Bochs/bochs/cpu/decoder/instr.h

367 lines
10 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2016 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#ifndef BX_INSTR_H
#define BX_INSTR_H
extern bx_address bx_asize_mask[];
const char *get_bx_opcode_name(Bit16u ia_opcode);
// <TAG-CLASS-INSTRUCTION-START>
class bxInstruction_c {
public:
// Function pointers; a function to resolve the modRM address
// given the current state of the CPU and the instruction data,
// and a function to execute the instruction after resolving
// the memory address (if any).
BxExecutePtr_tR execute1;
union {
BxExecutePtr_tR execute2;
bxInstruction_c *next;
} handlers;
struct {
// 15...0 opcode
Bit16u ia_opcode;
// 7...4 (unused)
// 3...0 ilen (0..15)
Bit8u ilen;
// 7...6 lockUsed, repUsed (0=none, 1=0xF0, 2=0xF2, 3=0xF3)
// 5...5 extend8bit
// 4...4 mod==c0 (modrm)
// 3...3 os64
// 2...2 os32
// 1...1 as64
// 0...0 as32
Bit8u metaInfo1;
} metaInfo;
#define BX_INSTR_METADATA_DST 0
#define BX_INSTR_METADATA_SRC1 1
#define BX_INSTR_METADATA_SRC2 2
#define BX_INSTR_METADATA_SRC3 3
#define BX_INSTR_METADATA_SEG 4
#define BX_INSTR_METADATA_BASE 5
#define BX_INSTR_METADATA_INDEX 6
#define BX_INSTR_METADATA_SCALE 7
// using 5-bit field for registers (16 regs in 64-bit, RIP, NIL)
Bit8u metaData[8];
union {
// Form (longest case): [opcode+modrm+sib/displacement32/immediate32]
struct {
union {
Bit32u Id;
Bit16u Iw[2];
// use Ib[3] as AVX mask register
// use Ib[2] as AVX attributes
// 7..4 (unused)
// 3..3 Broadcast/RC/SAE control (EVEX.b)
// 2..2 Zeroing/Merging mask (EVEX.z)
// 1..0 Round control
// use Ib[1] as AVX VL
Bit8u Ib[4];
};
union {
Bit16u displ16u; // for 16-bit modrm forms
Bit32u displ32u; // for 32-bit modrm forms
Bit32u Id2;
Bit16u Iw2[2];
Bit8u Ib2[4];
};
} modRMForm;
#if BX_SUPPORT_X86_64
struct {
Bit64u Iq; // for MOV Rx,imm64
} IqForm;
#endif
};
#ifdef BX_INSTR_STORE_OPCODE_BYTES
Bit8u opcode_bytes[16];
BX_CPP_INLINE const Bit8u* get_opcode_bytes(void) const {
return opcode_bytes;
}
BX_CPP_INLINE void set_opcode_bytes(const Bit8u *opcode) {
memcpy(opcode_bytes, opcode, ilen());
}
#endif
BX_CPP_INLINE BxExecutePtr_tR execute2(void) const {
return handlers.execute2;
}
BX_CPP_INLINE unsigned seg(void) const {
return metaData[BX_INSTR_METADATA_SEG];
}
BX_CPP_INLINE void setSeg(unsigned val) {
metaData[BX_INSTR_METADATA_SEG] = val;
}
BX_CPP_INLINE void setFoo(unsigned foo) {
// none of x87 instructions has immediate
modRMForm.Iw[0] = foo;
}
BX_CPP_INLINE unsigned foo() const {
return modRMForm.Iw[0];
}
BX_CPP_INLINE unsigned b1() const {
return modRMForm.Iw[0] >> 8;
}
BX_CPP_INLINE void setSibScale(unsigned scale) {
metaData[BX_INSTR_METADATA_SCALE] = scale;
}
BX_CPP_INLINE unsigned sibScale() const {
return metaData[BX_INSTR_METADATA_SCALE];
}
BX_CPP_INLINE void setSibIndex(unsigned index) {
metaData[BX_INSTR_METADATA_INDEX] = index;
}
BX_CPP_INLINE unsigned sibIndex() const {
return metaData[BX_INSTR_METADATA_INDEX];
}
BX_CPP_INLINE void setSibBase(unsigned base) {
metaData[BX_INSTR_METADATA_BASE] = base;
}
BX_CPP_INLINE unsigned sibBase() const {
return metaData[BX_INSTR_METADATA_BASE];
}
BX_CPP_INLINE Bit32s displ32s() const { return (Bit32s) modRMForm.displ32u; }
BX_CPP_INLINE Bit16s displ16s() const { return (Bit16s) modRMForm.displ16u; }
BX_CPP_INLINE Bit32u Id() const { return modRMForm.Id; }
BX_CPP_INLINE Bit16u Iw() const { return modRMForm.Iw[0]; }
BX_CPP_INLINE Bit8u Ib() const { return modRMForm.Ib[0]; }
BX_CPP_INLINE Bit16u Id2() const { return modRMForm.Id2; }
BX_CPP_INLINE Bit16u Iw2() const { return modRMForm.Iw2[0]; }
BX_CPP_INLINE Bit8u Ib2() const { return modRMForm.Ib2[0]; }
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u Iq() const { return IqForm.Iq; }
#endif
// Info in the metaInfo field.
// Note: the 'L' at the end of certain flags, means the value returned
// is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you
// want a bx_bool value, use os32B() etc. This makes for smaller
// code, when a strict 0 or 1 is not necessary.
BX_CPP_INLINE void init(unsigned os32, unsigned as32, unsigned os64, unsigned as64)
{
metaInfo.metaInfo1 = (os32<<2) | (os64<<3) | (as32<<0) | (as64<<1);
}
BX_CPP_INLINE unsigned os32L(void) const {
return metaInfo.metaInfo1 & (1<<2);
}
BX_CPP_INLINE void setOs32B(unsigned bit) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<2)) | (bit<<2);
}
BX_CPP_INLINE void assertOs32(void) {
metaInfo.metaInfo1 |= (1<<2);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned os64L(void) const {
return metaInfo.metaInfo1 & (1<<3);
}
BX_CPP_INLINE void assertOs64(void) {
metaInfo.metaInfo1 |= (1<<3);
}
#else
BX_CPP_INLINE unsigned os64L(void) const { return 0; }
#endif
BX_CPP_INLINE unsigned osize(void) const {
return (metaInfo.metaInfo1 >> 2) & 0x3;
}
BX_CPP_INLINE unsigned as32L(void) const {
return metaInfo.metaInfo1 & 0x1;
}
BX_CPP_INLINE void setAs32B(unsigned bit) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~0x1) | (bit);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned as64L(void) const {
return metaInfo.metaInfo1 & (1<<1);
}
BX_CPP_INLINE void clearAs64(void) {
metaInfo.metaInfo1 &= ~(1<<1);
}
#else
BX_CPP_INLINE unsigned as64L(void) const { return 0; }
#endif
BX_CPP_INLINE unsigned asize(void) const {
return metaInfo.metaInfo1 & 0x3;
}
BX_CPP_INLINE bx_address asize_mask(void) const {
return bx_asize_mask[asize()];
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned extend8bitL(void) const {
return metaInfo.metaInfo1 & (1<<5);
}
BX_CPP_INLINE void assertExtend8bit(void) {
metaInfo.metaInfo1 |= (1<<5);
}
#endif
BX_CPP_INLINE unsigned ilen(void) const {
return metaInfo.ilen;
}
BX_CPP_INLINE void setILen(unsigned ilen) {
metaInfo.ilen = ilen;
}
BX_CPP_INLINE unsigned getIaOpcode(void) const {
return metaInfo.ia_opcode;
}
BX_CPP_INLINE void setIaOpcode(Bit16u op) {
metaInfo.ia_opcode = op;
}
BX_CPP_INLINE const char* getIaOpcodeName(void) const {
return get_bx_opcode_name(getIaOpcode());
}
BX_CPP_INLINE const char* getIaOpcodeNameShort(void) const {
return get_bx_opcode_name(getIaOpcode()) + /*"BX_IA_"*/ 6;
}
BX_CPP_INLINE unsigned repUsedL(void) const {
return metaInfo.metaInfo1 >> 7;
}
BX_CPP_INLINE unsigned lockRepUsedValue(void) const {
return metaInfo.metaInfo1 >> 6;
}
BX_CPP_INLINE void setLockRepUsed(unsigned value) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & 0x3f) | (value << 6);
}
BX_CPP_INLINE unsigned getVL(void) const {
#if BX_SUPPORT_AVX
return modRMForm.Ib[1];
#else
return 0;
#endif
}
BX_CPP_INLINE void setVL(unsigned value) {
modRMForm.Ib[1] = value;
}
#if BX_SUPPORT_EVEX
BX_CPP_INLINE void setOpmask(unsigned reg) {
modRMForm.Ib[3] = reg;
}
BX_CPP_INLINE unsigned opmask(void) const {
return modRMForm.Ib[3];
}
BX_CPP_INLINE void setEvexb(unsigned bit) {
modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<3)) | (bit<<3);
}
BX_CPP_INLINE unsigned getEvexb(void) const {
return modRMForm.Ib[2] & (1 << 3);
}
BX_CPP_INLINE void setZeroMasking(unsigned bit) {
modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<2)) | (bit<<2);
}
BX_CPP_INLINE unsigned isZeroMasking(void) const {
return modRMForm.Ib[2] & (1 << 2);
}
BX_CPP_INLINE void setRC(unsigned rc) {
modRMForm.Ib[2] = (modRMForm.Ib[2] & ~0x3) | rc;
}
BX_CPP_INLINE unsigned getRC(void) const {
return modRMForm.Ib[2] & 0x3;
}
#endif
BX_CPP_INLINE void setSrcReg(unsigned src, unsigned reg) {
metaData[src] = reg;
}
BX_CPP_INLINE unsigned getSrcReg(unsigned src) const {
return metaData[src];
}
BX_CPP_INLINE unsigned dst() const {
return metaData[BX_INSTR_METADATA_DST];
}
BX_CPP_INLINE unsigned src1() const {
return metaData[BX_INSTR_METADATA_SRC1];
}
BX_CPP_INLINE unsigned src2() const {
return metaData[BX_INSTR_METADATA_SRC2];
}
BX_CPP_INLINE unsigned src3() const {
return metaData[BX_INSTR_METADATA_SRC3];
}
BX_CPP_INLINE unsigned src() const { return src1(); }
BX_CPP_INLINE unsigned modC0() const
{
// This is a cheaper way to test for modRM instructions where
// the mod field is 0xc0. FetchDecode flags this condition since
// it is quite common to be tested for.
return metaInfo.metaInfo1 & (1<<4);
}
BX_CPP_INLINE void assertModC0()
{
metaInfo.metaInfo1 |= (1<<4);
}
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS && BX_ENABLE_TRACE_LINKING
BX_CPP_INLINE bxInstruction_c* getNextTrace(Bit32u currTraceLinkTimeStamp) {
if (currTraceLinkTimeStamp > modRMForm.Id2) handlers.next = NULL;
return handlers.next;
}
BX_CPP_INLINE void setNextTrace(bxInstruction_c* iptr, Bit32u traceLinkTimeStamp) {
handlers.next = iptr;
modRMForm.Id2 = traceLinkTimeStamp;
}
#endif
};
// <TAG-CLASS-INSTRUCTION-END>
enum {
#define bx_define_opcode(a, b, c, d, s1, s2, s3, s4, e) a,
#include "ia_opcodes.h"
BX_IA_LAST
};
#undef bx_define_opcode
#endif