d350c008e2
…16 support) with a lot of my updates, cleanups and extensions for x86 features like denormal and/or undeflow/overflow handling --------- Co-authored-by: Stanislav Shwartsman <sshwarts@users.sourceforge.net>
766 lines
25 KiB
C++
766 lines
25 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2008-2023 Stanislav Shwartsman
|
|
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
// load 8-bit value and place into 8-bit GPR register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Eb(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
TMP8L = read_virtual_byte(i->seg(), eaddr);
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load 16-bit value and place into 16-bit GPR register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ew(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
TMP16 = read_virtual_word(i->seg(), eaddr);
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load 32-bit value and place into 32-bit GPR register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ed(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
TMP32 = read_virtual_dword(i->seg(), eaddr);
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
// load 64-bit value and place into 64-bit GPR register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Eq(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i);
|
|
TMP64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), eaddr));
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
#endif
|
|
|
|
// load 8-bit value and place into low 8-bit of XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wb(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 6
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
Bit8u val_8 = read_virtual_byte(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_BYTE(BX_VECTOR_TMP_REGISTER, val_8);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
#endif
|
|
}
|
|
|
|
// load 16-bit value and place into low 16-bit of XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ww(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 6
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_WORD(BX_VECTOR_TMP_REGISTER, val_16);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
#endif
|
|
}
|
|
|
|
// load 32-bit value and place into low 32-bit of XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wss(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 6
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
#endif
|
|
}
|
|
|
|
// load 64-bit value and place into low 64-bit of XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wsd(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 6
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_EVEX
|
|
// load 16-bit value with mask support and place into low 16-bit of XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Ww(bxInstruction_c *i)
|
|
{
|
|
Bit16u val_16 = 0;
|
|
|
|
if (BX_SCALAR_ELEMENT_MASK(i->opmask())) {
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
val_16 = read_virtual_word(i->seg(), eaddr);
|
|
}
|
|
|
|
BX_WRITE_XMM_REG_LO_WORD(BX_VECTOR_TMP_REGISTER, val_16);
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load 32-bit value with mask support and place into low 32-bit of XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Wss(bxInstruction_c *i)
|
|
{
|
|
Bit32u val_32 = 0;
|
|
|
|
if (BX_SCALAR_ELEMENT_MASK(i->opmask())) {
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
}
|
|
|
|
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load 64-bit value with mask support and place into low 64-bit of XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Wsd(bxInstruction_c *i)
|
|
{
|
|
Bit64u val_64 = 0;
|
|
|
|
if (BX_SCALAR_ELEMENT_MASK(i->opmask())) {
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
}
|
|
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
#endif
|
|
|
|
// load 128-bit value into XMM register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wdq(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 6
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
if (BX_CPU_THIS_PTR mxcsr.get_MM())
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
else
|
|
read_virtual_xmmword_aligned(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
#endif
|
|
}
|
|
|
|
// load 128-bit value into XMM register without checking for alignment
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOADU_Wdq(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 6
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_AVX
|
|
|
|
// load 128-bit/256-bit/512-bit value into AVX register
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Vector(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
#if BX_SUPPORT_EVEX
|
|
if (len == BX_VL512) {
|
|
read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (len == BX_VL256)
|
|
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
else
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load 64-bit/128-bit/256-bit value into AVX register (half of the vector)
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Half_Vector(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
#if BX_SUPPORT_EVEX
|
|
if (len == BX_VL512) {
|
|
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (len == BX_VL256) {
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
}
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load 32-bit/64-bit/128-bit value into AVX register (quarter of the vector)
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Quarter_Vector(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
#if BX_SUPPORT_EVEX
|
|
if (len == BX_VL512) {
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (len == BX_VL256) {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
}
|
|
else {
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
|
|
}
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load 16-bit/32-bit/64-bit value into AVX register (eighth of the vector)
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Eighth_Vector(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
#if BX_SUPPORT_EVEX
|
|
if (len == BX_VL512) {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (len == BX_VL256) {
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
|
|
}
|
|
else {
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_WORD(BX_VECTOR_TMP_REGISTER, val_16);
|
|
}
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
#if BX_SUPPORT_EVEX
|
|
|
|
// load vector of bytes, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_VectorB(bxInstruction_c *i)
|
|
{
|
|
Bit64u opmask = (i->opmask() != 0) ? BX_READ_OPMASK(i->opmask()) : BX_CONST64(0xffffffffffffffff);
|
|
unsigned len = i->getVL();
|
|
if (len != BX_VL512) // avoid accidential zero of the mask, due to Bit64u computation overflow (1 << 64) == 1
|
|
opmask &= CUT_OPMASK_TO(BYTE_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load8(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of words, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_VectorW(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_32BIT_OPMASK(i->opmask()) : 0xffffffff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(WORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of dwords, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_VectorD(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(DWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of qwords, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_VectorQ(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(QWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load64(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load half vector of bytes, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Half_VectorB(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_32BIT_OPMASK(i->opmask()) : 0xffffffff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(WORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load8(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load half vector of words, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Half_VectorW(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(DWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load half vector of dwords, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Half_VectorD(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(QWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load quarter of vector of bytes, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Quarter_VectorB(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(DWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load8(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load quarter of vector of words, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Quarter_VectorW(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(QWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load eighth of vector of bytes, support masked fault suppression, no broadcast
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_Eighth_VectorB(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(QWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
avx_masked_load8(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
#include "simd_int.h"
|
|
|
|
// load vector of words, support broadcast, no fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_VectorW(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
if (i->getEvexb()) {
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
simd_pbroadcastw(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_16, len * 8);
|
|
}
|
|
else {
|
|
if (len == BX_VL512)
|
|
read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER));
|
|
else if (len == BX_VL256)
|
|
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
else
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of dwords, support broadcast, no fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_VectorD(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
if (i->getEvexb()) {
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 4);
|
|
}
|
|
else {
|
|
if (len == BX_VL512)
|
|
read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER));
|
|
else if (len == BX_VL256)
|
|
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
else
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of qwords, support broadcast, no fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_VectorQ(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
if (i->getEvexb()) {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
simd_pbroadcastq(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_64, len * 2);
|
|
}
|
|
else {
|
|
if (len == BX_VL512)
|
|
read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER));
|
|
else if (len == BX_VL256)
|
|
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
else
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of words, support broadcast and masked fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_VectorW(bxInstruction_c *i)
|
|
{
|
|
unsigned len = i->getVL();
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_32BIT_OPMASK(i->opmask()) : 0xffffffff;
|
|
opmask &= CUT_OPMASK_TO(WORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
if (i->getEvexb()) {
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
simd_pbroadcastw(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_16, len * 8);
|
|
}
|
|
else {
|
|
avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of dwords, support broadcast and masked fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_VectorD(bxInstruction_c *i)
|
|
{
|
|
unsigned len = i->getVL();
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff;
|
|
opmask &= CUT_OPMASK_TO(DWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
if (i->getEvexb()) {
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 4);
|
|
}
|
|
else {
|
|
avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load vector of qwords, support broadcast and masked fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_VectorQ(bxInstruction_c *i)
|
|
{
|
|
unsigned len = i->getVL();
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
|
|
opmask &= CUT_OPMASK_TO(QWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
if (i->getEvexb()) {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
simd_pbroadcastq(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_64, len * 2);
|
|
}
|
|
else {
|
|
avx_masked_load64(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load half vector of words, support broadcast, no fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_Half_VectorW(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
if (i->getEvexb()) {
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
simd_pbroadcastw(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_16, len * 4);
|
|
}
|
|
else {
|
|
if (len == BX_VL512) {
|
|
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else if (len == BX_VL256) {
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
}
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load half vector of words, support broadcast and masked fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_Half_VectorW(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(DWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
if (i->getEvexb()) {
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
simd_pbroadcastw(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_16, len * 4);
|
|
}
|
|
else {
|
|
avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load half vector of dwords, support broadcast, no fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_Half_VectorD(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
if (i->getEvexb()) {
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 2);
|
|
}
|
|
else {
|
|
if (len == BX_VL512) {
|
|
read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else if (len == BX_VL256) {
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
}
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load half vector of dwords, support broadcast and masked fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_Half_VectorD(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(QWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
if (i->getEvexb()) {
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 2);
|
|
}
|
|
else {
|
|
avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load quarter of vector of words, support broadcast, no fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_Quarter_VectorW(bxInstruction_c *i)
|
|
{
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
unsigned len = i->getVL();
|
|
|
|
if (i->getEvexb()) {
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
simd_pbroadcastw(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_16, len * 2);
|
|
}
|
|
else {
|
|
if (len == BX_VL512) {
|
|
read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER));
|
|
}
|
|
else if (len == BX_VL256) {
|
|
Bit64u val_64 = read_virtual_qword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64);
|
|
}
|
|
else {
|
|
Bit32u val_32 = read_virtual_dword(i->seg(), eaddr);
|
|
BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32);
|
|
}
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
// load quarter of vector of words, support broadcast and masked fault suppression
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_Quarter_VectorW(bxInstruction_c *i)
|
|
{
|
|
Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff;
|
|
unsigned len = i->getVL();
|
|
opmask &= CUT_OPMASK_TO(QWORD_ELEMENTS(len));
|
|
|
|
if (opmask == 0) {
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics
|
|
return;
|
|
}
|
|
|
|
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
|
|
|
|
if (i->getEvexb()) {
|
|
Bit16u val_16 = read_virtual_word(i->seg(), eaddr);
|
|
simd_pbroadcastw(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_16, len * 2);
|
|
}
|
|
else {
|
|
avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask);
|
|
}
|
|
|
|
BX_CPU_CALL_METHOD(i->execute2(), (i));
|
|
}
|
|
|
|
#endif // BX_SUPPORT_EVEX
|
|
|
|
#endif // BX_SUPPORT_AVX
|