2bbb1ef8eb
don't need it, moved the output of it into the general io functions. saves space, as well as removes the confusing output if a '\n' is left off
1249 lines
26 KiB
C++
1249 lines
26 KiB
C++
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
|
|
|
|
void
|
|
BX_CPU_C::SETO_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETO: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_OF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNO_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNO: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_OF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETB_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETB: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_CF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNB_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNB: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_CF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETZ_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETZ: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_ZF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNZ_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNZ: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_ZF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETBE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETBE: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_CF() || get_ZF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNBE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNBE: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if ((get_CF()==0) && (get_ZF()==0))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETS_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETS: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNS_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNL: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETP_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETP: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_PF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNP_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNP: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_PF() == 0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETL_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETL: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF() != get_OF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNL_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNL: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF() == get_OF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETLE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETLE: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_ZF() || (get_SF()!=get_OF()))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNLE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNLE: not available on < 386"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if ((get_ZF()==0) && (get_SF()==get_OF()))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::BSF_GvEv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BSF_GvEv(): not supported on < 386"));
|
|
#else
|
|
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32;
|
|
|
|
/* op2_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
|
|
}
|
|
|
|
if (op2_32 == 0) {
|
|
set_ZF(1);
|
|
/* op1_32 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_32 = 0;
|
|
while ( (op2_32 & 0x01) == 0 ) {
|
|
op1_32++;
|
|
op2_32 >>= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REG(i->nnn, op1_32);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
if (op2_16 == 0) {
|
|
set_ZF(1);
|
|
/* op1_16 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_16 = 0;
|
|
while ( (op2_16 & 0x01) == 0 ) {
|
|
op1_16++;
|
|
op2_16 >>= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_16BIT_REG(i->nnn, op1_16);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BSR_GvEv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BSR_GvEv(): not supported on < 386"));
|
|
#else
|
|
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32;
|
|
|
|
/* op2_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
|
|
}
|
|
|
|
if (op2_32 == 0) {
|
|
set_ZF(1);
|
|
/* op1_32 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_32 = 31;
|
|
while ( (op2_32 & 0x80000000) == 0 ) {
|
|
op1_32--;
|
|
op2_32 <<= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REG(i->nnn, op1_32);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
if (op2_16 == 0) {
|
|
set_ZF(1);
|
|
/* op1_16 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_16 = 15;
|
|
while ( (op2_16 & 0x8000) == 0 ) {
|
|
op1_16--;
|
|
op2_16 <<= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_16BIT_REG(i->nnn, op1_16);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::BSWAP_EAX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u eax, b0, b1, b2, b3;
|
|
|
|
eax = EAX;
|
|
b0 = eax & 0xff; eax >>= 8;
|
|
b1 = eax & 0xff; eax >>= 8;
|
|
b2 = eax & 0xff; eax >>= 8;
|
|
b3 = eax;
|
|
|
|
EAX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EAX: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BSWAP_ECX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u ecx, b0, b1, b2, b3;
|
|
|
|
ecx = ECX;
|
|
b0 = ecx & 0xff; ecx >>= 8;
|
|
b1 = ecx & 0xff; ecx >>= 8;
|
|
b2 = ecx & 0xff; ecx >>= 8;
|
|
b3 = ecx;
|
|
|
|
ECX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_ECX: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EDX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u edx, b0, b1, b2, b3;
|
|
|
|
edx = EDX;
|
|
b0 = edx & 0xff; edx >>= 8;
|
|
b1 = edx & 0xff; edx >>= 8;
|
|
b2 = edx & 0xff; edx >>= 8;
|
|
b3 = edx;
|
|
|
|
EDX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EDX: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EBX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u ebx, b0, b1, b2, b3;
|
|
|
|
ebx = EBX;
|
|
b0 = ebx & 0xff; ebx >>= 8;
|
|
b1 = ebx & 0xff; ebx >>= 8;
|
|
b2 = ebx & 0xff; ebx >>= 8;
|
|
b3 = ebx;
|
|
|
|
EBX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EBX: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_ESP(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u esp, b0, b1, b2, b3;
|
|
|
|
esp = ESP;
|
|
b0 = esp & 0xff; esp >>= 8;
|
|
b1 = esp & 0xff; esp >>= 8;
|
|
b2 = esp & 0xff; esp >>= 8;
|
|
b3 = esp;
|
|
|
|
ESP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_ESP: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EBP(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u ebp, b0, b1, b2, b3;
|
|
|
|
ebp = EBP;
|
|
b0 = ebp & 0xff; ebp >>= 8;
|
|
b1 = ebp & 0xff; ebp >>= 8;
|
|
b2 = ebp & 0xff; ebp >>= 8;
|
|
b3 = ebp;
|
|
|
|
EBP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EBP: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_ESI(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u esi, b0, b1, b2, b3;
|
|
|
|
esi = ESI;
|
|
b0 = esi & 0xff; esi >>= 8;
|
|
b1 = esi & 0xff; esi >>= 8;
|
|
b2 = esi & 0xff; esi >>= 8;
|
|
b3 = esi;
|
|
|
|
ESI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_ESI: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EDI(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u edi, b0, b1, b2, b3;
|
|
|
|
edi = EDI;
|
|
b0 = edi & 0xff; edi >>= 8;
|
|
b1 = edi & 0xff; edi >>= 8;
|
|
b2 = edi & 0xff; edi >>= 8;
|
|
b3 = edi;
|
|
|
|
EDI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EDI: not implemented CPU <= 3"));
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::BT_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BT_EvGv: not available on <386"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_32 is a register, op2_addr is an index of a register */
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
return;
|
|
}
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
|
|
set_CF((op1_32 >> index) & 0x01);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
return;
|
|
}
|
|
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, op1_addr, &op1_16);
|
|
|
|
set_CF((op1_16 >> index) & 0x01);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTS_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTS_EvGv: not available on <386"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, bit_i, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_32 is a register, op2_addr is an index of a register */
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
op1_32 |= (((Bit32u) 1) << op2_32);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
return;
|
|
}
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
|
|
bit_i = (op1_32 >> index) & 0x01;
|
|
op1_32 |= (((Bit32u) 1) << index);
|
|
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(bit_i);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, bit_i, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
op1_16 |= (((Bit16u) 1) << op2_16);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
return;
|
|
}
|
|
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
|
|
|
|
bit_i = (op1_16 >> index) & 0x01;
|
|
op1_16 |= (((Bit16u) 1) << index);
|
|
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(bit_i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTR_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTR_EvGv: not available on <386"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, index, temp_cf;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_32 is a register, op2_addr is an index of a register */
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
op1_32 &= ~(((Bit32u) 1) << op2_32);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
return;
|
|
}
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
|
|
temp_cf = (op1_32 >> index) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << index);
|
|
|
|
/* now write back to destination */
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(temp_cf);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, index, temp_cf;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
op1_16 &= ~(((Bit16u) 1) << op2_16);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
return;
|
|
}
|
|
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
|
|
|
|
temp_cf = (op1_16 >> index) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << index);
|
|
|
|
/* now write back to destination */
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(temp_cf);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTC_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTC_EvGv: not available on <386"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, index_32, temp_CF;
|
|
Bit32s displacement32;
|
|
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
index_32 = op2_32 & 0x1f;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op1_addr = 0; // keep compiler happy
|
|
}
|
|
else {
|
|
displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> index_32) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << index_32); /* clear out bit */
|
|
op1_32 |= (((Bit32u) !temp_CF) << index_32); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, index_16, temp_CF;
|
|
Bit16s displacement16;
|
|
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
index_16 = op2_16 & 0x0f;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op1_addr = 0; // keep compiler happy
|
|
}
|
|
else {
|
|
displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement16;
|
|
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> index_16) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << index_16); /* clear out bit */
|
|
op1_16 |= (((Bit16u) !temp_CF) << index_16); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BT_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BT_EvIb: not available on <386"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
set_CF((op1_32 >> op2_8) & 0x01);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
set_CF((op1_16 >> op2_8) & 0x01);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTS_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTS_EvIb: not available on <386"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 |= (((Bit32u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 |= (((Bit16u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTC_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTC_EvIb: not available on <386"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
|
|
op1_32 &= ~(((Bit32u) 1) << op2_8); /* clear out bit */
|
|
op1_32 |= (((Bit32u) !temp_CF) << op2_8); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << op2_8); /* clear out bit */
|
|
op1_16 |= (((Bit16u) !temp_CF) << op2_8); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTR_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTR_EvIb: not available on <386"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|