Bochs/bochs/memory/misc_mem.cc

725 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: misc_mem.cc,v 1.76 2006-01-28 16:16:03 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// I/O memory handlers API Copyright (C) 2003 by Frank Cornelis
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "iodev/iodev.h"
#define LOG_THIS BX_MEM(0)->
#if BX_PROVIDE_CPU_MEMORY
Bit32u BX_MEM_C::get_memory_in_k(void)
{
return(BX_MEM_THIS megabytes * 1024);
}
BX_MEM_C::BX_MEM_C(void)
{
char mem[6];
snprintf(mem, 6, "MEM0");
put(mem);
settype(MEMLOG);
vector = NULL;
actual_vector = NULL;
len = 0;
megabytes = 0;
memory_handlers = NULL;
}
void BX_CPP_AttrRegparmN(2)
BX_MEM_C::alloc_vector_aligned (size_t bytes, size_t alignment)
{
if (actual_vector != NULL) {
BX_INFO (("freeing existing memory vector"));
delete [] actual_vector;
actual_vector = NULL;
vector = NULL;
}
Bit64u test_mask = alignment - 1;
actual_vector = new Bit8u [(unsigned int)(bytes+test_mask)];
// round address forward to nearest multiple of alignment. Alignment
// MUST BE a power of two for this to work.
Bit64u masked = ((Bit64u)(actual_vector + test_mask)) & ~test_mask;
vector = (Bit8u *)masked;
// sanity check: no lost bits during pointer conversion
BX_ASSERT (sizeof(masked) >= sizeof(vector));
// sanity check: after realignment, everything fits in allocated space
BX_ASSERT (vector+bytes <= actual_vector+bytes+test_mask);
BX_INFO (("allocated memory at %p. after alignment, vector=%p",
actual_vector, vector));
}
BX_MEM_C::~BX_MEM_C(void)
{
if (this-> vector != NULL) {
delete [] actual_vector;
actual_vector = NULL;
vector = NULL;
delete [] memory_handlers;
memory_handlers = NULL;
}
else {
BX_DEBUG(("Memory not freed as it wasn't allocated !"));
}
}
void BX_MEM_C::init_memory(int memsize)
{
int idx;
BX_DEBUG(("Init $Id: misc_mem.cc,v 1.76 2006-01-28 16:16:03 sshwarts Exp $"));
// you can pass 0 if memory has been allocated already through
// the constructor, or the desired size of memory if it hasn't
// BX_INFO(("%.2fMB", (float)(BX_MEM_THIS megabytes) ));
if (BX_MEM_THIS vector == NULL) {
// memory not already allocated, do now...
alloc_vector_aligned (memsize+ BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN);
BX_MEM_THIS len = memsize;
BX_MEM_THIS megabytes = memsize / (1024*1024);
BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[1024 * 1024];
BX_MEM_THIS rom = &BX_MEM_THIS vector[memsize];
BX_MEM_THIS bogus = &BX_MEM_THIS vector[memsize + BIOSROMSZ + EXROMSIZE];
memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE);
memset(BX_MEM_THIS bogus, 0xff, 4096);
for (idx = 0; idx < 1024 * 1024; idx++)
BX_MEM_THIS memory_handlers[idx] = NULL;
for (idx = 0; idx < 65; idx++)
BX_MEM_THIS rom_present[idx] = 0;
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS megabytes)));
}
#if BX_DEBUGGER
if (megabytes > BX_MAX_DIRTY_PAGE_TABLE_MEGS) {
BX_INFO(("Error: memory larger than dirty page table can handle"));
BX_PANIC(("Error: increase BX_MAX_DIRTY_PAGE_TABLE_MEGS"));
}
#endif
}
#if BX_SUPPORT_APIC
void put_8bit(Bit8u **pp, Bit8u value)
{
Bit8u *p = *pp;
*p++ = value;
*pp = p;
}
void put_16bit(Bit8u **pp, Bit16u value)
{
Bit8u *p = *pp;
*p++ = value & 0xff;
*p++ = (value >> 8) & 0xff;
*pp = p;
}
void put_32bit(Bit8u **pp, Bit32u value)
{
Bit8u *p = *pp;
*p++ = value & 0xff;
*p++ = (value >> 8) & 0xff;
*p++ = (value >> 16) & 0xff;
*p++ = (value >> 24) & 0xff;
*pp = p;
}
void put_string(Bit8u **pp, const char *str)
{
Bit8u *p = *pp;
while (*str)
*p++ = *str++;
*pp = p;
}
Bit8u mp_checksum(const Bit8u *p, int len)
{
Bit8u sum = 0;
for (int i = 0; i < len; i++)
sum += p[i];
return (Bit8u)(-sum);
}
#endif
//
// Values for type:
// 0 : System Bios
// 1 : VGA Bios
// 2 : Optional ROM Bios
//
void BX_MEM_C::load_ROM(const char *path, Bit32u romaddress, Bit8u type)
{
struct stat stat_buf;
int fd, ret, i, start_idx, end_idx;
unsigned long size, max_size, offset;
bx_bool is_bochs_bios = 0;
if (*path == '\0') {
if (type == 2) {
BX_PANIC(( "ROM: Optional ROM image undefined"));
}
else if (type == 1) {
BX_PANIC(( "ROM: VGA BIOS image undefined"));
}
else {
BX_PANIC(( "ROM: System BIOS image undefined"));
}
return;
}
// read in ROM BIOS image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
if (type < 2) {
BX_PANIC(( "ROM: couldn't open ROM image file '%s'.", path));
}
else {
BX_ERROR(( "ROM: couldn't open ROM image file '%s'.", path));
}
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
if (type < 2) {
BX_PANIC(( "ROM: couldn't stat ROM image file '%s'.", path));
}
else {
BX_ERROR(( "ROM: couldn't stat ROM image file '%s'.", path));
}
return;
}
size = (unsigned long)stat_buf.st_size;
if (type > 0) {
max_size = 0x10000;
} else {
max_size = BIOSROMSZ;
}
if (size > max_size) {
close(fd);
BX_PANIC(("ROM: ROM image too large"));
return;
}
if (type == 0) {
if (romaddress > 0) {
if ((romaddress + size) != 0x100000 && (romaddress + size)) {
close(fd);
BX_PANIC(("ROM: System BIOS must end at 0xfffff"));
return;
}
} else {
romaddress = (Bit32u)-size;
}
offset = romaddress & BIOS_MASK;
if ((romaddress & 0xf0000) < 0xf0000) {
BX_MEM_THIS rom_present[64] = 1;
}
is_bochs_bios = (strstr(path, "BIOS-bochs-latest") != NULL);
} else {
if ((size % 512) != 0) {
close(fd);
BX_PANIC(("ROM: ROM image size must be multiple of 512 (size = %ld)", size));
return;
}
if ((romaddress % 2048) != 0) {
close(fd);
BX_PANIC(("ROM: ROM image must start at a 2k boundary"));
return;
}
if ((romaddress < 0xc0000) ||
(((romaddress + size) > 0xdffff) && (romaddress != 0xe0000))) {
close(fd);
BX_PANIC(("ROM: ROM address space out of range"));
return;
}
start_idx = ((romaddress - 0xc0000) >> 11);
end_idx = start_idx + (size >> 11) + (((size % 2048) > 0) ? 1 : 0);
if (romaddress < 0xe0000) {
offset = (romaddress & EXROM_MASK) + BIOSROMSZ;
} else {
offset = romaddress & BIOS_MASK;
}
for (i = start_idx; i < end_idx; i++) {
if (BX_MEM_THIS rom_present[i]) {
close(fd);
BX_PANIC(("ROM: address space 0x%x already in use", (i * 2048) + 0xc0000));
return;
} else {
BX_MEM_THIS rom_present[i] = 1;
}
}
}
while (size > 0) {
ret = read(fd, (bx_ptr_t) &BX_MEM_THIS rom[offset], size);
if (ret <= 0) {
BX_PANIC(( "ROM: read failed on BIOS image: '%s'",path));
}
size -= ret;
offset += ret;
}
close(fd);
offset -= (unsigned long)stat_buf.st_size;
if ((romaddress != 0xe0000) || ((rom[offset] == 0x55) && (rom[offset] == 0xaa))) {
Bit8u checksum = 0;
for (i = 0; i < stat_buf.st_size; i++) {
checksum += BX_MEM_THIS rom[offset + i];
}
if (checksum != 0) {
if (type == 1) {
BX_PANIC(( "ROM: checksum error in VGABIOS image: '%s'", path));
} else if (is_bochs_bios) {
BX_ERROR(( "ROM: checksum error in BIOS image: '%s'", path));
}
}
}
#if BX_SUPPORT_APIC
if (is_bochs_bios) {
Bit8u* pcmp_ptr = &BX_MEM_THIS rom[0xFB000 & BIOS_MASK];
Bit8u* p = pcmp_ptr;
put_string(&p, "PCMP"); // signature
put_16bit(&p, 0); // table length
put_8bit(&p, 4); // version
put_8bit(&p, 0); // checksum
put_string(&p, "BOCHSCPU"); // OEM ID
put_string(&p, "0.1 "); // vendor ID
put_32bit(&p, 0); // OEM table pointer
put_16bit(&p, 0); // OEM table size
put_16bit(&p, 20); // entry count
put_32bit(&p, 0xfee00000); // local APIC addr
put_16bit(&p, 0); // ext table length
put_8bit(&p, 0); // ext table checksum
put_8bit(&p, 0); // reserved
for (i = 0; i < BX_SMP_PROCESSORS; i++) {
put_8bit(&p, 0); // entry type = processor
put_8bit(&p, (Bit8u)i); // APIC id
put_8bit(&p, APIC_VERSION_ID & 0xff); // local APIC version number
put_8bit(&p, (i==0)?3:1); // cpu flags: enabled, cpu0 = bootstrap cpu
put_8bit(&p, 0); // cpu signature
put_8bit(&p, 0);
put_8bit(&p, 0);
put_8bit(&p, 0);
put_16bit(&p, 0x301); // feature flags: FPU, CX8, APIC
put_16bit(&p, 0);
put_16bit(&p, 0); // reserved
put_16bit(&p, 0);
put_16bit(&p, 0);
put_16bit(&p, 0);
}
put_8bit(&p, 1); // entry type = bus
put_8bit(&p, 0); // bus ID
put_string(&p, "ISA ");
Bit8u ioapic_id = BX_SMP_PROCESSORS;
put_8bit(&p, 2); // entry type = I/O APIC
put_8bit(&p, ioapic_id); // apic id
put_8bit(&p, BX_IOAPIC_VERSION_ID & 0xff); // I/O APIC version number
put_8bit(&p, 1); // enabled
put_32bit(&p, 0xfec00000); // I/O APIC addr
for (i = 0; i < 16; i++) {
put_8bit(&p, 3); // entry type = I/O interrupt
put_8bit(&p, 0); // interrupt type = vectored interrupt
put_8bit(&p, 0); // flags: po=0, el=0
put_8bit(&p, 0);
put_8bit(&p, 0); // source bus ID = ISA
put_8bit(&p, i); // source bus IRQ
put_8bit(&p, ioapic_id); // dest I/O APIC ID
put_8bit(&p, i); // dest I/O APIC interrupt in
}
Bit16u len = (Bit16u)(p - pcmp_ptr);
pcmp_ptr[4] = (Bit8u)len;
pcmp_ptr[5] = (Bit8u)(len >> 8);
pcmp_ptr[7] = mp_checksum(pcmp_ptr, len);
Bit8u *fl_mp_ptr = &BX_MEM_THIS rom[0xFB000 & BIOS_MASK] + ((len + 15) & ~15);
p = fl_mp_ptr;
put_string(&p, "_MP_");
put_32bit(&p, 0xFB000); // pointer to MP config table
put_8bit(&p, 1); // length in 16 byte units
put_8bit(&p, 4); // MP spec revision
put_8bit(&p, 0); // checksum
put_8bit(&p, 0); // MP feature bytes 1-5
put_8bit(&p, 0);
put_8bit(&p, 0);
put_8bit(&p, 0);
put_8bit(&p, 0);
fl_mp_ptr[10] = mp_checksum(fl_mp_ptr, (int)(p - fl_mp_ptr));
}
#endif
BX_INFO(("rom at 0x%05x/%u ('%s')",
(unsigned) romaddress,
(unsigned) stat_buf.st_size,
path));
}
void BX_MEM_C::load_RAM(const char *path, Bit32u ramaddress, Bit8u type)
{
struct stat stat_buf;
int fd, ret;
unsigned long size, offset;
if (*path == '\0') {
BX_PANIC(( "RAM: Optional RAM image undefined"));
return;
}
// read in RAM BIOS image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
BX_PANIC(( "RAM: couldn't open RAM image file '%s'.", path));
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
BX_PANIC(( "RAM: couldn't stat RAM image file '%s'.", path));
return;
}
size = (unsigned long)stat_buf.st_size;
offset = ramaddress;
while (size > 0) {
ret = read(fd, (bx_ptr_t) &BX_MEM_THIS vector[offset], size);
if (ret <= 0) {
BX_PANIC(( "RAM: read failed on RAM image: '%s'",path));
}
size -= ret;
offset += ret;
}
close(fd);
BX_INFO(("ram at 0x%05x/%u ('%s')",
(unsigned) ramaddress,
(unsigned) stat_buf.st_size,
path));
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if ( BX_DEBUGGER || BX_DISASM || BX_GDBSTUB)
bx_bool BX_MEM_C::dbg_fetch_mem(Bit32u addr, unsigned len, Bit8u *buf)
{
bx_bool ret = 1;
for (; len>0; len--) {
if ( (addr & 0xfffe0000) == 0x000a0000 )
*buf = DEV_vga_mem_read(addr);
#if BX_SUPPORT_PCI
else if ( bx_options.Oi440FXSupport->get () &&
((addr & 0xfffc0000) == 0x000c0000) )
{
switch (DEV_pci_rd_memtype (addr)) {
case 0x0: // Read from ROM
if ( (addr & 0xfffe0000) == 0x000e0000 )
{
*buf = rom[addr & BIOS_MASK];
}
else
{
*buf = rom[(addr & EXROM_MASK) + BIOSROMSZ];
}
break;
case 0x1: // Read from ShadowRAM
*buf = vector[addr];
break;
default:
BX_PANIC(("dbg_fetch_mem: default case"));
}
}
#endif // #if BX_SUPPORT_PCI
else if (addr < BX_MEM_THIS len)
{
if ( (addr & 0xfffc0000) != 0x000c0000 ) {
*buf = vector[addr];
}
else if ( (addr & 0xfffe0000) == 0x000e0000 )
{
*buf = rom[addr & BIOS_MASK];
}
else
{
*buf = rom[(addr & EXROM_MASK) + BIOSROMSZ];
}
}
else if (addr >= ~BIOS_MASK)
{
*buf = rom[addr & BIOS_MASK];
}
else
{
*buf = 0xff;
ret = 0; // error, beyond limits of memory
}
buf++;
addr++;
}
return ret;
}
#endif
#if BX_DEBUGGER || BX_GDBSTUB
bx_bool BX_MEM_C::dbg_set_mem(Bit32u addr, unsigned len, Bit8u *buf)
{
if ( (addr + len) > this->len ) {
return(0); // error, beyond limits of memory
}
for (; len>0; len--) {
if ( (addr & 0xfffe0000) == 0x000a0000 )
DEV_vga_mem_write(addr, *buf);
#if BX_SUPPORT_PCI
else if ( bx_options.Oi440FXSupport->get () &&
((addr & 0xfffc0000) == 0x000c0000) )
{
switch (DEV_pci_wr_memtype (addr)) {
case 0x0: // Ignore write to ROM
break;
case 0x1: // Write to ShadowRAM
vector[addr] = *buf;
break;
default:
BX_PANIC(("dbg_fetch_mem: default case"));
}
}
#endif // #if BX_SUPPORT_PCI
else if ( (addr & 0xfffc0000) != 0x000c0000 && (addr < ~BIOS_MASK) )
{
vector[addr] = *buf;
}
buf++;
addr++;
}
return(1);
}
#endif
bx_bool BX_MEM_C::dbg_crc32(Bit32u addr1, Bit32u addr2, Bit32u *crc)
{
*crc = 0;
if (addr1 > addr2)
return(0);
if (addr2 >= this->len)
return(0); // error, specified address past last phy mem addr
unsigned len = 1 + addr2 - addr1;
*crc = crc32(vector + addr1, len);
return(1);
}
//
// Return a host address corresponding to the guest physical memory
// address (with A20 already applied), given that the calling
// code will perform an 'op' operation. This address will be
// used for direct access to guest memory as an acceleration by
// a few instructions, like REP {MOV, INS, OUTS, etc}.
// Values of 'op' are { BX_READ, BX_WRITE, BX_RW }.
//
// The other assumption is that the calling code _only_ accesses memory
// directly within the page that encompasses the address requested.
//
Bit8u * BX_CPP_AttrRegparmN(3)
BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, Bit32u a20Addr, unsigned op)
{
#if BX_SUPPORT_APIC
bx_generic_apic_c *local_apic = &cpu->local_apic;
if (local_apic->get_base () == (a20Addr & ~0xfff))
return(NULL); // Vetoed! APIC address space
bx_generic_apic_c *ioapic = bx_devices.ioapic;
if (ioapic->get_base () == (a20Addr & ~0xfff))
return(NULL); // Vetoed! IOAPIC address space
#endif
struct memory_handler_struct *memory_handler = memory_handlers[a20Addr >> 20];
while (memory_handler) {
if (memory_handler->begin <= a20Addr &&
memory_handler->end >= a20Addr) {
return(NULL); // Vetoed! memory handler for vram, mmio and PCI PnP
}
memory_handler = memory_handler->next;
}
if (op == BX_READ) {
if ( (a20Addr & 0xfffe0000) == 0x000a0000 )
return(NULL); // Vetoed! Mem mapped IO (VGA)
#if BX_SUPPORT_PCI
else if ( bx_options.Oi440FXSupport->get () &&
((a20Addr & 0xfffc0000) == 0x000c0000) )
{
switch (DEV_pci_rd_memtype (a20Addr)) {
case 0x0: // Read from ROM
if ( (a20Addr & 0xfffe0000) == 0x000e0000 )
{
return( (Bit8u *) & rom[a20Addr & BIOS_MASK]);
}
else
{
return( (Bit8u *) & rom[(a20Addr & EXROM_MASK) + BIOSROMSZ]);
}
break;
case 0x1: // Read from ShadowRAM
return( (Bit8u *) & vector[a20Addr]);
default:
BX_PANIC(("getHostMemAddr(): default case"));
return(0);
}
}
#endif
else if (a20Addr < BX_MEM_THIS len)
{
if ( (a20Addr & 0xfffc0000) != 0x000c0000 ) {
return( (Bit8u *) & vector[a20Addr]);
}
else if ( (a20Addr & 0xfffe0000) == 0x000e0000 )
{
return( (Bit8u *) & rom[a20Addr & BIOS_MASK]);
}
else
{
return( (Bit8u *) & rom[(a20Addr & EXROM_MASK) + BIOSROMSZ]);
}
}
else if (a20Addr >= (Bit32u)~BIOS_MASK)
{
return( (Bit8u *) & rom[a20Addr & BIOS_MASK]);
}
else
{
// Error, requested addr is out of bounds.
return( (Bit8u *) & bogus[a20Addr & 0x0fff]);
}
}
else
{ // op == {BX_WRITE, BX_RW}
Bit8u *retAddr;
if ( a20Addr >= BX_MEM_THIS len )
return(NULL); // Error, requested addr is out of bounds.
else if ( (a20Addr & 0xfffe0000) == 0x000a0000 )
return(NULL); // Vetoed! Mem mapped IO (VGA)
else if (a20Addr >= (Bit32u)~BIOS_MASK)
return(NULL); // Vetoed! ROMs
#if BX_SUPPORT_PCI
else if ( bx_options.Oi440FXSupport->get () &&
((a20Addr & 0xfffc0000) == 0x000c0000) )
{
switch (DEV_pci_wr_memtype (a20Addr)) {
case 0x0: // Vetoed! ROMs
return(NULL);
case 0x1: // Write to ShadowRAM
retAddr = (Bit8u *) & vector[a20Addr];
break;
default:
BX_PANIC(("getHostMemAddr(): default case"));
return(0);
}
}
#endif
else
{
if ( (a20Addr & 0xfffc0000) != 0x000c0000 ) {
retAddr = (Bit8u *) & vector[a20Addr];
}
else
{
return(NULL); // Vetoed! ROMs
}
}
#if BX_SUPPORT_ICACHE
pageWriteStampTable.decWriteStamp(a20Addr);
#endif
return(retAddr);
}
}
/*
* One needs to provide both a read_handler and a write_handler.
* XXX: maybe we should check for overlapping memory handlers
*/
bx_bool
BX_MEM_C::registerMemoryHandlers(memory_handler_t read_handler, void *read_param,
memory_handler_t write_handler, void *write_param,
Bit32u begin_addr, Bit32u end_addr)
{
if (end_addr < begin_addr)
return false;
if (!read_handler)
return false;
if (!write_handler)
return false;
for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) {
struct memory_handler_struct *memory_handler = new struct memory_handler_struct;
memory_handler->next = memory_handlers[page_idx];
memory_handlers[page_idx] = memory_handler;
memory_handler->read_handler = read_handler;
memory_handler->write_handler = write_handler;
memory_handler->read_param = read_param;
memory_handler->write_param = write_param;
memory_handler->begin = begin_addr;
memory_handler->end = end_addr;
}
return true;
}
bx_bool
BX_MEM_C::unregisterMemoryHandlers(memory_handler_t read_handler, memory_handler_t write_handler,
Bit32u begin_addr, Bit32u end_addr)
{
bx_bool ret = true;
for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) {
struct memory_handler_struct *memory_handler = memory_handlers[page_idx];
struct memory_handler_struct *prev = NULL;
while (memory_handler &&
memory_handler->read_handler != read_handler &&
memory_handler->write_handler != write_handler &&
memory_handler->begin != begin_addr &&
memory_handler->end != end_addr)
{
prev = memory_handler;
memory_handler = memory_handler->next;
}
if (!memory_handler) {
ret = false; // we should have found it
continue; // anyway, try the other pages
}
if (prev)
prev->next = memory_handler->next;
else
memory_handlers[page_idx] = memory_handler->next;
delete memory_handler;
}
return ret;
}