0730ff4c4a
these are include LOCKed RMW of course and also a lot of others in the future it will be very hard to find all the cases that must be atomic so better to start marking them already now try to mark every RMW case for atomicity requirements no code changes, only comments
262 lines
6.8 KiB
C++
262 lines
6.8 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001-2018 The Bochs Project
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwR(bxInstruction_c *i)
|
|
{
|
|
push_16(BX_READ_16BIT_REG(i->dst()));
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwM(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
Bit16u op1_16 = read_virtual_word(i->seg(), eaddr);
|
|
|
|
push_16(op1_16);
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_Sw(bxInstruction_c *i)
|
|
{
|
|
push_16(BX_CPU_THIS_PTR sregs[i->src()].selector.value);
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_Sw(bxInstruction_c *i)
|
|
{
|
|
RSP_SPECULATIVE;
|
|
|
|
Bit16u selector = pop_16();
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector);
|
|
|
|
RSP_COMMIT;
|
|
|
|
if (i->dst() == BX_SEG_REG_SS) {
|
|
// POP SS inhibits interrupts, debug exceptions and single-step
|
|
// trap exceptions until the execution boundary following the
|
|
// next instruction is reached.
|
|
// Same code as MOV_SwEw()
|
|
inhibit_interrupts(BX_INHIBIT_INTERRUPTS_BY_MOVSS);
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwR(bxInstruction_c *i)
|
|
{
|
|
BX_WRITE_16BIT_REG(i->dst(), pop_16());
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwM(bxInstruction_c *i)
|
|
{
|
|
RSP_SPECULATIVE;
|
|
|
|
Bit16u val16 = pop_16();
|
|
|
|
// Note: there is one little weirdism here. It is possible to use
|
|
// SP in the modrm addressing. If used, the value of SP after the
|
|
// pop is used to calculate the address.
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
write_virtual_word(i->seg(), eaddr, val16);
|
|
|
|
RSP_COMMIT;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Iw(bxInstruction_c *i)
|
|
{
|
|
push_16(i->Iw());
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHA16(bxInstruction_c *i)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
Bit16u temp_SP = SP;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
stack_write_word((Bit32u)(temp_ESP - 2), AX);
|
|
stack_write_word((Bit32u)(temp_ESP - 4), CX);
|
|
stack_write_word((Bit32u)(temp_ESP - 6), DX);
|
|
stack_write_word((Bit32u)(temp_ESP - 8), BX);
|
|
stack_write_word((Bit32u)(temp_ESP - 10), temp_SP);
|
|
stack_write_word((Bit32u)(temp_ESP - 12), BP);
|
|
stack_write_word((Bit32u)(temp_ESP - 14), SI);
|
|
stack_write_word((Bit32u)(temp_ESP - 16), DI);
|
|
ESP -= 16;
|
|
}
|
|
else
|
|
{
|
|
stack_write_word((Bit16u)(temp_SP - 2), AX);
|
|
stack_write_word((Bit16u)(temp_SP - 4), CX);
|
|
stack_write_word((Bit16u)(temp_SP - 6), DX);
|
|
stack_write_word((Bit16u)(temp_SP - 8), BX);
|
|
stack_write_word((Bit16u)(temp_SP - 10), temp_SP);
|
|
stack_write_word((Bit16u)(temp_SP - 12), BP);
|
|
stack_write_word((Bit16u)(temp_SP - 14), SI);
|
|
stack_write_word((Bit16u)(temp_SP - 16), DI);
|
|
SP -= 16;
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPA16(bxInstruction_c *i)
|
|
{
|
|
Bit16u di, si, bp, bx, dx, cx, ax;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
di = stack_read_word((Bit32u)(temp_ESP + 0));
|
|
si = stack_read_word((Bit32u)(temp_ESP + 2));
|
|
bp = stack_read_word((Bit32u)(temp_ESP + 4));
|
|
stack_read_word((Bit32u)(temp_ESP + 6));
|
|
bx = stack_read_word((Bit32u)(temp_ESP + 8));
|
|
dx = stack_read_word((Bit32u)(temp_ESP + 10));
|
|
cx = stack_read_word((Bit32u)(temp_ESP + 12));
|
|
ax = stack_read_word((Bit32u)(temp_ESP + 14));
|
|
ESP += 16;
|
|
}
|
|
else
|
|
{
|
|
Bit16u temp_SP = SP;
|
|
di = stack_read_word((Bit16u)(temp_SP + 0));
|
|
si = stack_read_word((Bit16u)(temp_SP + 2));
|
|
bp = stack_read_word((Bit16u)(temp_SP + 4));
|
|
stack_read_word((Bit16u)(temp_SP + 6));
|
|
bx = stack_read_word((Bit16u)(temp_SP + 8));
|
|
dx = stack_read_word((Bit16u)(temp_SP + 10));
|
|
cx = stack_read_word((Bit16u)(temp_SP + 12));
|
|
ax = stack_read_word((Bit16u)(temp_SP + 14));
|
|
SP += 16;
|
|
}
|
|
|
|
DI = di;
|
|
SI = si;
|
|
BP = bp;
|
|
BX = bx;
|
|
DX = dx;
|
|
CX = cx;
|
|
AX = ax;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER16_IwIb(bxInstruction_c *i)
|
|
{
|
|
Bit16u imm16 = i->Iw();
|
|
Bit8u level = i->Ib2();
|
|
level &= 0x1F;
|
|
|
|
RSP_SPECULATIVE;
|
|
|
|
push_16(BP);
|
|
Bit16u frame_ptr16 = SP;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
Bit32u ebp = EBP; // Use temp copy for case of exception.
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
ebp -= 2;
|
|
Bit16u temp16 = stack_read_word(ebp);
|
|
push_16(temp16);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_16(frame_ptr16);
|
|
}
|
|
|
|
ESP -= imm16;
|
|
|
|
// ENTER finishes with memory write check on the final stack pointer
|
|
// the memory is touched but no write actually occurs
|
|
// emulate it by doing RMW read access from SS:ESP
|
|
read_RMW_virtual_word_32(BX_SEG_REG_SS, ESP); // no lock, should be touch only
|
|
|
|
BP = frame_ptr16;
|
|
}
|
|
else {
|
|
Bit16u bp = BP;
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
bp -= 2;
|
|
Bit16u temp16 = stack_read_word(bp);
|
|
push_16(temp16);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_16(frame_ptr16);
|
|
}
|
|
|
|
SP -= imm16;
|
|
|
|
// ENTER finishes with memory write check on the final stack pointer
|
|
// the memory is touched but no write actually occurs
|
|
// emulate it by doing RMW read access from SS:SP
|
|
read_RMW_virtual_word_32(BX_SEG_REG_SS, SP); // no lock, should be touch only
|
|
}
|
|
|
|
BP = frame_ptr16;
|
|
|
|
RSP_COMMIT;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE16(bxInstruction_c *i)
|
|
{
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
|
|
|
Bit16u value16;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
value16 = stack_read_word(EBP);
|
|
ESP = EBP + 2;
|
|
}
|
|
else {
|
|
value16 = stack_read_word(BP);
|
|
SP = BP + 2;
|
|
}
|
|
|
|
BP = value16;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|