Bochs/bochs/cpu/protect_ctrl.cc
Stanislav Shwartsman 0eab037907 dynamically allocate VMCB_CACHE only if SVM is actually enabled by CPU model
also reduces include dependency on svm.h
2024-01-12 00:56:09 +02:00

1040 lines
29 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2018 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_SVM
#include "svm.h"
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ARPL_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16;
if (! protected_mode()) {
BX_DEBUG(("ARPL: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->dst());
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), eaddr);
}
op2_16 = BX_READ_16BIT_REG(i->src());
if ((op1_16 & 0x03) < (op2_16 & 0x03)) {
op1_16 = (op1_16 & 0xfffc) | (op2_16 & 0x03);
/* now write back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->dst(), op1_16);
}
else {
write_RMW_linear_word(op1_16);
}
assert_ZF();
}
else {
clear_ZF();
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LAR_GvEw(bxInstruction_c *i)
{
/* for 16 bit operand size mode */
Bit16u raw_selector;
bx_descriptor_t descriptor;
bx_selector_t selector;
Bit32u dword1, dword2;
#if BX_SUPPORT_X86_64
Bit32u dword3 = 0;
#endif
if (! protected_mode()) {
BX_ERROR(("LAR: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
if (i->modC0()) {
raw_selector = BX_READ_16BIT_REG(i->src());
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
raw_selector = read_virtual_word(i->seg(), eaddr);
}
/* if selector null, clear ZF and done */
if ((raw_selector & 0xfffc) == 0) {
clear_ZF();
BX_NEXT_INSTR(i);
}
parse_selector(raw_selector, &selector);
if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
BX_DEBUG(("LAR: failed to fetch descriptor"));
clear_ZF();
BX_NEXT_INSTR(i);
}
parse_descriptor(dword1, dword2, &descriptor);
if (descriptor.valid==0) {
BX_DEBUG(("LAR: descriptor not valid"));
clear_ZF();
BX_NEXT_INSTR(i);
}
/* if source selector is visible at CPL & RPL,
* within the descriptor table, and of type accepted by LAR instruction,
* then load register with segment limit and set ZF
*/
if (descriptor.segment) { /* normal segment */
if (IS_CODE_SEGMENT(descriptor.type) && IS_CODE_SEGMENT_CONFORMING(descriptor.type)) {
/* ignore DPL for conforming segments */
}
else {
if (descriptor.dpl < CPL || descriptor.dpl < selector.rpl) {
clear_ZF();
BX_NEXT_INSTR(i);
}
}
}
else { /* system or gate segment */
switch (descriptor.type) {
case BX_SYS_SEGMENT_AVAIL_286_TSS:
case BX_SYS_SEGMENT_BUSY_286_TSS:
case BX_286_CALL_GATE:
case BX_TASK_GATE:
if (long_mode()) {
BX_DEBUG(("LAR: descriptor type in not accepted in long mode"));
clear_ZF();
BX_NEXT_INSTR(i);
}
/* fall through */
case BX_SYS_SEGMENT_LDT:
case BX_SYS_SEGMENT_AVAIL_386_TSS:
case BX_SYS_SEGMENT_BUSY_386_TSS:
case BX_386_CALL_GATE:
#if BX_SUPPORT_X86_64
if (long64_mode() || (descriptor.type == BX_386_CALL_GATE && long_mode()) ) {
if (!fetch_raw_descriptor2_64(&selector, &dword1, &dword2, &dword3)) {
BX_ERROR(("LAR: failed to fetch 64-bit descriptor"));
clear_ZF();
BX_NEXT_INSTR(i);
}
}
#endif
break;
default: /* rest not accepted types to LAR */
BX_DEBUG(("LAR: not accepted descriptor type"));
clear_ZF();
BX_NEXT_INSTR(i);
}
if (descriptor.dpl < CPL || descriptor.dpl < selector.rpl) {
clear_ZF();
BX_NEXT_INSTR(i);
}
}
assert_ZF();
if (i->os32L()) {
/* masked by 00FxFF00, where x is undefined */
BX_WRITE_32BIT_REGZ(i->dst(), dword2 & 0x00ffff00);
}
else {
BX_WRITE_16BIT_REG(i->dst(), dword2 & 0xff00);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LSL_GvEw(bxInstruction_c *i)
{
/* for 16 bit operand size mode */
Bit16u raw_selector;
Bit32u limit32;
bx_selector_t selector;
Bit32u dword1, dword2;
#if BX_SUPPORT_X86_64
Bit32u dword3 = 0;
#endif
if (! protected_mode()) {
BX_ERROR(("LSL: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
if (i->modC0()) {
raw_selector = BX_READ_16BIT_REG(i->src());
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
raw_selector = read_virtual_word(i->seg(), eaddr);
}
/* if selector null, clear ZF and done */
if ((raw_selector & 0xfffc) == 0) {
clear_ZF();
BX_NEXT_INSTR(i);
}
parse_selector(raw_selector, &selector);
if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
BX_DEBUG(("LSL: failed to fetch descriptor"));
clear_ZF();
BX_NEXT_INSTR(i);
}
Bit32u descriptor_dpl = (dword2 >> 13) & 0x03;
if ((dword2 & 0x00001000) == 0) { // system segment
Bit32u type = (dword2 >> 8) & 0x0000000f;
switch (type) {
case BX_SYS_SEGMENT_AVAIL_286_TSS:
case BX_SYS_SEGMENT_BUSY_286_TSS:
if (long_mode()) {
clear_ZF();
BX_NEXT_INSTR(i);
}
/* fall through */
case BX_SYS_SEGMENT_LDT:
case BX_SYS_SEGMENT_AVAIL_386_TSS:
case BX_SYS_SEGMENT_BUSY_386_TSS:
#if BX_SUPPORT_X86_64
if (long64_mode()) {
if (!fetch_raw_descriptor2_64(&selector, &dword1, &dword2, &dword3)) {
BX_ERROR(("LSL: failed to fetch 64-bit descriptor"));
clear_ZF();
BX_NEXT_INSTR(i);
}
}
#endif
if (descriptor_dpl < CPL || descriptor_dpl < selector.rpl) {
clear_ZF();
BX_NEXT_INSTR(i);
}
limit32 = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000);
if (dword2 & 0x00800000)
limit32 = (limit32 << 12) | 0x00000fff;
break;
default: /* rest not accepted types to LSL */
clear_ZF();
BX_NEXT_INSTR(i);
}
}
else { // data & code segment
limit32 = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000);
if (dword2 & 0x00800000)
limit32 = (limit32 << 12) | 0x00000fff;
if ((dword2 & 0x00000c00) != 0x00000c00) {
// non-conforming code segment
if (descriptor_dpl < CPL || descriptor_dpl < selector.rpl) {
clear_ZF();
BX_NEXT_INSTR(i);
}
}
}
/* all checks pass, limit32 is now byte granular, write to op1 */
assert_ZF();
if (i->os32L()) {
BX_WRITE_32BIT_REGZ(i->dst(), limit32);
}
else {
// chop off upper 16 bits
BX_WRITE_16BIT_REG(i->dst(), (Bit16u) limit32);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SLDT_Ew(bxInstruction_c *i)
{
if (! protected_mode()) {
BX_ERROR(("SLDT: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
#if BX_CPU_LEVEL >= 5
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("SLDT: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
#endif
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_READ);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_LDTR_READ)) Svm_Vmexit(SVM_VMEXIT_LDTR_READ);
}
#endif
Bit16u val16 = BX_CPU_THIS_PTR ldtr.selector.value;
if (i->modC0()) {
if (i->os32L()) {
BX_WRITE_32BIT_REGZ(i->dst(), val16);
}
else {
BX_WRITE_16BIT_REG(i->dst(), val16);
}
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
write_virtual_word(i->seg(), eaddr, val16);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STR_Ew(bxInstruction_c *i)
{
if (! protected_mode()) {
BX_ERROR(("STR: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
#if BX_CPU_LEVEL >= 5
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("STR: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
#endif
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_READ);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_TR_READ)) Svm_Vmexit(SVM_VMEXIT_TR_READ);
}
#endif
Bit16u val16 = BX_CPU_THIS_PTR tr.selector.value;
if (i->modC0()) {
if (i->os32L()) {
BX_WRITE_32BIT_REGZ(i->dst(), val16);
}
else {
BX_WRITE_16BIT_REG(i->dst(), val16);
}
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
write_virtual_word(i->seg(), eaddr, val16);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LLDT_Ew(bxInstruction_c *i)
{
/* protected mode */
bx_descriptor_t descriptor;
bx_selector_t selector;
Bit16u raw_selector;
Bit32u dword1, dword2;
#if BX_SUPPORT_X86_64
Bit32u dword3 = 0;
#endif
if (! protected_mode()) {
BX_ERROR(("LLDT: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL != 0) {
BX_ERROR(("LLDT: The current priveledge level is not 0"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_WRITE);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_LDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_LDTR_WRITE);
}
#endif
if (i->modC0()) {
raw_selector = BX_READ_16BIT_REG(i->src());
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
raw_selector = read_virtual_word(i->seg(), eaddr);
}
/* if selector is NULL, invalidate and done */
if ((raw_selector & 0xfffc) == 0) {
BX_CPU_THIS_PTR ldtr.selector.value = raw_selector;
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
BX_NEXT_INSTR(i);
}
/* parse fields in selector */
parse_selector(raw_selector, &selector);
// #GP(selector) if the selector operand does not point into GDT
if (selector.ti != 0) {
BX_ERROR(("LLDT: selector.ti != 0"));
exception(BX_GP_EXCEPTION, raw_selector & 0xfffc);
}
/* fetch descriptor; call handles out of limits checks */
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
fetch_raw_descriptor_64(&selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION);
}
else
#endif
{
fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION);
}
parse_descriptor(dword1, dword2, &descriptor);
/* if selector doesn't point to an LDT descriptor #GP(selector) */
if (descriptor.valid == 0 || descriptor.segment ||
descriptor.type != BX_SYS_SEGMENT_LDT)
{
BX_ERROR(("LLDT: doesn't point to an LDT descriptor!"));
exception(BX_GP_EXCEPTION, raw_selector & 0xfffc);
}
/* #NP(selector) if LDT descriptor is not present */
if (! IS_PRESENT(descriptor)) {
BX_ERROR(("LLDT: LDT descriptor not present!"));
exception(BX_NP_EXCEPTION, raw_selector & 0xfffc);
}
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
descriptor.u.segment.base |= (Bit64u(dword3) << 32);
BX_DEBUG(("64 bit LDT base = 0x%08x%08x",
GET32H(descriptor.u.segment.base), GET32L(descriptor.u.segment.base)));
if (!IsCanonical(descriptor.u.segment.base)) {
BX_ERROR(("LLDT: non-canonical LDT descriptor base!"));
exception(BX_GP_EXCEPTION, raw_selector & 0xfffc);
}
}
#endif
BX_CPU_THIS_PTR ldtr.selector = selector;
BX_CPU_THIS_PTR ldtr.cache = descriptor;
BX_CPU_THIS_PTR ldtr.cache.valid = SegValidCache;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LTR_Ew(bxInstruction_c *i)
{
bx_descriptor_t descriptor;
bx_selector_t selector;
Bit16u raw_selector;
Bit32u dword1, dword2;
#if BX_SUPPORT_X86_64
Bit32u dword3 = 0;
#endif
if (! protected_mode()) {
BX_ERROR(("LTR: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL != 0) {
BX_ERROR(("LTR: The current priveledge level is not 0"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_WRITE);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_TR_WRITE)) Svm_Vmexit(SVM_VMEXIT_TR_WRITE);
}
#endif
if (i->modC0()) {
raw_selector = BX_READ_16BIT_REG(i->src());
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
raw_selector = read_virtual_word(i->seg(), eaddr);
}
/* if selector is NULL, invalidate and done */
if ((raw_selector & BX_SELECTOR_RPL_MASK) == 0) {
BX_ERROR(("LTR: loading with NULL selector!"));
exception(BX_GP_EXCEPTION, 0);
}
/* parse fields in selector, then check for null selector */
parse_selector(raw_selector, &selector);
if (selector.ti) {
BX_ERROR(("LTR: selector.ti != 0"));
exception(BX_GP_EXCEPTION, raw_selector & 0xfffc);
}
/* fetch descriptor; call handles out of limits checks */
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
fetch_raw_descriptor_64(&selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION);
}
else
#endif
{
fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION);
}
parse_descriptor(dword1, dword2, &descriptor);
/* #GP(selector) if object is not a TSS or is already busy */
if (descriptor.valid==0 || descriptor.segment ||
(descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS &&
descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS))
{
BX_ERROR(("LTR: doesn't point to an available TSS descriptor!"));
exception(BX_GP_EXCEPTION, raw_selector & 0xfffc);
}
#if BX_SUPPORT_X86_64
if (long_mode() && descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS) {
BX_ERROR(("LTR: doesn't point to an available TSS386 descriptor in long mode!"));
exception(BX_GP_EXCEPTION, raw_selector & 0xfffc);
}
#endif
/* #NP(selector) if TSS descriptor is not present */
if (! IS_PRESENT(descriptor)) {
BX_ERROR(("LTR: TSS descriptor not present!"));
exception(BX_NP_EXCEPTION, raw_selector & 0xfffc);
}
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
descriptor.u.segment.base |= (Bit64u(dword3) << 32);
BX_DEBUG(("64 bit TSS base = 0x%08x%08x",
GET32H(descriptor.u.segment.base), GET32L(descriptor.u.segment.base)));
if (!IsCanonical(descriptor.u.segment.base)) {
BX_ERROR(("LTR: non-canonical TSS descriptor base!"));
exception(BX_GP_EXCEPTION, raw_selector & 0xfffc);
}
}
#endif
BX_CPU_THIS_PTR tr.selector = selector;
BX_CPU_THIS_PTR tr.cache = descriptor;
BX_CPU_THIS_PTR tr.cache.valid = SegValidCache;
// tr.cache.type should not have busy bit, or it would not get
// through the conditions above.
BX_ASSERT((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);
BX_CPU_THIS_PTR tr.cache.type |= 2; // mark as busy
/* mark as busy, should be done tomically using RMW */
if (!(dword2 & 0x0200)) {
dword2 |= 0x0200; /* set busy bit */
system_write_dword(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 4, dword2);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::VERR_Ew(bxInstruction_c *i)
{
/* for 16 bit operand size mode */
Bit16u raw_selector;
bx_descriptor_t descriptor;
bx_selector_t selector;
Bit32u dword1, dword2;
if (! protected_mode()) {
BX_ERROR(("VERR: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
if (i->modC0()) {
raw_selector = BX_READ_16BIT_REG(i->src());
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
raw_selector = read_virtual_word(i->seg(), eaddr);
}
/* if selector null, clear ZF and done */
if ((raw_selector & 0xfffc) == 0) {
BX_DEBUG(("VERR: null selector"));
clear_ZF();
BX_NEXT_INSTR(i);
}
/* if source selector is visible at CPL & RPL,
* within the descriptor table, and of type accepted by VERR instruction,
* then load register with segment limit and set ZF */
parse_selector(raw_selector, &selector);
if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
/* not within descriptor table */
BX_DEBUG(("VERR: not within descriptor table"));
clear_ZF();
BX_NEXT_INSTR(i);
}
parse_descriptor(dword1, dword2, &descriptor);
if (descriptor.segment==0) { /* system or gate descriptor */
BX_DEBUG(("VERR: system descriptor"));
clear_ZF(); /* inaccessible */
BX_NEXT_INSTR(i);
}
if (descriptor.valid==0) {
BX_DEBUG(("VERR: valid bit cleared"));
clear_ZF(); /* inaccessible */
BX_NEXT_INSTR(i);
}
/* normal data/code segment */
if (IS_CODE_SEGMENT(descriptor.type)) { /* code segment */
/* ignore DPL for readable conforming segments */
if (IS_CODE_SEGMENT_CONFORMING(descriptor.type) &&
IS_CODE_SEGMENT_READABLE(descriptor.type))
{
BX_DEBUG(("VERR: conforming code, OK"));
assert_ZF(); /* accessible */
BX_NEXT_INSTR(i);
}
if (!IS_CODE_SEGMENT_READABLE(descriptor.type)) {
BX_DEBUG(("VERR: code not readable"));
clear_ZF(); /* inaccessible */
BX_NEXT_INSTR(i);
}
/* readable, non-conforming code segment */
if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
BX_DEBUG(("VERR: non-conforming code not within priv level"));
clear_ZF(); /* inaccessible */
}
else {
assert_ZF(); /* accessible */
}
}
else { /* data segment */
if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
BX_DEBUG(("VERR: data seg not within priv level"));
clear_ZF(); /* not accessible */
}
else {
assert_ZF(); /* accessible */
}
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::VERW_Ew(bxInstruction_c *i)
{
/* for 16 bit operand size mode */
Bit16u raw_selector;
bx_descriptor_t descriptor;
bx_selector_t selector;
Bit32u dword1, dword2;
if (! protected_mode()) {
BX_ERROR(("VERW: not recognized in real or virtual-8086 mode"));
exception(BX_UD_EXCEPTION, 0);
}
if (i->modC0()) {
raw_selector = BX_READ_16BIT_REG(i->src());
}
else {
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
raw_selector = read_virtual_word(i->seg(), eaddr);
}
/* if selector null, clear ZF and done */
if ((raw_selector & 0xfffc) == 0) {
BX_DEBUG(("VERW: null selector"));
clear_ZF();
BX_NEXT_INSTR(i);
}
/* if source selector is visible at CPL & RPL,
* within the descriptor table, and of type accepted by VERW instruction,
* then load register with segment limit and set ZF */
parse_selector(raw_selector, &selector);
if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
/* not within descriptor table */
BX_DEBUG(("VERW: not within descriptor table"));
clear_ZF();
BX_NEXT_INSTR(i);
}
parse_descriptor(dword1, dword2, &descriptor);
/* rule out system segments & code segments */
if (descriptor.segment==0 || IS_CODE_SEGMENT(descriptor.type)) {
BX_DEBUG(("VERW: system seg or code"));
clear_ZF();
BX_NEXT_INSTR(i);
}
if (descriptor.valid==0) {
BX_DEBUG(("VERW: valid bit cleared"));
clear_ZF();
BX_NEXT_INSTR(i);
}
/* data segment */
if (IS_DATA_SEGMENT_WRITEABLE(descriptor.type)) { /* writable */
if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
BX_DEBUG(("VERW: writable data seg not within priv level"));
clear_ZF(); /* not accessible */
}
else {
assert_ZF(); /* accessible */
}
}
else {
BX_DEBUG(("VERW: data seg not writable"));
clear_ZF(); /* not accessible */
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SGDT_Ms(bxInstruction_c *i)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
#if BX_CPU_LEVEL >= 5
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("SGDT: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
#endif
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_READ)) Svm_Vmexit(SVM_VMEXIT_GDTR_READ);
}
#endif
Bit16u limit_16 = BX_CPU_THIS_PTR gdtr.limit;
Bit32u base_32 = (Bit32u) BX_CPU_THIS_PTR gdtr.base;
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
write_virtual_word_32(i->seg(), eaddr, limit_16);
write_virtual_dword_32(i->seg(), (eaddr+2) & i->asize_mask(), base_32);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SIDT_Ms(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("SIDT: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
#endif
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_READ)) Svm_Vmexit(SVM_VMEXIT_IDTR_READ);
}
#endif
Bit16u limit_16 = BX_CPU_THIS_PTR idtr.limit;
Bit32u base_32 = (Bit32u) BX_CPU_THIS_PTR idtr.base;
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
write_virtual_word_32(i->seg(), eaddr, limit_16);
write_virtual_dword_32(i->seg(), (eaddr+2) & i->asize_mask(), base_32);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LGDT_Ms(bxInstruction_c *i)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
// CPL is always 0 is real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("LGDT: CPL != 0 causes #GP"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_GDTR_WRITE);
}
#endif
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
Bit16u limit_16 = read_virtual_word_32(i->seg(), eaddr);
Bit32u base_32 = read_virtual_dword_32(i->seg(), (eaddr + 2) & i->asize_mask());
if (i->os32L() == 0) base_32 &= 0x00ffffff; /* ignore upper 8 bits */
BX_CPU_THIS_PTR gdtr.limit = limit_16;
BX_CPU_THIS_PTR gdtr.base = base_32;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LIDT_Ms(bxInstruction_c *i)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
// CPL is always 0 is real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("LIDT: CPL != 0 causes #GP"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_IDTR_WRITE);
}
#endif
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
Bit16u limit_16 = read_virtual_word_32(i->seg(), eaddr);
Bit32u base_32 = read_virtual_dword_32(i->seg(), (eaddr + 2) & i->asize_mask());
if (i->os32L() == 0) base_32 &= 0x00ffffff; /* ignore upper 8 bits */
BX_CPU_THIS_PTR idtr.limit = limit_16;
BX_CPU_THIS_PTR idtr.base = base_32;
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SGDT64_Ms(bxInstruction_c *i)
{
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("SGDT: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_READ)) Svm_Vmexit(SVM_VMEXIT_GDTR_READ);
}
#endif
Bit16u limit_16 = BX_CPU_THIS_PTR gdtr.limit;
Bit64u base_64 = BX_CPU_THIS_PTR gdtr.base;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
write_linear_word(i->seg(), get_laddr64(i->seg(), eaddr), limit_16);
write_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr+2) & i->asize_mask()), base_64);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SIDT64_Ms(bxInstruction_c *i)
{
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("SIDT: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_READ)) Svm_Vmexit(SVM_VMEXIT_IDTR_READ);
}
#endif
Bit16u limit_16 = BX_CPU_THIS_PTR idtr.limit;
Bit64u base_64 = BX_CPU_THIS_PTR idtr.base;
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
write_linear_word(i->seg(), get_laddr64(i->seg(), eaddr), limit_16);
write_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr+2) & i->asize_mask()), base_64);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LGDT64_Ms(bxInstruction_c *i)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
if (CPL!=0) {
BX_ERROR(("LGDT64_Ms: CPL != 0 in long mode"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_GDTR_WRITE);
}
#endif
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u base_64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr + 2) & i->asize_mask()));
if (! IsCanonical(base_64)) {
BX_ERROR(("LGDT64_Ms: loaded base64 address is not in canonical form!"));
exception(BX_GP_EXCEPTION, 0);
}
Bit16u limit_16 = read_linear_word(i->seg(), get_laddr64(i->seg(), eaddr));
BX_CPU_THIS_PTR gdtr.limit = limit_16;
BX_CPU_THIS_PTR gdtr.base = base_64;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LIDT64_Ms(bxInstruction_c *i)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
if (CPL != 0) {
BX_ERROR(("LIDT64_Ms: CPL != 0 in long mode"));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX >= 2
if (BX_CPU_THIS_PTR in_vmx_guest)
if (SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL2_DESCRIPTOR_TABLE_VMEXIT))
VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_IDTR_WRITE);
}
#endif
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
Bit64u base_64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr + 2) & i->asize_mask()));
if (! IsCanonical(base_64)) {
BX_ERROR(("LIDT64_Ms: loaded base64 address is not in canonical form!"));
exception(BX_GP_EXCEPTION, 0);
}
Bit16u limit_16 = read_linear_word(i->seg(), get_laddr64(i->seg(), eaddr));
BX_CPU_THIS_PTR idtr.limit = limit_16;
BX_CPU_THIS_PTR idtr.base = base_64;
BX_NEXT_INSTR(i);
}
#endif