Bochs/bochs/cpu/tasking.cc
Stanislav Shwartsman 9929e6ed78 - updated FSF address
2009-01-16 18:18:59 +00:00

759 lines
31 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: tasking.cc,v 1.65 2009-01-16 18:18:59 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
// Notes:
// ======
// ======================
// 286 Task State Segment
// ======================
// dynamic item | hex dec offset
// 0 task LDT selector | 2a 42
// 1 DS selector | 28 40
// 1 SS selector | 26 38
// 1 CS selector | 24 36
// 1 ES selector | 22 34
// 1 DI | 20 32
// 1 SI | 1e 30
// 1 BP | 1c 28
// 1 SP | 1a 26
// 1 BX | 18 24
// 1 DX | 16 22
// 1 CX | 14 20
// 1 AX | 12 18
// 1 flag word | 10 16
// 1 IP (entry point) | 0e 14
// 0 SS for CPL 2 | 0c 12
// 0 SP for CPL 2 | 0a 10
// 0 SS for CPL 1 | 08 08
// 0 SP for CPL 1 | 06 06
// 0 SS for CPL 0 | 04 04
// 0 SP for CPL 0 | 02 02
// back link selector to TSS | 00 00
// ======================
// 386 Task State Segment
// ======================
// |31 16|15 0| hex dec
// |I/O Map Base |000000000000000000000|T| 64 100 static
// |0000000000000000| LDT | 60 96 static
// |0000000000000000| GS selector | 5c 92 dynamic
// |0000000000000000| FS selector | 58 88 dynamic
// |0000000000000000| DS selector | 54 84 dynamic
// |0000000000000000| SS selector | 50 80 dynamic
// |0000000000000000| CS selector | 4c 76 dynamic
// |0000000000000000| ES selector | 48 72 dynamic
// | EDI | 44 68 dynamic
// | ESI | 40 64 dynamic
// | EBP | 3c 60 dynamic
// | ESP | 38 56 dynamic
// | EBX | 34 52 dynamic
// | EDX | 30 48 dynamic
// | ECX | 2c 44 dynamic
// | EAX | 28 40 dynamic
// | EFLAGS | 24 36 dynamic
// | EIP (entry point) | 20 32 dynamic
// | CR3 (PDPR) | 1c 28 static
// |000000000000000 | SS for CPL 2 | 18 24 static
// | ESP for CPL 2 | 14 20 static
// |000000000000000 | SS for CPL 1 | 10 16 static
// | ESP for CPL 1 | 0c 12 static
// |000000000000000 | SS for CPL 0 | 08 08 static
// | ESP for CPL 0 | 04 04 static
// |000000000000000 | back link to prev TSS | 00 00 dynamic (updated only when return expected)
// ==================================================
// Effect of task switch on Busy, NT, and Link Fields
// ==================================================
// Field jump call/interrupt iret
// ------------------------------------------------------
// new busy bit Set Set No change
// old busy bit Cleared No change Cleared
// new NT flag No change Set No change
// old NT flag No change No change Cleared
// new link No change old TSS selector No change
// old link No change No change No change
// CR0.TS Set Set Set
// Note: I checked 386, 486, and Pentium, and they all exhibited
// exactly the same behaviour as above. There seems to
// be some misprints in the Intel docs.
void BX_CPU_C::task_switch(bx_selector_t *tss_selector,
bx_descriptor_t *tss_descriptor, unsigned source,
Bit32u dword1, Bit32u dword2)
{
Bit32u obase32; // base address of old TSS
Bit32u nbase32; // base address of new TSS
Bit32u temp32, newCR3;
Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector,
raw_fs_selector, raw_gs_selector, raw_ldt_selector;
Bit16u temp16, trap_word;
bx_selector_t cs_selector, ss_selector, ds_selector, es_selector,
fs_selector, gs_selector, ldt_selector;
bx_descriptor_t cs_descriptor, ss_descriptor, ldt_descriptor;
Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit;
Bit32u newEAX, newECX, newEDX, newEBX;
Bit32u newESP, newEBP, newESI, newEDI;
Bit32u newEFLAGS, newEIP;
BX_DEBUG(("TASKING: ENTER"));
invalidate_prefetch_q();
// Discard any traps and inhibits for new context; traps will
// resume upon return.
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
// STEP 1: The following checks are made before calling task_switch(),
// for JMP & CALL only. These checks are NOT made for exceptions,
// interrupts & IRET.
//
// 1) TSS DPL must be >= CPL
// 2) TSS DPL must be >= TSS selector RPL
// 3) TSS descriptor is not busy.
// TSS must be present, else #NP(TSS selector)
if (tss_descriptor->p==0) {
BX_ERROR(("task_switch: TSS descriptor is not present !"));
exception(BX_NP_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
// STEP 2: The processor performs limit-checking on the target TSS
// to verify that the TSS limit is greater than or equal
// to 67h (2Bh for 16-bit TSS).
// Gather info about old TSS
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
old_TSS_max = 0x29;
}
else {
old_TSS_max = 0x5F;
}
// Gather info about new TSS
if (tss_descriptor->type <= 3) { // {1,3}
new_TSS_max = 0x2B;
}
else { // tss_descriptor->type = {9,11}
new_TSS_max = 0x67;
}
obase32 = (Bit32u) BX_CPU_THIS_PTR tr.cache.u.system.base; // old TSS.base
old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled;
nbase32 = (Bit32u) tss_descriptor->u.system.base; // new TSS.base
new_TSS_limit = tss_descriptor->u.system.limit_scaled;
// TSS must have valid limit, else #TS(TSS selector)
if (tss_selector->ti || tss_descriptor->valid==0 ||
new_TSS_limit < new_TSS_max)
{
BX_ERROR(("task_switch(): new TSS limit < %d", new_TSS_max));
exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
if (old_TSS_limit < old_TSS_max) {
BX_ERROR(("task_switch(): old TSS limit < %d", old_TSS_max));
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
}
if (obase32 == nbase32) {
BX_INFO(("TASK SWITCH: switching to the same TSS !"));
}
// Check that old TSS, new TSS, and all segment descriptors
// used in the task switch are paged in.
if (BX_CPU_THIS_PTR cr0.get_PG())
{
dtranslate_linear(obase32, 0, BX_WRITE); // new TSS
dtranslate_linear(obase32 + old_TSS_max, 0, BX_WRITE);
dtranslate_linear(nbase32, 0, BX_READ); // old TSS
dtranslate_linear(nbase32 + new_TSS_max, 0, BX_READ);
// ??? Humm, we check the new TSS region with READ above,
// but sometimes we need to write the link field in that
// region. We also sometimes update other fields, perhaps
// we need to WRITE check them here also, so that we keep
// the written state consistent (ie, we don't encounter a
// page fault in the middle).
if (source == BX_TASK_FROM_CALL || source == BX_TASK_FROM_INT)
{
dtranslate_linear(nbase32, 0, BX_WRITE);
dtranslate_linear(nbase32 + 2, 0, BX_WRITE);
}
}
// Privilege and busy checks done in CALL, JUMP, INT, IRET
// STEP 3: Save the current task state in the TSS. Up to this point,
// any exception that occurs aborts the task switch without
// changing the processor state.
/* save current machine state in old task's TSS */
Bit32u oldEFLAGS = read_eflags();
/* if moving to busy task, clear NT bit */
if (tss_descriptor->type == BX_SYS_SEGMENT_BUSY_286_TSS ||
tss_descriptor->type == BX_SYS_SEGMENT_BUSY_386_TSS)
{
oldEFLAGS &= ~EFlagsNTMask;
}
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
temp16 = IP; access_write_linear(Bit32u(obase32 + 14), 2, 0, &temp16);
temp16 = oldEFLAGS; access_write_linear(Bit32u(obase32 + 16), 2, 0, &temp16);
temp16 = AX; access_write_linear(Bit32u(obase32 + 18), 2, 0, &temp16);
temp16 = CX; access_write_linear(Bit32u(obase32 + 20), 2, 0, &temp16);
temp16 = DX; access_write_linear(Bit32u(obase32 + 22), 2, 0, &temp16);
temp16 = BX; access_write_linear(Bit32u(obase32 + 24), 2, 0, &temp16);
temp16 = SP; access_write_linear(Bit32u(obase32 + 26), 2, 0, &temp16);
temp16 = BP; access_write_linear(Bit32u(obase32 + 28), 2, 0, &temp16);
temp16 = SI; access_write_linear(Bit32u(obase32 + 30), 2, 0, &temp16);
temp16 = DI; access_write_linear(Bit32u(obase32 + 32), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_write_linear(Bit32u(obase32 + 34), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_write_linear(Bit32u(obase32 + 36), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_write_linear(Bit32u(obase32 + 38), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_write_linear(Bit32u(obase32 + 40), 2, 0, &temp16);
}
else {
temp32 = EIP; access_write_linear(Bit32u(obase32 + 0x20), 4, 0, &temp32);
temp32 = oldEFLAGS; access_write_linear(Bit32u(obase32 + 0x24), 4, 0, &temp32);
temp32 = EAX; access_write_linear(Bit32u(obase32 + 0x28), 4, 0, &temp32);
temp32 = ECX; access_write_linear(Bit32u(obase32 + 0x2c), 4, 0, &temp32);
temp32 = EDX; access_write_linear(Bit32u(obase32 + 0x30), 4, 0, &temp32);
temp32 = EBX; access_write_linear(Bit32u(obase32 + 0x34), 4, 0, &temp32);
temp32 = ESP; access_write_linear(Bit32u(obase32 + 0x38), 4, 0, &temp32);
temp32 = EBP; access_write_linear(Bit32u(obase32 + 0x3c), 4, 0, &temp32);
temp32 = ESI; access_write_linear(Bit32u(obase32 + 0x40), 4, 0, &temp32);
temp32 = EDI; access_write_linear(Bit32u(obase32 + 0x44), 4, 0, &temp32);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_write_linear(Bit32u(obase32 + 0x48), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_write_linear(Bit32u(obase32 + 0x4c), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_write_linear(Bit32u(obase32 + 0x50), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_write_linear(Bit32u(obase32 + 0x54), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
access_write_linear(Bit32u(obase32 + 0x58), 2, 0, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
access_write_linear(Bit32u(obase32 + 0x5c), 2, 0, &temp16);
}
// effect on link field of new task
if (source == BX_TASK_FROM_CALL || source == BX_TASK_FROM_INT)
{
// set to selector of old task's TSS
temp16 = BX_CPU_THIS_PTR tr.selector.value;
access_write_linear(nbase32, 2, 0, &temp16);
}
// STEP 4: The new-task state is loaded from the TSS
if (tss_descriptor->type <= 3) {
newEIP = system_read_word(Bit32u(nbase32 + 14));
newEFLAGS = system_read_word(Bit32u(nbase32 + 16));
// incoming TSS is 16bit:
// - upper word of general registers is set to 0xFFFF
// - upper word of eflags is zero'd
// - FS, GS are zero'd
// - upper word of eIP is zero'd
temp16 = system_read_word(Bit32u(nbase32 + 18));
newEAX = 0xffff0000 | temp16;
temp16 = system_read_word(Bit32u(nbase32 + 20));
newECX = 0xffff0000 | temp16;
temp16 = system_read_word(Bit32u(nbase32 + 22));
newEDX = 0xffff0000 | temp16;
temp16 = system_read_word(Bit32u(nbase32 + 24));
newEBX = 0xffff0000 | temp16;
temp16 = system_read_word(Bit32u(nbase32 + 26));
newESP = 0xffff0000 | temp16;
temp16 = system_read_word(Bit32u(nbase32 + 28));
newEBP = 0xffff0000 | temp16;
temp16 = system_read_word(Bit32u(nbase32 + 30));
newESI = 0xffff0000 | temp16;
temp16 = system_read_word(Bit32u(nbase32 + 32));
newEDI = 0xffff0000 | temp16;
raw_es_selector = system_read_word(Bit32u(nbase32 + 34));
raw_cs_selector = system_read_word(Bit32u(nbase32 + 36));
raw_ss_selector = system_read_word(Bit32u(nbase32 + 38));
raw_ds_selector = system_read_word(Bit32u(nbase32 + 40));
raw_ldt_selector = system_read_word(Bit32u(nbase32 + 42));
raw_fs_selector = 0; // use a NULL selector
raw_gs_selector = 0; // use a NULL selector
// No CR3 change for 286 task switch
newCR3 = 0; // keep compiler happy (not used)
trap_word = 0; // keep compiler happy (not used)
}
else {
if (BX_CPU_THIS_PTR cr0.get_PG())
newCR3 = system_read_dword(Bit32u(nbase32 + 0x1c));
else
newCR3 = 0; // keep compiler happy (not used)
newEIP = system_read_dword(Bit32u(nbase32 + 0x20));
newEFLAGS = system_read_dword(Bit32u(nbase32 + 0x24));
newEAX = system_read_dword(Bit32u(nbase32 + 0x28));
newECX = system_read_dword(Bit32u(nbase32 + 0x2c));
newEDX = system_read_dword(Bit32u(nbase32 + 0x30));
newEBX = system_read_dword(Bit32u(nbase32 + 0x34));
newESP = system_read_dword(Bit32u(nbase32 + 0x38));
newEBP = system_read_dword(Bit32u(nbase32 + 0x3c));
newESI = system_read_dword(Bit32u(nbase32 + 0x40));
newEDI = system_read_dword(Bit32u(nbase32 + 0x44));
raw_es_selector = system_read_word(Bit32u(nbase32 + 0x48));
raw_cs_selector = system_read_word(Bit32u(nbase32 + 0x4c));
raw_ss_selector = system_read_word(Bit32u(nbase32 + 0x50));
raw_ds_selector = system_read_word(Bit32u(nbase32 + 0x54));
raw_fs_selector = system_read_word(Bit32u(nbase32 + 0x58));
raw_gs_selector = system_read_word(Bit32u(nbase32 + 0x5c));
raw_ldt_selector = system_read_word(Bit32u(nbase32 + 0x60));
trap_word = system_read_word(Bit32u(nbase32 + 0x64));
}
// Step 5: If CALL, interrupt, or JMP, set busy flag in new task's
// TSS descriptor. If IRET, leave set.
if (source != BX_TASK_FROM_IRET)
{
// set the new task's busy bit
Bit32u laddr = (Bit32u)(BX_CPU_THIS_PTR gdtr.base) + (tss_selector->index<<3) + 4;
access_read_linear(laddr, 4, 0, BX_READ, &dword2);
dword2 |= 0x200;
access_write_linear(laddr, 4, 0, &dword2);
}
// Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor,
// otherwise leave set.
// effect on Busy bit of old task
if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_IRET) {
// Bit is cleared
Bit32u laddr = (Bit32u) BX_CPU_THIS_PTR gdtr.base + (BX_CPU_THIS_PTR tr.selector.index<<3) + 4;
access_read_linear(laddr, 4, 0, BX_READ, &temp32);
temp32 &= ~0x200;
access_write_linear(laddr, 4, 0, &temp32);
}
//
// Commit point. At this point, we commit to the new
// context. If an unrecoverable error occurs in further
// processing, we complete the task switch without performing
// additional access and segment availablility checks and
// generate the appropriate exception prior to beginning
// execution of the new task.
//
// Step 7: Load the task register with the segment selector and
// descriptor for the new task TSS.
BX_CPU_THIS_PTR tr.selector = *tss_selector;
BX_CPU_THIS_PTR tr.cache = *tss_descriptor;
BX_CPU_THIS_PTR tr.cache.type |= 2; // mark TSS in TR as busy
// Step 8: Set TS flag in the CR0 image stored in the new task TSS.
BX_CPU_THIS_PTR cr0.set_TS(1);
// Task switch clears LE/L3/L2/L1/L0 in DR7
BX_CPU_THIS_PTR dr7 &= ~0x00000155;
// Step 9: If call or interrupt, set the NT flag in the eflags
// image stored in new task's TSS. If IRET or JMP,
// NT is restored from new TSS eflags image. (no change)
// effect on NT flag of new task
if (source == BX_TASK_FROM_CALL || source == BX_TASK_FROM_INT) {
newEFLAGS |= EFlagsNTMask; // NT flag is set
}
// Step 10: Load the new task (dynamic) state from new TSS.
// Any errors associated with loading and qualification of
// segment descriptors in this step occur in the new task's
// context. State loaded here includes LDTR, CR3,
// EFLAGS, EIP, general purpose registers, and segment
// descriptor parts of the segment registers.
BX_CPU_THIS_PTR prev_rip = EIP = newEIP;
EAX = newEAX;
ECX = newECX;
EDX = newEDX;
EBX = newEBX;
ESP = newESP;
EBP = newEBP;
ESI = newESI;
EDI = newEDI;
writeEFlags(newEFLAGS, EFlagsValidMask);
// Fill in selectors for all segment registers. If errors
// occur later, the selectors will at least be loaded.
parse_selector(raw_cs_selector, &cs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector;
parse_selector(raw_ss_selector, &ss_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
parse_selector(raw_ds_selector, &ds_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector;
parse_selector(raw_es_selector, &es_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector;
parse_selector(raw_fs_selector, &fs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector;
parse_selector(raw_gs_selector, &gs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector;
parse_selector(raw_ldt_selector, &ldt_selector);
BX_CPU_THIS_PTR ldtr.selector = ldt_selector;
// Start out with invalid descriptor caches, fill in with
// values only as they are validated
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
if ((tss_descriptor->type >= 9) && BX_CPU_THIS_PTR cr0.get_PG()) {
// change CR3 only if it actually modified
if (newCR3 != BX_CPU_THIS_PTR cr3) {
SetCR3(newCR3); // Tell paging unit about new cr3 value
BX_DEBUG(("task_switch changing CR3 to 0x" FMT_PHY_ADDRX, newCR3));
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_TASKSWITCH, newCR3);
}
}
// LDTR
if (ldt_selector.ti) {
// LDT selector must be in GDT
BX_INFO(("task_switch(exception after commit point): bad LDT selector TI=1"));
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
}
if ((raw_ldt_selector & 0xfffc) != 0) {
bx_bool good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2);
if (!good) {
BX_ERROR(("task_switch(exception after commit point): bad LDT fetch"));
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
}
parse_descriptor(dword1, dword2, &ldt_descriptor);
// LDT selector of new task is valid, else #TS(new task's LDT)
if (ldt_descriptor.valid==0 ||
ldt_descriptor.type!=BX_SYS_SEGMENT_LDT ||
ldt_descriptor.segment)
{
BX_ERROR(("task_switch(exception after commit point): bad LDT segment"));
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
}
// LDT of new task is present in memory, else #TS(new tasks's LDT)
if (! IS_PRESENT(ldt_descriptor)) {
BX_ERROR(("task_switch(exception after commit point): LDT not present"));
exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
}
// All checks pass, fill in LDTR shadow cache
BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor;
}
else {
// NULL LDT selector is OK, leave cache invalid
}
if (v8086_mode()) {
// load seg regs as 8086 registers
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector);
}
else {
unsigned save_CPL = CPL;
/* set CPL to 3 to force a privilege level change and stack switch if SS
is not properly loaded */
CPL = 3;
// SS
if ((raw_ss_selector & 0xfffc) != 0)
{
bx_bool good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2);
if (!good) {
BX_ERROR(("task_switch(exception after commit point): bad SS fetch"));
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
parse_descriptor(dword1, dword2, &ss_descriptor);
// SS selector must be within its descriptor table limits else #TS(SS)
// SS descriptor AR byte must must indicate writable data segment,
// else #TS(SS)
if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
IS_CODE_SEGMENT(ss_descriptor.type) ||
!IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
{
BX_ERROR(("task_switch(exception after commit point): SS not valid or writeable segment"));
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
//
// Stack segment is present in memory, else #SS(new stack segment)
//
if (! IS_PRESENT(ss_descriptor)) {
BX_ERROR(("task_switch(exception after commit point): SS not present"));
exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
// Stack segment DPL matches CS.RPL, else #TS(new stack segment)
if (ss_descriptor.dpl != cs_selector.rpl) {
BX_ERROR(("task_switch(exception after commit point): SS.rpl != CS.RPL"));
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
// Stack segment DPL matches selector RPL, else #TS(new stack segment)
if (ss_descriptor.dpl != ss_selector.rpl) {
BX_ERROR(("task_switch(exception after commit point): SS.dpl != SS.rpl"));
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = ss_descriptor;
}
else {
// SS selector is valid, else #TS(new stack segment)
BX_ERROR(("task_switch(exception after commit point): SS NULL"));
exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
CPL = save_CPL;
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
&ds_selector, raw_ds_selector, cs_selector.rpl);
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
&es_selector, raw_es_selector, cs_selector.rpl);
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
&fs_selector, raw_fs_selector, cs_selector.rpl);
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
&gs_selector, raw_gs_selector, cs_selector.rpl);
// if new selector is not null then perform following checks:
// index must be within its descriptor table limits else #TS(selector)
// AR byte must indicate data or readable code else #TS(selector)
// if data or non-conforming code then:
// DPL must be >= CPL else #TS(selector)
// DPL must be >= RPL else #TS(selector)
// AR byte must indicate PRESENT else #NP(selector)
// load cache with new segment descriptor and set valid bit
// CS
if ((raw_cs_selector & 0xfffc) != 0) {
bx_bool good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2);
if (!good) {
BX_ERROR(("task_switch(exception after commit point): bad CS fetch"));
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
parse_descriptor(dword1, dword2, &cs_descriptor);
// CS descriptor AR byte must indicate code segment else #TS(CS)
if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
IS_DATA_SEGMENT(cs_descriptor.type))
{
BX_ERROR(("task_switch(exception after commit point): CS not valid executable seg"));
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// if non-conforming then DPL must equal selector RPL else #TS(CS)
if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) &&
cs_descriptor.dpl != cs_selector.rpl)
{
BX_ERROR(("task_switch(exception after commit point): non-conforming: CS.dpl!=CS.RPL"));
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// if conforming then DPL must be <= selector RPL else #TS(CS)
if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) &&
cs_descriptor.dpl > cs_selector.rpl)
{
BX_ERROR(("task_switch(exception after commit point): conforming: CS.dpl>RPL"));
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// Code segment is present in memory, else #NP(new code segment)
if (! IS_PRESENT(cs_descriptor)) {
BX_ERROR(("task_switch(exception after commit point): CS.p==0"));
exception(BX_NP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = cs_descriptor;
}
else {
// If new cs selector is null #TS(CS)
BX_ERROR(("task_switch(exception after commit point): CS NULL"));
exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
updateFetchModeMask();
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
handleAlignmentCheck(); // task switch, CPL was modified
#endif
}
if ((tss_descriptor->type>=9) && (trap_word & 0x1)) {
BX_CPU_THIS_PTR debug_trap |= 0x00008000; // BT flag in DR6
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
BX_INFO(("task_switch: T bit set in new TSS"));
}
//
// Step 14: Begin execution of new task.
//
BX_DEBUG(("TASKING: LEAVE"));
}
void BX_CPU_C::task_switch_load_selector(bx_segment_reg_t *seg,
bx_selector_t *selector, Bit16u raw_selector, Bit8u cs_rpl)
{
bx_descriptor_t descriptor;
Bit32u dword1, dword2;
// NULL selector is OK, will leave cache invalid
if ((raw_selector & 0xfffc) != 0)
{
bx_bool good = fetch_raw_descriptor2(selector, &dword1, &dword2);
if (!good) {
BX_ERROR(("task_switch(%s): bad selector fetch !", strseg(seg)));
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
}
parse_descriptor(dword1, dword2, &descriptor);
/* AR byte must indicate data or readable code segment else #TS(selector) */
if (descriptor.segment==0 || (IS_CODE_SEGMENT(descriptor.type) &&
IS_CODE_SEGMENT_READABLE(descriptor.type) == 0))
{
BX_ERROR(("task_switch(%s): not data or readable code !", strseg(seg)));
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
}
/* If data or non-conforming code, then both the RPL and the CPL
* must be less than or equal to DPL in AR byte else #GP(selector) */
if (IS_DATA_SEGMENT(descriptor.type) ||
IS_CODE_SEGMENT_NON_CONFORMING(descriptor.type))
{
if ((selector->rpl > descriptor.dpl) || (cs_rpl > descriptor.dpl)) {
BX_ERROR(("load_seg_reg(%s): RPL & CPL must be <= DPL", strseg(seg)));
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
}
}
if (! IS_PRESENT(descriptor)) {
BX_ERROR(("task_switch(%s): descriptor not present !", strseg(seg)));
exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0);
}
// All checks pass, fill in shadow cache
seg->cache = descriptor;
}
}
void BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp)
{
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid"));
if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_386_TSS ||
BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_BUSY_386_TSS)
{
// 32-bit TSS
Bit32u TSSstackaddr = 8*pl + 4;
if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled) {
BX_DEBUG(("get_SS_ESP_from_TSS(386): TSSstackaddr > TSS.LIMIT"));
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
}
*ss = system_read_word (BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr + 4);
*esp = system_read_dword(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr);
}
else if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_286_TSS ||
BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_BUSY_286_TSS)
{
// 16-bit TSS
Bit32u TSSstackaddr = 4*pl + 2;
if ((TSSstackaddr+3) > BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled) {
BX_DEBUG(("get_SS_ESP_from_TSS(286): TSSstackaddr > TSS.LIMIT"));
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
}
*ss = system_read_word(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr + 2);
*esp = (Bit32u) system_read_word(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr);
}
else {
BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)",
(unsigned) BX_CPU_THIS_PTR tr.cache.type));
}
}
#if BX_SUPPORT_X86_64
Bit64u BX_CPU_C::get_RSP_from_TSS(unsigned pl)
{
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("get_RSP_from_TSS: TR.cache invalid"));
// 32-bit TSS
Bit32u TSSstackaddr = 8*pl + 4;
if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled) {
BX_DEBUG(("get_RSP_from_TSS(): TSSstackaddr > TSS.LIMIT"));
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
}
Bit64u rsp = system_read_qword(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr);
return rsp;
}
#endif // #if BX_SUPPORT_X86_64