_c *);
BX_SMF void XCHG_EwGw(bxInstruction_c *);
BX_SMF void MOV_EEbGb(bxInstruction_c *);
BX_SMF void MOV_EGbGb(bxInstruction_c *);
BX_SMF void MOV_EEdGd(bxInstruction_c *);
BX_SMF void MOV_EGdGd(bxInstruction_c *);
BX_SMF void MOV_EEwGw(bxInstruction_c *);
BX_SMF void MOV_EGwGw(bxInstruction_c *);
BX_SMF void MOV_GbEEb(bxInstruction_c *);
BX_SMF void MOV_GbEGb(bxInstruction_c *);
BX_SMF void MOV_GdEEd(bxInstruction_c *);
BX_SMF void MOV_GdEGd(bxInstruction_c *);
BX_SMF void MOV_GwEEw(bxInstruction_c *);
BX_SMF void MOV_GwEGw(bxInstruction_c *);
BX_SMF void MOV_EwSw(bxInstruction_c *);
BX_SMF void LEA_GdM(bxInstruction_c *);
BX_SMF void LEA_GwM(bxInstruction_c *);
BX_SMF void MOV_SwEw(bxInstruction_c *);
BX_SMF void POP_Ev(bxInstruction_c *);
BX_SMF void CBW(bxInstruction_c *);
BX_SMF void CWD(bxInstruction_c *);
BX_SMF void CALL32_Ap(bxInstruction_c *);
BX_SMF void CALL16_Ap(bxInstruction_c *);
BX_SMF void FWAIT(bxInstruction_c *);
BX_SMF void PUSHF_Fv(bxInstruction_c *);
BX_SMF void POPF_Fv(bxInstruction_c *);
BX_SMF void SAHF(bxInstruction_c *);
BX_SMF void LAHF(bxInstruction_c *);
BX_SMF void MOV_ALOb(bxInstruction_c *);
BX_SMF void MOV_EAXOd(bxInstruction_c *);
BX_SMF void MOV_AXOw(bxInstruction_c *);
BX_SMF void MOV_ObAL(bxInstruction_c *);
BX_SMF void MOV_OdEAX(bxInstruction_c *);
BX_SMF void MOV_OwAX(bxInstruction_c *);
BX_SMF void MOVSB_XbYb(bxInstruction_c *);
BX_SMF void MOVSW_XvYv(bxInstruction_c *);
BX_SMF void CMPSB_XbYb(bxInstruction_c *);
BX_SMF void CMPSW_XvYv(bxInstruction_c *);
BX_SMF void TEST_ALIb(bxInstruction_c *);
BX_SMF void TEST_EAXId(bxInstruction_c *);
BX_SMF void TEST_AXIw(bxInstruction_c *);
BX_SMF void STOSB_YbAL(bxInstruction_c *);
BX_SMF void STOSW_YveAX(bxInstruction_c *);
BX_SMF void LODSB_ALXb(bxInstruction_c *);
BX_SMF void LODSW_eAXXv(bxInstruction_c *);
BX_SMF void SCASB_ALXb(bxInstruction_c *);
BX_SMF void SCASW_eAXXv(bxInstruction_c *);
BX_SMF void RETnear32(bxInstruction_c *);
BX_SMF void RETnear16(bxInstruction_c *);
BX_SMF void LES_GvMp(bxInstruction_c *);
BX_SMF void LDS_GvMp(bxInstruction_c *);
BX_SMF void MOV_EbIb(bxInstruction_c *);
BX_SMF void MOV_EdId(bxInstruction_c *);
BX_SMF void MOV_EwIw(bxInstruction_c *);
BX_SMF void ENTER_IwIb(bxInstruction_c *);
BX_SMF void LEAVE(bxInstruction_c *);
BX_SMF void RETfar32(bxInstruction_c *);
BX_SMF void RETfar16(bxInstruction_c *);
BX_SMF void INT1(bxInstruction_c *);
BX_SMF void INT3(bxInstruction_c *);
BX_SMF void INT_Ib(bxInstruction_c *);
BX_SMF void INTO(bxInstruction_c *);
BX_SMF void IRET32(bxInstruction_c *);
BX_SMF void IRET16(bxInstruction_c *);
BX_SMF void AAM(bxInstruction_c *);
BX_SMF void AAD(bxInstruction_c *);
BX_SMF void SALC(bxInstruction_c *);
BX_SMF void XLAT(bxInstruction_c *);
BX_SMF void LOOPNE_Jb(bxInstruction_c *);
BX_SMF void LOOPE_Jb(bxInstruction_c *);
BX_SMF void LOOP_Jb(bxInstruction_c *);
BX_SMF void JCXZ_Jb(bxInstruction_c *);
BX_SMF void IN_ALIb(bxInstruction_c *);
BX_SMF void IN_eAXIb(bxInstruction_c *);
BX_SMF void OUT_IbAL(bxInstruction_c *);
BX_SMF void OUT_IbeAX(bxInstruction_c *);
BX_SMF void CALL_Aw(bxInstruction_c *);
BX_SMF void CALL_Ad(bxInstruction_c *);
BX_SMF void JMP_Jd(bxInstruction_c *);
BX_SMF void JMP_Jw(bxInstruction_c *);
BX_SMF void JMP_Ap(bxInstruction_c *);
BX_SMF void IN_ALDX(bxInstruction_c *);
BX_SMF void IN_eAXDX(bxInstruction_c *);
BX_SMF void OUT_DXAL(bxInstruction_c *);
BX_SMF void OUT_DXeAX(bxInstruction_c *);
BX_SMF void HLT(bxInstruction_c *);
BX_SMF void CMC(bxInstruction_c *);
BX_SMF void CLC(bxInstruction_c *);
BX_SMF void STC(bxInstruction_c *);
BX_SMF void CLI(bxInstruction_c *);
BX_SMF void STI(bxInstruction_c *);
BX_SMF void CLD(bxInstruction_c *);
BX_SMF void STD(bxInstruction_c *);
BX_SMF void LAR_GvEw(bxInstruction_c *);
BX_SMF void LSL_GvEw(bxInstruction_c *);
BX_SMF void CLTS(bxInstruction_c *);
BX_SMF void INVD(bxInstruction_c *);
BX_SMF void WBINVD(bxInstruction_c *);
BX_SMF void MOV_CdRd(bxInstruction_c *);
BX_SMF void MOV_DdRd(bxInstruction_c *);
BX_SMF void MOV_RdCd(bxInstruction_c *);
BX_SMF void MOV_RdDd(bxInstruction_c *);
BX_SMF void MOV_TdRd(bxInstruction_c *);
BX_SMF void MOV_RdTd(bxInstruction_c *);
BX_SMF void JCC_Jd(bxInstruction_c *);
BX_SMF void JCC_Jw(bxInstruction_c *);
BX_SMF void JZ_Jd(bxInstruction_c *);
BX_SMF void JZ_Jw(bxInstruction_c *);
BX_SMF void JNZ_Jd(bxInstruction_c *);
BX_SMF void JNZ_Jw(bxInstruction_c *);
BX_SMF void SETO_Eb(bxInstruction_c *);
BX_SMF void SETNO_Eb(bxInstruction_c *);
BX_SMF void SETB_Eb(bxInstruction_c *);
BX_SMF void SETNB_Eb(bxInstruction_c *);
BX_SMF void SETZ_Eb(bxInstruction_c *);
BX_SMF void SETNZ_Eb(bxInstruction_c *);
BX_SMF void SETBE_Eb(bxInstruction_c *);
BX_SMF void SETNBE_Eb(bxInstruction_c *);
BX_SMF void SETS_Eb(bxInstruction_c *);
BX_SMF void SETNS_Eb(bxInstruction_c *);
BX_SMF void SETP_Eb(bxInstruction_c *);
BX_SMF void SETNP_Eb(bxInstruction_c *);
BX_SMF void SETL_Eb(bxInstruction_c *);
BX_SMF void SETNL_Eb(bxInstruction_c *);
BX_SMF void SETLE_Eb(bxInstruction_c *);
BX_SMF void SETNLE_Eb(bxInstruction_c *);
BX_SMF void CPUID(bxInstruction_c *);
BX_SMF void BT_EvGv(bxInstruction_c *);
BX_SMF void SHLD_EdGd(bxInstruction_c *);
BX_SMF void SHLD_EwGw(bxInstruction_c *);
BX_SMF void BTS_EvGv(bxInstruction_c *);
BX_SMF void SHRD_EwGw(bxInstruction_c *);
BX_SMF void SHRD_EdGd(bxInstruction_c *);
BX_SMF void IMUL_GdEd(bxInstruction_c *);
BX_SMF void LSS_GvMp(bxInstruction_c *);
BX_SMF void BTR_EvGv(bxInstruction_c *);
BX_SMF void LFS_GvMp(bxInstruction_c *);
BX_SMF void LGS_GvMp(bxInstruction_c *);
BX_SMF void MOVZX_GdEb(bxInstruction_c *);
BX_SMF void MOVZX_GwEb(bxInstruction_c *);
BX_SMF void MOVZX_GdEw(bxInstruction_c *);
BX_SMF void MOVZX_GwEw(bxInstruction_c *);
BX_SMF void BTC_EvGv(bxInstruction_c *);
BX_SMF void BSF_GvEv(bxInstruction_c *);
BX_SMF void BSR_GvEv(bxInstruction_c *);
BX_SMF void MOVSX_GdEb(bxInstruction_c *);
BX_SMF void MOVSX_GwEb(bxInstruction_c *);
BX_SMF void MOVSX_GdEw(bxInstruction_c *);
BX_SMF void MOVSX_GwEw(bxInstruction_c *);
BX_SMF void BSWAP_EAX(bxInstruction_c *);
BX_SMF void BSWAP_ECX(bxInstruction_c *);
BX_SMF void BSWAP_EDX(bxInstruction_c *);
BX_SMF void BSWAP_EBX(bxInstruction_c *);
BX_SMF void BSWAP_ESP(bxInstruction_c *);
BX_SMF void BSWAP_EBP(bxInstruction_c *);
BX_SMF void BSWAP_ESI(bxInstruction_c *);
BX_SMF void BSWAP_EDI(bxInstruction_c *);
BX_SMF void ADD_EbIb(bxInstruction_c *);
BX_SMF void ADC_EbIb(bxInstruction_c *);
BX_SMF void SBB_EbIb(bxInstruction_c *);
BX_SMF void SUB_EbIb(bxInstruction_c *);
BX_SMF void CMP_EbIb(bxInstruction_c *);
BX_SMF void XOR_EbIb(bxInstruction_c *);
BX_SMF void OR_EbIb(bxInstruction_c *);
BX_SMF void AND_EbIb(bxInstruction_c *);
BX_SMF void ADD_EEdId(bxInstruction_c *);
BX_SMF void ADD_EGdId(bxInstruction_c *);
BX_SMF void OR_EdId(bxInstruction_c *);
BX_SMF void OR_EwIw(bxInstruction_c *);
BX_SMF void ADC_EdId(bxInstruction_c *);
BX_SMF void SBB_EdId(bxInstruction_c *);
BX_SMF void AND_EdId(bxInstruction_c *);
BX_SMF void AND_EwIw(bxInstruction_c *);
BX_SMF void SUB_EdId(bxInstruction_c *);
BX_SMF void XOR_EdId(bxInstruction_c *);
BX_SMF void XOR_EwIw(bxInstruction_c *);
BX_SMF void CMP_EdId(bxInstruction_c *);
BX_SMF void ROL_Eb(bxInstruction_c *);
BX_SMF void ROR_Eb(bxInstruction_c *);
BX_SMF void RCL_Eb(bxInstruction_c *);
BX_SMF void RCR_Eb(bxInstruction_c *);
BX_SMF void SHL_Eb(bxInstruction_c *);
BX_SMF void SHR_Eb(bxInstruction_c *);
BX_SMF void SAR_Eb(bxInstruction_c *);
BX_SMF void ROL_Ed(bxInstruction_c *);
BX_SMF void ROL_Ew(bxInstruction_c *);
BX_SMF void ROR_Ed(bxInstruction_c *);
BX_SMF void ROR_Ew(bxInstruction_c *);
BX_SMF void RCL_Ed(bxInstruction_c *);
BX_SMF void RCL_Ew(bxInstruction_c *);
BX_SMF void RCR_Ed(bxInstruction_c *);
BX_SMF void RCR_Ew(bxInstruction_c *);
BX_SMF void SHL_Ed(bxInstruction_c *);
BX_SMF void SHL_Ew(bxInstruction_c *);
BX_SMF void SHR_Ed(bxInstruction_c *);
BX_SMF void SHR_Ew(bxInstruction_c *);
BX_SMF void SAR_Ed(bxInstruction_c *);
BX_SMF void SAR_Ew(bxInstruction_c *);
BX_SMF void TEST_EbIb(bxInstruction_c *);
BX_SMF void NOT_Eb(bxInstruction_c *);
BX_SMF void NEG_Eb(bxInstruction_c *);
BX_SMF void MUL_ALEb(bxInstruction_c *);
BX_SMF void IMUL_ALEb(bxInstruction_c *);
BX_SMF void DIV_ALEb(bxInstruction_c *);
BX_SMF void IDIV_ALEb(bxInstruction_c *);
BX_SMF void TEST_EdId(bxInstruction_c *);
BX_SMF void TEST_EwIw(bxInstruction_c *);
BX_SMF void NOT_Ed(bxInstruction_c *);
BX_SMF void NOT_Ew(bxInstruction_c *);
BX_SMF void NEG_Ed(bxInstruction_c *);
BX_SMF void MUL_EAXEd(bxInstruction_c *);
BX_SMF void IMUL_EAXEd(bxInstruction_c *);
BX_SMF void DIV_EAXEd(bxInstruction_c *);
BX_SMF void IDIV_EAXEd(bxInstruction_c *);
BX_SMF void INC_Eb(bxInstruction_c *);
BX_SMF void DEC_Eb(bxInstruction_c *);
BX_SMF void INC_Ed(bxInstruction_c *);
BX_SMF void DEC_Ed(bxInstruction_c *);
BX_SMF void CALL_Ed(bxInstruction_c *);
BX_SMF void CALL_Ew(bxInstruction_c *);
BX_SMF void CALL32_Ep(bxInstruction_c *);
BX_SMF void CALL16_Ep(bxInstruction_c *);
BX_SMF void JMP_Ed(bxInstruction_c *);
BX_SMF void JMP_Ew(bxInstruction_c *);
BX_SMF void JMP32_Ep(bxInstruction_c *);
BX_SMF void JMP16_Ep(bxInstruction_c *);
BX_SMF void PUSH_Ed(bxInstruction_c *);
BX_SMF void PUSH_Ew(bxInstruction_c *);
BX_SMF void SLDT_Ew(bxInstruction_c *);
BX_SMF void STR_Ew(bxInstruction_c *);
BX_SMF void LLDT_Ew(bxInstruction_c *);
BX_SMF void LTR_Ew(bxInstruction_c *);
BX_SMF void VERR_Ew(bxInstruction_c *);
BX_SMF void VERW_Ew(bxInstruction_c *);
BX_SMF void SGDT_Ms(bxInstruction_c *);
BX_SMF void SIDT_Ms(bxInstruction_c *);
BX_SMF void LGDT_Ms(bxInstruction_c *);
BX_SMF void LIDT_Ms(bxInstruction_c *);
BX_SMF void SMSW_Ew(bxInstruction_c *);
BX_SMF void LMSW_Ew(bxInstruction_c *);
BX_SMF void BT_EvIb(bxInstruction_c *);
BX_SMF void BTS_EvIb(bxInstruction_c *);
BX_SMF void BTR_EvIb(bxInstruction_c *);
BX_SMF void BTC_EvIb(bxInstruction_c *);
BX_SMF void ESC0(bxInstruction_c *);
BX_SMF void ESC1(bxInstruction_c *);
BX_SMF void ESC2(bxInstruction_c *);
BX_SMF void ESC3(bxInstruction_c *);
BX_SMF void ESC4(bxInstruction_c *);
BX_SMF void ESC5(bxInstruction_c *);
BX_SMF void ESC6(bxInstruction_c *);
BX_SMF void ESC7(bxInstruction_c *);
/* MMX */
BX_SMF void PUNPCKLBW_PqQd(bxInstruction_c *i);
BX_SMF void PUNPCKLWD_PqQd(bxInstruction_c *i);
BX_SMF void PUNPCKLDQ_PqQd(bxInstruction_c *i);
BX_SMF void PACKSSWB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTW_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTD_PqQq(bxInstruction_c *i);
BX_SMF void PACKUSWB_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHBW_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHWD_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHDQ_PqQq(bxInstruction_c *i);
BX_SMF void PACKSSDW_PqQq(bxInstruction_c *i);
BX_SMF void MOVD_PqEd(bxInstruction_c *i);
BX_SMF void MOVQ_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQW_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQD_PqQq(bxInstruction_c *i);
BX_SMF void EMMS(bxInstruction_c *i);
BX_SMF void MOVD_EdPd(bxInstruction_c *i);
BX_SMF void MOVQ_QqPq(bxInstruction_c *i);
BX_SMF void PSRLW_PqQq(bxInstruction_c *i);
BX_SMF void PSRLD_PqQq(bxInstruction_c *i);
BX_SMF void PSRLQ_PqQq(bxInstruction_c *i);
BX_SMF void PMULLW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBUSB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBUSW_PqQq(bxInstruction_c *i);
BX_SMF void PAND_PqQq(bxInstruction_c *i);
BX_SMF void PADDUSB_PqQq(bxInstruction_c *i);
BX_SMF void PADDUSW_PqQq(bxInstruction_c *i);
BX_SMF void PANDN_PqQq(bxInstruction_c *i);
BX_SMF void PSRAW_PqQq(bxInstruction_c *i);
BX_SMF void PSRAD_PqQq(bxInstruction_c *i);
BX_SMF void PMULHW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBSB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBSW_PqQq(bxInstruction_c *i);
BX_SMF void POR_PqQq(bxInstruction_c *i);
BX_SMF void PADDSB_PqQq(bxInstruction_c *i);
BX_SMF void PADDSW_PqQq(bxInstruction_c *i);
BX_SMF void PXOR_PqQq(bxInstruction_c *i);
BX_SMF void PSLLW_PqQq(bxInstruction_c *i);
BX_SMF void PSLLD_PqQq(bxInstruction_c *i);
BX_SMF void PSLLQ_PqQq(bxInstruction_c *i);
BX_SMF void PMADDWD_PqQq(bxInstruction_c *i);
BX_SMF void PSUBB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBD_PqQq(bxInstruction_c *i);
BX_SMF void PADDB_PqQq(bxInstruction_c *i);
BX_SMF void PADDW_PqQq(bxInstruction_c *i);
BX_SMF void PADDD_PqQq(bxInstruction_c *i);
BX_SMF void PSRLW_PqIb(bxInstruction_c *i);
BX_SMF void PSRAW_PqIb(bxInstruction_c *i);
BX_SMF void PSLLW_PqIb(bxInstruction_c *i);
BX_SMF void PSRLD_PqIb(bxInstruction_c *i);
BX_SMF void PSRAD_PqIb(bxInstruction_c *i);
BX_SMF void PSLLD_PqIb(bxInstruction_c *i);
BX_SMF void PSRLQ_PqIb(bxInstruction_c *i);
BX_SMF void PSLLQ_PqIb(bxInstruction_c *i);
/* MMX */
#if BX_SUPPORT_MMX || BX_SUPPORT_SSE != 0
BX_SMF void prepareMMX(void);
BX_SMF void printMmxRegisters(void);
#endif
#if BX_SUPPORT_SSE != 0
BX_SMF void prepareSSE(void);
#endif
/* SSE */
BX_SMF void FXSAVE(bxInstruction_c *i);
BX_SMF void FXRSTOR(bxInstruction_c *i);
BX_SMF void LDMXCSR(bxInstruction_c *i);
BX_SMF void STMXCSR(bxInstruction_c *i);
BX_SMF void PREFETCH(bxInstruction_c *i);
/* SSE */
/* SSE */
BX_SMF void MOVUPS_VpsWps(bxInstruction_c *i);
BX_SMF void MOVSS_VssWss(bxInstruction_c *i);
BX_SMF void MOVUPS_WpsVps(bxInstruction_c *i);
BX_SMF void MOVSS_WssVss(bxInstruction_c *i);
BX_SMF void MOVLPS_VpsMq(bxInstruction_c *i);
BX_SMF void MOVLPS_MqVps(bxInstruction_c *i);
BX_SMF void UNPCKLPS_VpsWq(bxInstruction_c *i);
BX_SMF void UNPCKHPS_VpsWq(bxInstruction_c *i);
BX_SMF void MOVHPS_VpsMq(bxInstruction_c *i);
BX_SMF void MOVHPS_MqVps(bxInstruction_c *i);
BX_SMF void MOVAPS_VpsWps(bxInstruction_c *i);
BX_SMF void MOVAPS_WpsVps(bxInstruction_c *i);
BX_SMF void CVTPI2PS_VpsQq(bxInstruction_c *i);
BX_SMF void CVTSI2SS_VssEd(bxInstruction_c *i);
BX_SMF void MOVNTPS_MdqVps(bxInstruction_c *i);
BX_SMF void CVTTPS2PI_PqWps(bxInstruction_c *i);
BX_SMF void CVTTSS2SI_GdWss(bxInstruction_c *i);
BX_SMF void CVTPS2PI_PqWps(bxInstruction_c *i);
BX_SMF void CVTSS2SI_GdWss(bxInstruction_c *i);
BX_SMF void UCOMISS_VssWss(bxInstruction_c *i);
BX_SMF void COMISS_VpsWps(bxInstruction_c *i);
BX_SMF void MOVMSKPS_GdVRps(bxInstruction_c *i);
BX_SMF void SQRTPS_VpsWps(bxInstruction_c *i);
BX_SMF void SQRTSS_VssWss(bxInstruction_c *i);
BX_SMF void RSQRTPS_VpsWps(bxInstruction_c *i);
BX_SMF void RSQRTSS_VssWss(bxInstruction_c *i);
BX_SMF void RCPPS_VpsWps(bxInstruction_c *i);
BX_SMF void RCPSS_VssWss(bxInstruction_c *i);
BX_SMF void ADDPS_VpsWps(bxInstruction_c *i);
BX_SMF void ADDSS_VssWss(bxInstruction_c *i);
BX_SMF void MULPS_VpsWps(bxInstruction_c *i);
BX_SMF void MULSS_VssWss(bxInstruction_c *i);
BX_SMF void SUBPS_VpsWps(bxInstruction_c *i);
BX_SMF void SUBSS_VssWss(bxInstruction_c *i);
BX_SMF void MINPS_VpsWps(bxInstruction_c *i);
BX_SMF void MINSS_VssWss(bxInstruction_c *i);
BX_SMF void DIVPS_VpsWps(bxInstruction_c *i);
BX_SMF void DIVSS_VssWss(bxInstruction_c *i);
BX_SMF void MAXPS_VpsWps(bxInstruction_c *i);
BX_SMF void MAXSS_VssWss(bxInstruction_c *i);
BX_SMF void PSHUFW_PqQqIb(bxInstruction_c *i);
BX_SMF void PSHUFLW_VqWqIb(bxInstruction_c *i);
BX_SMF void CMPPS_VpsWpsIb(bxInstruction_c *i);
BX_SMF void CMPSS_VssWssIb(bxInstruction_c *i);
BX_SMF void PINSRW_PqEdIb(bxInstruction_c *i);
BX_SMF void PEXTRW_PqEdIb(bxInstruction_c *i);
BX_SMF void SHUFPS_VpsWpsIb(bxInstruction_c *i);
BX_SMF void PMOVMSKB_GdPRq(bxInstruction_c *i);
BX_SMF void PMINUB_PqQq(bxInstruction_c *i);
BX_SMF void PMAXUB_PqQq(bxInstruction_c *i);
BX_SMF void PAVGB_PqQq(bxInstruction_c *i);
BX_SMF void PAVGW_PqQq(bxInstruction_c *i);
BX_SMF void PMULHUW_PqQq(bxInstruction_c *i);
BX_SMF void MOVNTQ_MqPq(bxInstruction_c *i);
BX_SMF void PMINSW_PqQq(bxInstruction_c *i);
BX_SMF void PMAXSW_PqQq(bxInstruction_c *i);
BX_SMF void PSADBW_PqQq(bxInstruction_c *i);
BX_SMF void MASKMOVQ_PqPRq(bxInstruction_c *i);
/* SSE */
/* SSE2 */
BX_SMF void MOVSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MOVSD_WsdVsd(bxInstruction_c *i);
BX_SMF void UNPCKLPD_VpdWq(bxInstruction_c *i);
BX_SMF void UNPCKHPD_VpdWq(bxInstruction_c *i);
BX_SMF void CVTPI2PD_VpdQd(bxInstruction_c *i);
BX_SMF void CVTSI2SD_VsdEd(bxInstruction_c *i);
BX_SMF void CVTTPD2PI_PqWpd(bxInstruction_c *i);
BX_SMF void CVTTSD2SI_GdWsd(bxInstruction_c *i);
BX_SMF void CVTPD2PI_PqWpd(bxInstruction_c *i);
BX_SMF void CVTSD2SI_GdWsd(bxInstruction_c *i);
BX_SMF void UCOMISD_VsdWsd(bxInstruction_c *i);
BX_SMF void COMISD_VpdWpd(bxInstruction_c *i);
BX_SMF void MOVMSKPD_EdVRpd(bxInstruction_c *i);
BX_SMF void SQRTPD_VpdWpd(bxInstruction_c *i);
BX_SMF void SQRTSD_VsdWsd(bxInstruction_c *i);
BX_SMF void ADDPD_VpdWpd(bxInstruction_c *i);
BX_SMF void ADDSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MULPD_VpdWpd(bxInstruction_c *i);
BX_SMF void MULSD_VsdWsd(bxInstruction_c *i);
BX_SMF void CVTPS2PD_VpsWps(bxInstruction_c *i);
BX_SMF void CVTPD2PS_VpdWpd(bxInstruction_c *i);
BX_SMF void CVTSD2SS_VsdWsd(bxInstruction_c *i);
BX_SMF void CVTSS2SD_VssWss(bxInstruction_c *i);
BX_SMF void CVTDQ2PS_VpsWdq(bxInstruction_c *i);
BX_SMF void CVTPS2DQ_VdqWps(bxInstruction_c *i);
BX_SMF void CVTTPS2DQ_VdqWps(bxInstruction_c *i);
BX_SMF void SUBPD_VpdWpd(bxInstruction_c *i);
BX_SMF void SUBSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MINPD_VpdWpd(bxInstruction_c *i);
BX_SMF void MINSD_VsdWsd(bxInstruction_c *i);
BX_SMF void DIVPD_VpdWpd(bxInstruction_c *i);
BX_SMF void DIVSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MAXPD_VpdWpd(bxInstruction_c *i);
BX_SMF void MAXSD_VsdWsd(bxInstruction_c *i);
BX_SMF void PUNPCKLBW_VdqWq(bxInstruction_c *i);
BX_SMF void PUNPCKLWD_VdqWq(bxInstruction_c *i);
BX_SMF void PUNPCKLDQ_VdqWq(bxInstruction_c *i);
BX_SMF void PACKSSWB_VdqWq(bxInstruction_c *i);
BX_SMF void PCMPGTB_VdqWq(bxInstruction_c *i);
BX_SMF void PCMPGTW_VdqWq(bxInstruction_c *i);
BX_SMF void PCMPGTD_VdqWdq(bxInstruction_c *i);
BX_SMF void PACKUSWB_VdqWdq(bxInstruction_c *i);
BX_SMF void PUNPCKHBW_VdqWq(bxInstruction_c *i);
BX_SMF void PUNPCKHWD_VdqWq(bxInstruction_c *i);
BX_SMF void PUNPCKHDQ_VdqWq(bxInstruction_c *i);
BX_SMF void PACKSSDW_VdqWdq(bxInstruction_c *i);
BX_SMF void PUNPCKLQDQ_VdqWq(bxInstruction_c *i);
BX_SMF void PUNPCKHQDQ_VdqWq(bxInstruction_c *i);
BX_SMF void MOVD_VdqEd(bxInstruction_c *i);
BX_SMF void PSHUFD_VdqWdqIb(bxInstruction_c *i);
BX_SMF void PSHUFHW_VqWqIb(bxInstruction_c *i);
BX_SMF void PCMPEQB_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPEQW_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPEQD_VdqWdq(bxInstruction_c *i);
BX_SMF void MOVD_EdVd(bxInstruction_c *i);
BX_SMF void MOVQ_VqWq(bxInstruction_c *i);
BX_SMF void CMPPD_VpdWpdIb(bxInstruction_c *i);
BX_SMF void CMPSD_VsdWsdIb(bxInstruction_c *i);
BX_SMF void MOVNTI_MdGd(bxInstruction_c *i);
BX_SMF void PINSRW_VdqEdIb(bxInstruction_c *i);
BX_SMF void PEXTRW_VdqEdIb(bxInstruction_c *i);
BX_SMF void SHUFPD_VpdWpdIb(bxInstruction_c *i);
BX_SMF void PSRLW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRLD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRLQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDQ_PqQq(bxInstruction_c *i);
BX_SMF void PADDQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULLW_VdqWdq(bxInstruction_c *i);
BX_SMF void MOVQ_WqVq(bxInstruction_c *i);
BX_SMF void MOVDQ2Q_PqVRq(bxInstruction_c *i);
BX_SMF void MOVQ2DQ_VdqQq(bxInstruction_c *i);
BX_SMF void PMOVMSKB_GdVRdq(bxInstruction_c *i);
BX_SMF void PSUBUSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBUSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMINUB_VdqWdq(bxInstruction_c *i);
BX_SMF void PAND_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDUSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDUSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXUB_VdqWdq(bxInstruction_c *i);
BX_SMF void PANDN_VdqWdq(bxInstruction_c *i);
BX_SMF void PAVGB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRAW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRAD_VdqWdq(bxInstruction_c *i);
BX_SMF void PAVGW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULHUW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULHW_VdqWdq(bxInstruction_c *i);
BX_SMF void CVTTPD2DQ_VqWpd(bxInstruction_c *i);
BX_SMF void CVTPD2DQ_VqWpd(bxInstruction_c *i);
BX_SMF void CVTDQ2PD_VpdWq(bxInstruction_c *i);
BX_SMF void MOVNTDQ_MdqVdq(bxInstruction_c *i);
BX_SMF void PSUBSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMINSW_VdqWdq(bxInstruction_c *i);
BX_SMF void POR_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PXOR_VdqWdq(bxInstruction_c *i);
BX_SMF void PSLLW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSLLD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSLLQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULUDQ_PqQq(bxInstruction_c *i);
BX_SMF void PMULUDQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PMADDWD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSADBW_VdqWdq(bxInstruction_c *i);
BX_SMF void MASKMOVDQU_VdqVRdq(bxInstruction_c *i);
BX_SMF void PSUBB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBQ_PqQq(bxInstruction_c *i);
BX_SMF void PSUBQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDB_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDW_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRLW_PdqIb(bxInstruction_c *i);
BX_SMF void PSRAW_PdqIb(bxInstruction_c *i);
BX_SMF void PSLLW_PdqIb(bxInstruction_c *i);
BX_SMF void PSRLD_PdqIb(bxInstruction_c *i);
BX_SMF void PSRAD_PdqIb(bxInstruction_c *i);
BX_SMF void PSLLD_PdqIb(bxInstruction_c *i);
BX_SMF void PSRLQ_PdqIb(bxInstruction_c *i);
BX_SMF void PSRLDQ_WdqIb(bxInstruction_c *i);
BX_SMF void PSLLQ_PdqIb(bxInstruction_c *i);
BX_SMF void PSLLDQ_WdqIb(bxInstruction_c *i);
/* SSE2 */
BX_SMF void fpu_execute(bxInstruction_c *i);
BX_SMF void fpu_init(void);
BX_SMF void fpu_print_regs (void);
BX_SMF void CMPXCHG_XBTS(bxInstruction_c *);
BX_SMF void CMPXCHG_IBTS(bxInstruction_c *);
BX_SMF void CMPXCHG_EbGb(bxInstruction_c *);
BX_SMF void CMPXCHG_EdGd(bxInstruction_c *);
BX_SMF void CMPXCHG8B(bxInstruction_c *);
BX_SMF void XADD_EbGb(bxInstruction_c *);
BX_SMF void XADD_EdGd(bxInstruction_c *);
BX_SMF void RETnear32_Iw(bxInstruction_c *);
BX_SMF void RETnear16_Iw(bxInstruction_c *);
BX_SMF void RETfar32_Iw(bxInstruction_c *);
BX_SMF void RETfar16_Iw(bxInstruction_c *);
BX_SMF void LOADALL(bxInstruction_c *);
BX_SMF void CMOV_GdEd(bxInstruction_c *);
BX_SMF void CMOV_GwEw(bxInstruction_c *);
BX_SMF void ADD_EwGw(bxInstruction_c *);
BX_SMF void ADD_GwEEw(bxInstruction_c *);
BX_SMF void ADD_GwEGw(bxInstruction_c *);
BX_SMF void ADD_AXIw(bxInstruction_c *);
BX_SMF void ADC_EwGw(bxInstruction_c *);
BX_SMF void ADC_GwEw(bxInstruction_c *);
BX_SMF void ADC_AXIw(bxInstruction_c *);
BX_SMF void SBB_EwGw(bxInstruction_c *);
BX_SMF void SBB_GwEw(bxInstruction_c *);
BX_SMF void SBB_AXIw(bxInstruction_c *);
BX_SMF void SBB_EwIw(bxInstruction_c *);
BX_SMF void SUB_EwGw(bxInstruction_c *);
BX_SMF void SUB_GwEw(bxInstruction_c *);
BX_SMF void SUB_AXIw(bxInstruction_c *);
BX_SMF void CMP_EwGw(bxInstruction_c *);
BX_SMF void CMP_GwEw(bxInstruction_c *);
BX_SMF void CMP_AXIw(bxInstruction_c *);
BX_SMF void CWDE(bxInstruction_c *);
BX_SMF void CDQ(bxInstruction_c *);
BX_SMF void XADD_EwGw(bxInstruction_c *);
BX_SMF void ADD_EEwIw(bxInstruction_c *);
BX_SMF void ADD_EGwIw(bxInstruction_c *);
BX_SMF void ADC_EwIw(bxInstruction_c *);
BX_SMF void SUB_EwIw(bxInstruction_c *);
BX_SMF void CMP_EwIw(bxInstruction_c *);
BX_SMF void NEG_Ew(bxInstruction_c *);
BX_SMF void INC_Ew(bxInstruction_c *);
BX_SMF void DEC_Ew(bxInstruction_c *);
BX_SMF void CMPXCHG_EwGw(bxInstruction_c *);
BX_SMF void MUL_AXEw(bxInstruction_c *);
BX_SMF void IMUL_AXEw(bxInstruction_c *);
BX_SMF void DIV_AXEw(bxInstruction_c *);
BX_SMF void IDIV_AXEw(bxInstruction_c *);
BX_SMF void IMUL_GwEwIw(bxInstruction_c *);
BX_SMF void IMUL_GwEw(bxInstruction_c *);
BX_SMF void NOP(bxInstruction_c *);
BX_SMF void MOV_RLIb(bxInstruction_c *);
BX_SMF void MOV_RHIb(bxInstruction_c *);
BX_SMF void MOV_RXIw(bxInstruction_c *);
BX_SMF void MOV_ERXId(bxInstruction_c *);
BX_SMF void INC_RX(bxInstruction_c *);
BX_SMF void DEC_RX(bxInstruction_c *);
BX_SMF void INC_ERX(bxInstruction_c *);
BX_SMF void DEC_ERX(bxInstruction_c *);
BX_SMF void PUSH_RX(bxInstruction_c *);
BX_SMF void POP_RX(bxInstruction_c *);
BX_SMF void PUSH_ERX(bxInstruction_c *);
BX_SMF void POP_ERX(bxInstruction_c *);
BX_SMF void POP_Ew(bxInstruction_c *);
BX_SMF void POP_Ed(bxInstruction_c *);
BX_SMF void XCHG_RXAX(bxInstruction_c *);
BX_SMF void XCHG_ERXEAX(bxInstruction_c *);
#if BX_SUPPORT_X86_64
// 64 bit extensions
BX_SMF void ADD_EqGq(bxInstruction_c *);
BX_SMF void ADD_GqEq(bxInstruction_c *);
BX_SMF void ADD_RAXId(bxInstruction_c *);
BX_SMF void OR_EqGq(bxInstruction_c *);
BX_SMF void OR_GqEq(bxInstruction_c *);
BX_SMF void OR_RAXId(bxInstruction_c *);
BX_SMF void ADC_EqGq(bxInstruction_c *);
BX_SMF void ADC_GqEq(bxInstruction_c *);
BX_SMF void ADC_RAXId(bxInstruction_c *);
BX_SMF void SBB_EqGq(bxInstruction_c *);
BX_SMF void SBB_GqEq(bxInstruction_c *);
BX_SMF void SBB_RAXId(bxInstruction_c *);
BX_SMF void AND_EqGq(bxInstruction_c *);
BX_SMF void AND_GqEq(bxInstruction_c *);
BX_SMF void AND_RAXId(bxInstruction_c *);
BX_SMF void SUB_EqGq(bxInstruction_c *);
BX_SMF void SUB_GqEq(bxInstruction_c *);
BX_SMF void SUB_RAXId(bxInstruction_c *);
BX_SMF void XOR_EqGq(bxInstruction_c *);
BX_SMF void XOR_GqEq(bxInstruction_c *);
BX_SMF void XOR_RAXId(bxInstruction_c *);
BX_SMF void CMP_EqGq(bxInstruction_c *);
BX_SMF void CMP_GqEq(bxInstruction_c *);
BX_SMF void CMP_RAXId(bxInstruction_c *);
BX_SMF void PUSHAD64(bxInstruction_c *);
BX_SMF void POPAD64(bxInstruction_c *);
BX_SMF void PUSH64_Id(bxInstruction_c *);
BX_SMF void IMUL_GqEqId(bxInstruction_c *);
BX_SMF void TEST_EqGq(bxInstruction_c *);
BX_SMF void XCHG_EqGq(bxInstruction_c *);
BX_SMF void MOV_EqGq(bxInstruction_c *);
BX_SMF void MOV_GqEq(bxInstruction_c *);
BX_SMF void LEA_GqM(bxInstruction_c *);
BX_SMF void CALL64_Ap(bxInstruction_c *);
BX_SMF void MOV_RAXOq(bxInstruction_c *);
BX_SMF void MOV_OqRAX(bxInstruction_c *);
BX_SMF void MOV_EAXOq(bxInstruction_c *);
BX_SMF void MOV_OqEAX(bxInstruction_c *);
BX_SMF void MOV_AXOq(bxInstruction_c *);
BX_SMF void MOV_OqAX(bxInstruction_c *);
BX_SMF void MOV_ALOq(bxInstruction_c *);
BX_SMF void MOV_OqAL(bxInstruction_c *);
BX_SMF void TEST_RAXId(bxInstruction_c *);
BX_SMF void RETnear64(bxInstruction_c *);
BX_SMF void MOV_EqId(bxInstruction_c *);
BX_SMF void ENTER64_IwIb(bxInstruction_c *);
BX_SMF void LEAVE64(bxInstruction_c *);
BX_SMF void RETfar64(bxInstruction_c *);
BX_SMF void IRET64(bxInstruction_c *);
//BX_SMF void IN_eAXIb(bxInstruction_c *);
//BX_SMF void OUT_IbeAX(bxInstruction_c *);
BX_SMF void CALL_Aq(bxInstruction_c *);
BX_SMF void JMP_Jq(bxInstruction_c *);
//BX_SMF void IN_eAXDX(bxInstruction_c *);
//BX_SMF void OUT_DXeAX(bxInstruction_c *);
BX_SMF void MOV_CqRq(bxInstruction_c *);
BX_SMF void MOV_DqRq(bxInstruction_c *);
BX_SMF void MOV_RqCq(bxInstruction_c *);
BX_SMF void MOV_RqDq(bxInstruction_c *);
BX_SMF void MOV_TqRq(bxInstruction_c *);
BX_SMF void MOV_RqTq(bxInstruction_c *);
BX_SMF void JCC_Jq(bxInstruction_c *);
BX_SMF void SHLD_EqGq(bxInstruction_c *);
BX_SMF void SHRD_EqGq(bxInstruction_c *);
BX_SMF void IMUL_GqEq(bxInstruction_c *);
BX_SMF void MOVZX_GqEb(bxInstruction_c *);
BX_SMF void MOVZX_GqEw(bxInstruction_c *);
BX_SMF void MOVSX_GqEb(bxInstruction_c *);
BX_SMF void MOVSX_GqEw(bxInstruction_c *);
BX_SMF void MOVSX_GqEd(bxInstruction_c *);
BX_SMF void BSWAP_RAX(bxInstruction_c *);
BX_SMF void BSWAP_RCX(bxInstruction_c *);
BX_SMF void BSWAP_RDX(bxInstruction_c *);
BX_SMF void BSWAP_RBX(bxInstruction_c *);
BX_SMF void BSWAP_RSP(bxInstruction_c *);
BX_SMF void BSWAP_RBP(bxInstruction_c *);
BX_SMF void BSWAP_RSI(bxInstruction_c *);
BX_SMF void BSWAP_RDI(bxInstruction_c *);
BX_SMF void ADD_EqId(bxInstruction_c *);
BX_SMF void OR_EqId(bxInstruction_c *);
BX_SMF void ADC_EqId(bxInstruction_c *);
BX_SMF void SBB_EqId(bxInstruction_c *);
BX_SMF void AND_EqId(bxInstruction_c *);
BX_SMF void SUB_EqId(bxInstruction_c *);
BX_SMF void XOR_EqId(bxInstruction_c *);
BX_SMF void CMP_EqId(bxInstruction_c *);
BX_SMF void ROL_Eq(bxInstruction_c *);
BX_SMF void ROR_Eq(bxInstruction_c *);
BX_SMF void RCL_Eq(bxInstruction_c *);
BX_SMF void RCR_Eq(bxInstruction_c *);
BX_SMF void SHL_Eq(bxInstruction_c *);
BX_SMF void SHR_Eq(bxInstruction_c *);
BX_SMF void SAR_Eq(bxInstruction_c *);
BX_SMF void TEST_EqId(bxInstruction_c *);
BX_SMF void NOT_Eq(bxInstruction_c *);
BX_SMF void NEG_Eq(bxInstruction_c *);
BX_SMF void MUL_RAXEq(bxInstruction_c *);
BX_SMF void IMUL_RAXEq(bxInstruction_c *);
BX_SMF void DIV_RAXEq(bxInstruction_c *);
BX_SMF void IDIV_RAXEq(bxInstruction_c *);
BX_SMF void INC_Eq(bxInstruction_c *);
BX_SMF void DEC_Eq(bxInstruction_c *);
BX_SMF void CALL_Eq(bxInstruction_c *);
BX_SMF void CALL64_Ep(bxInstruction_c *);
BX_SMF void JMP_Eq(bxInstruction_c *);
BX_SMF void JMP64_Ep(bxInstruction_c *);
BX_SMF void PUSH_Eq(bxInstruction_c *);
BX_SMF void CMPXCHG_EqGq(bxInstruction_c *);
BX_SMF void CDQE(bxInstruction_c *);
BX_SMF void CQO(bxInstruction_c *);
BX_SMF void XADD_EqGq(bxInstruction_c *);
BX_SMF void RETnear64_Iw(bxInstruction_c *);
BX_SMF void RETfar64_Iw(bxInstruction_c *);
BX_SMF void CMOV_GqEq(bxInstruction_c *);
BX_SMF void MOV_RRXIq(bxInstruction_c *);
BX_SMF void INC_RRX(bxInstruction_c *);
BX_SMF void DEC_RRX(bxInstruction_c *);
BX_SMF void PUSH_RRX(bxInstruction_c *);
BX_SMF void POP_RRX(bxInstruction_c *);
BX_SMF void POP_Eq(bxInstruction_c *);
BX_SMF void XCHG_RRXRAX(bxInstruction_c *);
BX_SMF void PUSH64_CS(bxInstruction_c *);
BX_SMF void PUSH64_DS(bxInstruction_c *);
BX_SMF void POP64_DS(bxInstruction_c *);
BX_SMF void PUSH64_ES(bxInstruction_c *);
BX_SMF void POP64_ES(bxInstruction_c *);
BX_SMF void PUSH64_FS(bxInstruction_c *);
BX_SMF void POP64_FS(bxInstruction_c *);
BX_SMF void PUSH64_GS(bxInstruction_c *);
BX_SMF void POP64_GS(bxInstruction_c *);
BX_SMF void PUSH64_SS(bxInstruction_c *);
BX_SMF void POP64_SS(bxInstruction_c *);
BX_SMF void SYSCALL(bxInstruction_c *i);
BX_SMF void SYSRET(bxInstruction_c *i);
BX_SMF void SWAPGS(bxInstruction_c *i);
BX_SMF void LOOPNE64_Jb(bxInstruction_c *);
BX_SMF void LOOPE64_Jb(bxInstruction_c *);
BX_SMF void LOOP64_Jb(bxInstruction_c *);
BX_SMF void JCXZ64_Jb(bxInstruction_c *);
#endif // #if BX_SUPPORT_X86_64
// mch added
BX_SMF void INVLPG(bxInstruction_c *);
BX_SMF void wait_for_interrupt();
BX_SMF void RSM(bxInstruction_c *);
BX_SMF void WRMSR(bxInstruction_c *);
BX_SMF void RDTSC(bxInstruction_c *);
BX_SMF void RDMSR(bxInstruction_c *);
BX_SMF void SetCR0(Bit32u val_32);
#if BX_CPU_LEVEL >= 4
BX_SMF void SetCR4(Bit32u val_32);
#endif
BX_SMF void dynamic_translate(void);
BX_SMF void dynamic_init(void);
BX_SMF unsigned fetchDecode(Bit8u *, bxInstruction_c *, unsigned);
#if BX_SUPPORT_X86_64
BX_SMF unsigned fetchDecode64(Bit8u *, bxInstruction_c *, unsigned);
#endif
BX_SMF void UndefinedOpcode(bxInstruction_c *);
BX_SMF void BxError(bxInstruction_c *i);
BX_SMF void BxResolveError(bxInstruction_c *i);
BX_SMF void Resolve16Mod0Rm0(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm1(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm2(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm3(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm4(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm5(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm6(bxInstruction_c *);
BX_SMF void Resolve16Mod0Rm7(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm0(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm1(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm2(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm3(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm4(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm5(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm6(bxInstruction_c *);
BX_SMF void Resolve16Mod1or2Rm7(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm0(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm1(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm2(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm3(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm5(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm6(bxInstruction_c *);
BX_SMF void Resolve32Mod0Rm7(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm0(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm1(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm2(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm3(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm5(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm6(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Rm7(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base0(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base1(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base2(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base3(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base4(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base5(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base6(bxInstruction_c *);
BX_SMF void Resolve32Mod0Base7(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base0(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base1(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base2(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base3(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base4(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base5(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base6(bxInstruction_c *);
BX_SMF void Resolve32Mod1or2Base7(bxInstruction_c *);
#if BX_SUPPORT_X86_64
// 64 bit addressing
BX_SMF void Resolve64Mod0Rm0(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm1(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm2(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm3(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm5(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm6(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm7(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm8(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm9(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm10(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm11(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm12(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm13(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm14(bxInstruction_c *);
BX_SMF void Resolve64Mod0Rm15(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm0(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm1(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm2(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm3(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm5(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm6(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm7(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm8(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm9(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm10(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm11(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm12(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm13(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm14(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Rm15(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base0(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base1(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base2(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base3(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base4(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base5(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base6(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base7(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base8(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base9(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base10(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base11(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base12(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base13(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base14(bxInstruction_c *);
BX_SMF void Resolve64Mod0Base15(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base0(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base1(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base2(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base3(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base4(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base5(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base6(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base7(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base8(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base9(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base10(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base11(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base12(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base13(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base14(bxInstruction_c *);
BX_SMF void Resolve64Mod1or2Base15(bxInstruction_c *);
#endif // #if BX_SUPPORT_X86_64
BX_SMF void REP(void (*)(void));
BX_SMF void REP_ZF(void (*)(void), unsigned rep_prefix);
#if BX_DEBUGGER
BX_SMF void dbg_take_irq(void);
BX_SMF void dbg_force_interrupt(unsigned vector);
BX_SMF void dbg_take_dma(void);
BX_SMF bx_bool dbg_get_cpu(bx_dbg_cpu_t *cpu);
BX_SMF bx_bool dbg_set_cpu(bx_dbg_cpu_t *cpu);
BX_SMF bx_bool dbg_set_reg(unsigned reg, Bit32u val);
BX_SMF Bit32u dbg_get_reg(unsigned reg);
BX_SMF bx_bool dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no);
BX_SMF unsigned dbg_query_pending(void);
BX_SMF Bit32u dbg_get_descriptor_l(bx_descriptor_t *);
BX_SMF Bit32u dbg_get_descriptor_h(bx_descriptor_t *);
BX_SMF Bit32u dbg_get_eflags(void);
BX_SMF bx_bool dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32);
BX_SMF bx_bool dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip,
Bit32u laddr, Bit32u is_32);
#endif
#if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION || BX_GDBSTUB
BX_SMF void dbg_xlate_linear2phy(Bit32u linear, Bit32u *phy, bx_bool *valid);
#endif
BX_SMF void atexit(void);
// now for some ancillary functions...
BX_SMF void cpu_loop(Bit32s max_instr_count);
BX_SMF unsigned handleAsyncEvent(void);
BX_SMF void boundaryFetch(bxInstruction_c *i);
BX_SMF void decode_exgx16(unsigned need_fetch);
BX_SMF void decode_exgx32(unsigned need_fetch);
BX_SMF void prefetch(void);
// revalidate_prefetch_q is now a no-op, due to the newer EIP window
// technique.
BX_SMF BX_CPP_INLINE void revalidate_prefetch_q(void) { }
BX_SMF BX_CPP_INLINE void invalidate_prefetch_q(void) {
BX_CPU_THIS_PTR eipPageWindowSize = 0;
}
BX_SMF void write_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length);
BX_SMF void read_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length);
BX_SMF void write_virtual_byte(unsigned seg, bx_address offset, Bit8u *data);
BX_SMF void write_virtual_word(unsigned seg, bx_address offset, Bit16u *data);
BX_SMF void write_virtual_dword(unsigned seg, bx_address offset, Bit32u *data);
BX_SMF void write_virtual_qword(unsigned seg, bx_address offset, Bit64u *data);
BX_SMF void read_virtual_byte(unsigned seg, bx_address offset, Bit8u *data);
BX_SMF void read_virtual_word(unsigned seg, bx_address offset, Bit16u *data);
BX_SMF void read_virtual_dword(unsigned seg, bx_address offset, Bit32u *data);
BX_SMF void read_virtual_qword(unsigned seg, bx_address offset, Bit64u *data);
BX_SMF void read_RMW_virtual_byte(unsigned seg, bx_address offset, Bit8u *data);
BX_SMF void read_RMW_virtual_word(unsigned seg, bx_address offset, Bit16u *data);
BX_SMF void read_RMW_virtual_dword(unsigned seg, bx_address offset, Bit32u *data);
BX_SMF void read_RMW_virtual_qword(unsigned seg, bx_address offset, Bit64u *data);
BX_SMF void write_RMW_virtual_byte(Bit8u val8);
BX_SMF void write_RMW_virtual_word(Bit16u val16);
BX_SMF void write_RMW_virtual_dword(Bit32u val32);
BX_SMF void write_RMW_virtual_qword(Bit64u val64);
#define Write_RMW_virtual_byte(val8) write_RMW_virtual_byte(val8)
#define Write_RMW_virtual_word(val16) write_RMW_virtual_word(val16)
#define Write_RMW_virtual_dword(val32) write_RMW_virtual_dword(val32)
#define Write_RMW_virtual_qword(val64) write_RMW_virtual_qword(val64)
#if BX_SUPPORT_SSE != 0
BX_SMF void readVirtualDQword(unsigned s, bx_address off, Bit8u *data);
BX_SMF void readVirtualDQwordAligned(unsigned s, bx_address off, Bit8u *data);
BX_SMF void writeVirtualDQword(unsigned s, bx_address off, Bit8u *data);
BX_SMF void writeVirtualDQwordAligned(unsigned s, bx_address off, Bit8u *data);
#endif
BX_SMF void access_linear(bx_address address, unsigned length, unsigned pl,
unsigned rw, void *data);
BX_SMF Bit32u itranslate_linear(bx_address laddr, unsigned pl);
BX_SMF Bit32u dtranslate_linear(bx_address laddr, unsigned pl, unsigned rw);
BX_SMF void TLB_flush(bx_bool invalidateGlobal);
BX_SMF void TLB_init(void);
BX_SMF void set_INTR(bx_bool value);
BX_SMF char *strseg(bx_segment_reg_t *seg);
BX_SMF void interrupt(Bit8u vector, bx_bool is_INT, bx_bool is_error_code,
Bit16u error_code);
#if BX_CPU_LEVEL >= 2
BX_SMF void exception(unsigned vector, Bit16u error_code, bx_bool is_INT)
BX_CPP_AttrNoReturn();
#endif
BX_SMF int int_number(bx_segment_reg_t *seg);
BX_SMF void shutdown_cpu(void);
BX_SMF void CR3_change(bx_address value);
BX_SMF void pagingCR0Changed(Bit32u oldCR0, Bit32u newCR0);
BX_SMF void pagingCR4Changed(Bit32u oldCR4, Bit32u newCR4);
BX_SMF void pagingA20Changed(void);
BX_SMF void reset(unsigned source);
BX_SMF void jump_protected(bxInstruction_c *, Bit16u cs, bx_address disp);
BX_SMF void call_protected(bxInstruction_c *, Bit16u cs, bx_address disp);
BX_SMF void return_protected(bxInstruction_c *, Bit16u pop_bytes);
BX_SMF void iret_protected(bxInstruction_c *);
BX_SMF void validate_seg_regs(void);
BX_SMF void stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector,
Bit32u flags32);
BX_SMF void stack_return_from_v86(bxInstruction_c *);
BX_SMF void init_v8086_mode(void);
BX_SMF void v8086_message(void);
BX_SMF void task_switch(bx_selector_t *selector,
bx_descriptor_t *descriptor,
unsigned source,
Bit32u dword1, Bit32u dword2);
BX_SMF void get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp);
#if BX_SUPPORT_X86_64
BX_SMF void get_RSP_from_TSS(unsigned pl, Bit64u *rsp);
#endif
BX_SMF void write_flags(Bit16u flags, bx_bool change_IOPL, bx_bool change_IF);
BX_SMF void write_eflags(Bit32u eflags, bx_bool change_IOPL, bx_bool change_IF,
bx_bool change_VM, bx_bool change_RF);
BX_SMF void writeEFlags(Bit32u eflags, Bit32u changeMask); // Newer variant.
BX_SMF Bit16u read_flags(void);
BX_SMF Bit32u read_eflags(void);
BX_SMF Bit32u get_segment_base(unsigned seg);
BX_SMF Bit8u inp8(Bit16u addr);
BX_SMF void outp8(Bit16u addr, Bit8u value);
BX_SMF Bit16u inp16(Bit16u addr);
BX_SMF void outp16(Bit16u addr, Bit16u value);
BX_SMF Bit32u inp32(Bit16u addr);
BX_SMF void outp32(Bit16u addr, Bit32u value);
BX_SMF bx_bool allow_io(Bit16u addr, unsigned len);
BX_SMF void enter_protected_mode(void);
BX_SMF void enter_real_mode(void);
BX_SMF void parse_selector(Bit16u raw_selector, bx_selector_t *selector);
BX_SMF void parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp);
BX_SMF void load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor);
BX_SMF void load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl);
BX_SMF void load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl);
BX_SMF void fetch_raw_descriptor(bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2, Bit8u exception);
BX_SMF void load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value);
#if BX_SUPPORT_X86_64
BX_SMF void loadSRegLMNominal(unsigned seg, unsigned selector,
bx_address base, unsigned dpl);
#endif
BX_SMF bx_bool fetch_raw_descriptor2(bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2);
BX_SMF void push_16(Bit16u value16);
BX_SMF void push_32(Bit32u value32);
#if BX_SUPPORT_X86_64
BX_SMF void push_64(Bit64u value64);
#endif
BX_SMF void pop_16(Bit16u *value16_ptr);
BX_SMF void pop_32(Bit32u *value32_ptr);
#if BX_SUPPORT_X86_64
BX_SMF void pop_64(Bit64u *value64_ptr);
#endif
BX_SMF bx_bool can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes);
BX_SMF bx_bool can_pop(Bit32u bytes);
BX_SMF void sanity_checks(void);
BX_SMF void debug(Bit32u offset);
#if BX_EXTERNAL_DEBUGGER
BX_SMF void trap_debugger(bx_bool callnow);
#endif
#if BX_X86_DEBUGGER
// x86 hardware debug support
BX_SMF Bit32u hwdebug_compare(Bit32u laddr, unsigned size,
unsigned opa, unsigned opb);
#endif
BX_CPP_INLINE const bx_gen_reg_t *get_gen_reg() { return gen_reg; }
DECLARE_EFLAGS_ACCESSORS()
DECLARE_EFLAG_ACCESSOR (DF, 10)
DECLARE_EFLAG_ACCESSOR (ID, 21)
DECLARE_EFLAG_ACCESSOR (VP, 20)
DECLARE_EFLAG_ACCESSOR (VF, 19)
DECLARE_EFLAG_ACCESSOR (AC, 18)
DECLARE_EFLAG_ACCESSOR_VM( 17)
DECLARE_EFLAG_ACCESSOR (RF, 16)
DECLARE_EFLAG_ACCESSOR (NT, 14)
DECLARE_EFLAG_ACCESSOR_IOPL( 12)
DECLARE_EFLAG_ACCESSOR (IF, 9)
DECLARE_EFLAG_ACCESSOR (TF, 8)
BX_SMF BX_CPP_INLINE void set_CF(bx_bool val);
BX_SMF BX_CPP_INLINE void set_AF(bx_bool val);
BX_SMF BX_CPP_INLINE void set_ZF(bx_bool val);
BX_SMF BX_CPP_INLINE void set_SF(bx_bool val);
BX_SMF BX_CPP_INLINE void set_OF(bx_bool val);
BX_SMF BX_CPP_INLINE void set_PF(bx_bool val);
BX_SMF BX_CPP_INLINE void set_PF_base(Bit8u val);
DECLARE_8BIT_REGISTER_ACCESSORS(AL);
DECLARE_8BIT_REGISTER_ACCESSORS(AH);
DECLARE_8BIT_REGISTER_ACCESSORS(BL);
DECLARE_8BIT_REGISTER_ACCESSORS(BH);
DECLARE_8BIT_REGISTER_ACCESSORS(CL);
DECLARE_8BIT_REGISTER_ACCESSORS(CH);
DECLARE_8BIT_REGISTER_ACCESSORS(DL);
DECLARE_8BIT_REGISTER_ACCESSORS(DH);
DECLARE_16BIT_REGISTER_ACCESSORS(AX);
DECLARE_16BIT_REGISTER_ACCESSORS(BX);
DECLARE_16BIT_REGISTER_ACCESSORS(CX);
DECLARE_16BIT_REGISTER_ACCESSORS(DX);
DECLARE_16BIT_REGISTER_ACCESSORS(SP);
DECLARE_16BIT_REGISTER_ACCESSORS(BP);
DECLARE_16BIT_REGISTER_ACCESSORS(SI);
DECLARE_16BIT_REGISTER_ACCESSORS(DI);
DECLARE_32BIT_REGISTER_ACCESSORS(EAX);
DECLARE_32BIT_REGISTER_ACCESSORS(EBX);
DECLARE_32BIT_REGISTER_ACCESSORS(ECX);
DECLARE_32BIT_REGISTER_ACCESSORS(EDX);
DECLARE_32BIT_REGISTER_ACCESSORS(ESP);
DECLARE_32BIT_REGISTER_ACCESSORS(EBP);
DECLARE_32BIT_REGISTER_ACCESSORS(ESI);
DECLARE_32BIT_REGISTER_ACCESSORS(EDI);
BX_CPP_INLINE Bit8u get_CPL(void);
BX_CPP_INLINE Bit32u get_EIP(void);
BX_SMF BX_CPP_INLINE bx_bool real_mode(void);
BX_SMF BX_CPP_INLINE bx_bool protected_mode(void);
BX_SMF BX_CPP_INLINE bx_bool v8086_mode(void);
#if BX_SUPPORT_APIC
bx_local_apic_c local_apic;
#endif
};
#if BX_SupportICache
BX_CPP_INLINE void bxICache_c::decWriteStamp(BX_CPU_C *cpu, Bit32u a20Addr) {
// Increment page write stamp, so iCache entries with older stamps
// are effectively invalidated.
Bit32u pageIndex = a20Addr >> 12;
Bit32u writeStamp = cpu->iCache.pageWriteStampTable[pageIndex];
if ( writeStamp & 0x20000000 ) {
// Page possibly contains iCache code.
if ( writeStamp & ICacheWriteStampMask ) {
// Short case: there is room to decrement the generation counter.
cpu->iCache.pageWriteStampTable[pageIndex]--;
}
else {
// Long case: there is no more room to decrement. We have dump
// all iCache entries which can possibly hash to this page since
// we don't keep track of individual entries.
// Take the hash of the 0th page offset.
unsigned iCacheHash = cpu->iCache.hash(a20Addr & 0xfffff000);
for (unsigned o=0; o<4096; o++) {
cpu->iCache.entry[iCacheHash].writeStamp = ICacheWriteStampInvalid;
iCacheHash = (iCacheHash + 1) % BxICacheEntries;
}
// Reset write stamp to highest value to begin the decrementing process
// again.
cpu->iCache.pageWriteStampTable[pageIndex] = ICacheWriteStampInvalid;
}
}
}
BX_CPP_INLINE Bit32u bxICache_c::createFetchModeMask(BX_CPU_C *cpu) {
return (cpu->sregs[BX_SEG_REG_CS].cache.u.segment.d_b << 31)
#if BX_SUPPORT_X86_64
| ((cpu->cpu_mode == BX_MODE_LONG_64)<<30)
#endif
| (1<<29) // iCache code.
;
}
#endif
#if BX_X86_DEBUGGER
#define BX_HWDebugInstruction 0x00
#define BX_HWDebugMemW 0x01
#define BX_HWDebugIO 0x02
#define BX_HWDebugMemRW 0x03
#endif
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(AL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(AH);
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(BL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(BH);
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(CL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(CH);
IMPLEMENT_8LBIT_REGISTER_ACCESSORS(DL);
IMPLEMENT_8HBIT_REGISTER_ACCESSORS(DH);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(AX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(BX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(CX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(DX);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(SP);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(BP);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(SI);
IMPLEMENT_16BIT_REGISTER_ACCESSORS(DI);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EAX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EBX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(ECX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EDX);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(ESP);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EBP);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(ESI);
IMPLEMENT_32BIT_REGISTER_ACCESSORS(EDI);
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_CPL(void) {
return (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl);
}
BX_CPP_INLINE Bit32u BX_CPU_C::get_EIP(void) {
return (BX_CPU_THIS_PTR dword.eip);
}
BX_SMF BX_CPP_INLINE Bit32u BX_CPU_C_PREFIX get_segment_base(unsigned seg) {
return (BX_CPU_THIS_PTR sregs[seg].cache.u.segment.base);
}
BX_CPP_INLINE bx_bool
BX_CPU_C::real_mode(void) {
return( BX_CPU_THIS_PTR realMode );
};
BX_CPP_INLINE bx_bool
BX_CPU_C::v8086_mode(void) {
return( BX_CPU_THIS_PTR v8086Mode );
}
BX_CPP_INLINE bx_bool
BX_CPU_C::protected_mode(void) {
return( BX_CPU_THIS_PTR protectedMode );
}
BX_CPP_INLINE void
BX_CPU_C::set_CF(bx_bool val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xfffff0;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<0);
BX_CPU_THIS_PTR eflags.val32 |= (!!val);
}
BX_CPP_INLINE void
BX_CPU_C::set_AF(bx_bool val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<4);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<4;
}
BX_CPP_INLINE void
BX_CPU_C::set_ZF(bx_bool val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<6);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<6;
}
BX_CPP_INLINE void
BX_CPU_C::set_SF(bx_bool val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<7);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<7;
}
BX_CPP_INLINE void
BX_CPU_C::set_OF(bx_bool val) {
BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<11);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<11;
}
BX_CPP_INLINE void
BX_CPU_C::set_PF(bx_bool val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= (!!val)<<2;
}
BOCHSAPI extern const bx_bool bx_parity_lookup[256];
BX_CPP_INLINE void
BX_CPU_C::set_PF_base(Bit8u val) {
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
val = bx_parity_lookup[val]; // Always returns 0 or 1.
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= val<<2;
}
#define SET_FLAGS_OSZAPC_8(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_8 = op1; \
BX_CPU_THIS_PTR oszapc.op2_8 = op2; \
BX_CPU_THIS_PTR oszapc.result_8 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_8_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_8 = op1; \
BX_CPU_THIS_PTR oszapc.op2_8 = op2; \
BX_CPU_THIS_PTR oszapc.result_8 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_16(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_16 = op1; \
BX_CPU_THIS_PTR oszapc.op2_16 = op2; \
BX_CPU_THIS_PTR oszapc.result_16 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_16_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_16 = op1; \
BX_CPU_THIS_PTR oszapc.op2_16 = op2; \
BX_CPU_THIS_PTR oszapc.result_16 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_32(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_32 = op1; \
BX_CPU_THIS_PTR oszapc.op2_32 = op2; \
BX_CPU_THIS_PTR oszapc.result_32 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_32_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_32 = op1; \
BX_CPU_THIS_PTR oszapc.op2_32 = op2; \
BX_CPU_THIS_PTR oszapc.result_32 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_64(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszapc.op1_64 = op1; \
BX_CPU_THIS_PTR oszapc.op2_64 = op2; \
BX_CPU_THIS_PTR oszapc.result_64 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_64_CF(op1, op2, result, ins, last_CF) { \
BX_CPU_THIS_PTR oszapc.op1_64 = op1; \
BX_CPU_THIS_PTR oszapc.op2_64 = op2; \
BX_CPU_THIS_PTR oszapc.result_64 = result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAP_8(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_8 = op1; \
BX_CPU_THIS_PTR oszap.op2_8 = op2; \
BX_CPU_THIS_PTR oszap.result_8 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_16(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_16 = op1; \
BX_CPU_THIS_PTR oszap.op2_16 = op2; \
BX_CPU_THIS_PTR oszap.result_16 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_32(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_32 = op1; \
BX_CPU_THIS_PTR oszap.op2_32 = op2; \
BX_CPU_THIS_PTR oszap.result_32 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_64(op1, op2, result, ins) { \
BX_CPU_THIS_PTR oszap.op1_64 = op1; \
BX_CPU_THIS_PTR oszap.op2_64 = op2; \
BX_CPU_THIS_PTR oszap.result_64 = result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OxxxxC(new_of, new_cf) { \
BX_CPU_THIS_PTR eflags.val32 &= ~((1<<11) | (1<<0)); \
BX_CPU_THIS_PTR eflags.val32 |= ((!!new_of)<<11) | ((!!new_cf)<<0); \
BX_CPU_THIS_PTR lf_flags_status &= 0x0ffff0; \
/* ??? could also mark other bits undefined here */ \
}
IMPLEMENT_EFLAGS_ACCESSORS()
IMPLEMENT_EFLAG_ACCESSOR (DF, 10)
IMPLEMENT_EFLAG_ACCESSOR (ID, 21)
IMPLEMENT_EFLAG_ACCESSOR (VP, 20)
IMPLEMENT_EFLAG_ACCESSOR (VF, 19)
IMPLEMENT_EFLAG_ACCESSOR (AC, 18)
IMPLEMENT_EFLAG_ACCESSOR_VM( 17)
IMPLEMENT_EFLAG_ACCESSOR (RF, 16)
IMPLEMENT_EFLAG_ACCESSOR (NT, 14)
IMPLEMENT_EFLAG_ACCESSOR_IOPL( 12)
IMPLEMENT_EFLAG_ACCESSOR (IF, 9)
IMPLEMENT_EFLAG_ACCESSOR (TF, 8)
#define BX_REPE_PREFIX 10
#define BX_REPNE_PREFIX 11
#define BX_TASK_FROM_JUMP 10
#define BX_TASK_FROM_CALL_OR_INT 11
#define BX_TASK_FROM_IRET 12
//
// For decoding...
//
// If the Immediate bit is set, the lowest 3 bits of the attribute
// specify which kinds of immediate data a required by instruction.
#define BxImmediate 0x000f // bits 3..0: any immediate
#define BxImmediate_Ib 0x0001 // 8 bits regardless
#define BxImmediate_Ib_SE 0x0002 // sign extend to OS size
#define BxImmediate_Iv 0x0003 // 16 or 32 depending on OS size
#define BxImmediate_Iw 0x0004 // 16 bits regardless
#define BxImmediate_IvIw 0x0005 // call_Ap
#define BxImmediate_IwIb 0x0006 // enter_IwIb
#define BxImmediate_O 0x0007 // mov_ALOb, mov_ObAL, mov_eAXOv, mov_OveAX
#define BxImmediate_BrOff8 0x0008 // Relative branch offset byte
#define BxImmediate_BrOff16 0x0009 // Relative branch offset word
#define BxImmediate_BrOff32 BxImmediate_Iv
#if BX_SUPPORT_X86_64
#define BxImmediate_Iq 0x000A // 64 bit override
#endif
#define BxPrefix 0x0010 // bit 4
#define BxAnother 0x0020 // bit 5
#define BxSplitMod11b 0x0040 // bit 6
#define BxPrefixSSE 0x0080 // bit 7
#define BxRepeatable 0x0800 // bit 11 (pass through to metaInfo field)
#define BxRepeatableZF 0x1000 // bit 12 (pass through to metaInfo field)
#define BxGroupN 0x0100 // bits 8
#define BxGroup1 BxGroupN
#define BxGroup2 BxGroupN
#define BxGroup3 BxGroupN
#define BxGroup4 BxGroupN
#define BxGroup5 BxGroupN
#define BxGroup6 BxGroupN
#define BxGroup7 BxGroupN
#define BxGroup8 BxGroupN
#define BxGroup9 BxGroupN
#define BxGroup12 BxGroupN
#define BxGroup13 BxGroupN
#define BxGroup14 BxGroupN
#define BxGroup15 BxGroupN
#define BxGroup16 BxGroupN
#if BX_DEBUGGER
typedef enum _show_flags {
Flag_call = 0x1,
Flag_ret = 0x2,
Flag_int = 0x4,
Flag_iret = 0x8,
Flag_intsig = 0x10
} show_flags_t;
#endif
// Can be used as LHS or RHS.
#define RMAddr(i) (BX_CPU_THIS_PTR address_xlation.rm_addr)
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
#define setEFlagsOSZAPC(flags32) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | \
(flags32 & EFlagsOSZAPCMask); \
BX_CPU_THIS_PTR lf_flags_status = 0; \
}
#define setEFlagsOSZAP(flags32) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPMask) | \
(flags32 & EFlagsOSZAPMask); \
BX_CPU_THIS_PTR lf_flags_status &= 0x00000f; \
}
// This section defines some convience inline functions which do the
// dirty work of asm() statements for arithmetic instructions on x86 hosts.
// Essentially these speed up eflags processing since the value of the
// eflags register can be read directly on x86 hosts, after the
// arithmetic operations.
static inline void
asmAdd16(Bit16u &sum_16, Bit16u op1_16, Bit16u op2_16, Bit32u &flags32)
{
asm (
"addw %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (sum_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
}
static inline void
asmAdd32(Bit32u &sum_32, Bit32u op1_32, Bit32u op2_32, Bit32u &flags32)
{
asm (
"addl %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (sum_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
}
static inline void
asmSub16(Bit16u &diff_16, Bit16u op1_16, Bit16u op2_16, Bit32u &flags32)
{
asm (
"subw %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (diff_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
}
static inline void
asmSub32(Bit32u &diff_32, Bit32u op1_32, Bit32u op2_32, Bit32u &flags32)
{
asm (
"subl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (diff_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
}
static inline void
asmCmp8(Bit8u op1_8, Bit8u op2_8, Bit32u &flags32)
{
asm (
"cmpb %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "q" (op1_8), "mq" (op2_8)
: "cc"
);
}
static inline void
asmCmp16(Bit16u op1_16, Bit16u op2_16, Bit32u &flags32)
{
asm (
"cmpw %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_16), "g" (op2_16)
: "cc"
);
}
static inline void
asmCmp32(Bit32u op1_32, Bit32u op2_32, Bit32u &flags32)
{
asm (
"cmpl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
}
static inline void
asmInc16(Bit16u &op1_16, Bit32u &flags32)
{
asm (
"incw %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=g" (op1_16)
: "1" (op1_16)
: "cc"
);
}
static inline void
asmInc32(Bit32u &op1_32, Bit32u &flags32)
{
asm (
"incl %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=g" (op1_32)
: "1" (op1_32)
: "cc"
);
}
static inline void
asmDec16(Bit16u &op1_16, Bit32u &flags32)
{
asm (
"decw %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=g" (op1_16)
: "1" (op1_16)
: "cc"
);
}
static inline void
asmDec32(Bit32u &op1_32, Bit32u &flags32)
{
asm (
"decl %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=g" (op1_32)
: "1" (op1_32)
: "cc"
);
}
static inline void
asmXor16(Bit16u &result_16, Bit16u op1_16, Bit16u op2_16, Bit32u &flags32)
{
asm (
"xorw %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
}
static inline void
asmXor32(Bit32u &result_32, Bit32u op1_32, Bit32u op2_32, Bit32u &flags32)
{
asm (
"xorl %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
}
static inline void
asmOr8(Bit8u &result_8, Bit8u op1_8, Bit8u op2_8, Bit32u &flags32)
{
asm (
"orb %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=q" (result_8)
: "1" (op1_8), "mq" (op2_8)
: "cc"
);
}
static inline void
asmOr16(Bit16u &result_16, Bit16u op1_16, Bit16u op2_16, Bit32u &flags32)
{
asm (
"orw %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
}
static inline void
asmOr32(Bit32u &result_32, Bit32u op1_32, Bit32u op2_32, Bit32u &flags32)
{
asm (
"orl %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
}
static inline void
asmAnd8(Bit8u &result_8, Bit8u op1_8, Bit8u op2_8, Bit32u &flags32)
{
asm (
"andb %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=q" (result_8)
: "1" (op1_8), "mq" (op2_8)
: "cc"
);
}
static inline void
asmAnd16(Bit16u &result_16, Bit16u op1_16, Bit16u op2_16, Bit32u &flags32)
{
asm (
"andw %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_16)
: "1" (op1_16), "g" (op2_16)
: "cc"
);
}
static inline void
asmAnd32(Bit32u &result_32, Bit32u op1_32, Bit32u op2_32, Bit32u &flags32)
{
asm (
"andl %3, %1 \n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
}
static inline void
asmTest8(Bit8u op1_8, Bit8u op2_8, Bit32u &flags32)
{
asm (
"testb %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "q" (op1_8), "mq" (op2_8)
: "cc"
);
}
static inline void
asmTest16(Bit16u op1_16, Bit16u op2_16, Bit32u &flags32)
{
asm (
"testw %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_16), "g" (op2_16)
: "cc"
);
}
static inline void
asmTest32(Bit32u op1_32, Bit32u op2_32, Bit32u &flags32)
{
asm (
"testl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
}
static inline void
asmShr16(Bit16u &result_16, Bit16u op1_16, unsigned count, Bit32u &flags32)
{
asm (
"shrw %%cl, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=g" (result_16)
: "1" (op1_16), "c" (count)
: "cc"
);
}
static inline void
asmShr32(Bit32u &result_32, Bit32u op1_32, unsigned count, Bit32u &flags32)
{
asm (
"shrl %%cl, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=g" (result_32)
: "1" (op1_32), "c" (count)
: "cc"
);
}
#endif
#endif // #ifndef BX_CPU_H