Bochs/bochs/iodev/pit_wrap.cc
2002-10-30 23:54:29 +00:00

666 lines
21 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: pit_wrap.cc,v 1.37 2002-10-30 23:54:29 yakovlev Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//Realtime Algorithm (with gettimeofday)
// HAVE:
// Real number of usec.
// Emulated number of usec.
// WANT:
// Number of ticks to use.
// Number of emulated usec to wait until next try.
//
// ticks=number of ticks needed to match total real usec.
// if(desired ticks > max ticks for elapsed real time)
// ticks = max ticks for elapsed real time.
// if(desired ticks > max ticks for elapsed emulated usec)
// ticks = max ticks for emulated usec.
// next wait ticks = number of ticks until next event.
// next wait real usec = (current ticks + next wait ticks) * usec per ticks
// next wait emulated usec = next wait real usec * emulated usec / real usec
// if(next wait emulated usec < minimum emulated usec for next wait ticks)
// next wait emulated usec = minimum emulated usec for next wait ticks.
// if(next wait emulated usec > max emulated usec wait)
// next wait emulated usec = max emulated usec wait.
//
// How to calculate elapsed real time:
// store an unused time value whenever no ticks are used in a given time.
// add this to the current elapsed time.
// How to calculate elapsed emulated time:
// same as above.
// Above can be done by not updating last_usec and last_sec.
//
// How to calculate emulated usec/real usec:
// Each time there are actual ticks:
// Alpha_product(old emulated usec, emulated usec);
// Alpha_product(old real usec, real usec);
// Divide resulting values.
#include "bochs.h"
#if BX_USE_NEW_PIT
#include "pit_wrap.h"
//Important constant #defines:
#define USEC_PER_SECOND (1000000)
//1.193181MHz Clock
#define TICKS_PER_SECOND (1193181)
//CONFIGURATION #defines:
//MAINLINE Configuration (For realtime PIT):
//How much faster than real time we can go:
#define MAX_MULT (1.25)
//Minimum number of emulated useconds per second.
// Now calculated using BX_MIN_IPS, the minimum number of
// instructions per second.
#if 1
# define MIN_USEC_PER_SECOND (((((Bit64u)USEC_PER_SECOND)*((Bit64u)BX_MIN_IPS))/((Bit64u)(bx_options.Oips->get())))+(Bit64u)1)
#else
# define MIN_USEC_PER_SECOND (150000)
#endif
#if !BX_HAVE_REALTIME_USEC
//These are only used if we don't have a way of getting accurate time.
//How much slower than real time we can go:
# define MIN_MULT (0.9)
//How much farther ahead we can get before we just stop
// and wait for real time to catch up:
# define AHEAD_CEILING ((Bit64u)(TICKS_PER_SECOND*2))
#endif
//DEBUG configuration:
//Debug with printf options.
#define DEBUG_REALTIME_WITH_PRINTF 0
//Use to test execution at multiples of real time.
#define TIME_DIVIDER (1)
#define TIME_MULTIPLIER (1)
#define TIME_HEADSTART (0)
//Set up Logging.
#define LOG_THIS bx_pit.
//A single instance.
bx_pit_c bx_pit;
#if BX_USE_PIT_SMF
#define this (&bx_pit)
#endif
//Workaround for environments where OUT is defined.
#ifdef OUT
# undef OUT
#endif
//Generic MAX and MIN Functions
#define BX_MAX(a,b) ( ((a)>(b))?(a):(b) )
#define BX_MIN(a,b) ( ((a)>(b))?(b):(a) )
//USEC_ALPHA is multiplier for the past.
//USEC_ALPHA_B is 1-USEC_ALPHA, or multiplier for the present.
#define USEC_ALPHA ((double)(.8))
#define USEC_ALPHA_B ((double)(((double)1)-USEC_ALPHA))
#define USEC_ALPHA2 ((double)(.5))
#define USEC_ALPHA2_B ((double)(((double)1)-USEC_ALPHA2))
#define ALPHA_LOWER(old,new) ((Bit64u)((old<new)?((USEC_ALPHA*((double)(old)))+(USEC_ALPHA_B*((double)new))):((USEC_ALPHA2*((double)old))+(USEC_ALPHA2_B*((double)new)))))
//PIT tick to usec conversion functions:
//Direct conversions:
#define REAL_TICKS_TO_USEC(a) ( ((a)*USEC_PER_SECOND)/TICKS_PER_SECOND )
#define REAL_USEC_TO_TICKS(a) ( ((a)*TICKS_PER_SECOND)/USEC_PER_SECOND )
//Conversion between emulated useconds and optionally realtime ticks.
#define TICKS_TO_USEC(a) ((BX_PIT_THIS s.use_realtime)?( ((a)*BX_PIT_THIS s.usec_per_second)/BX_PIT_THIS s.ticks_per_second ):( REAL_TICKS_TO_USEC(a) ))
#define USEC_TO_TICKS(a) ((BX_PIT_THIS s.use_realtime)?( ((a)*BX_PIT_THIS s.ticks_per_second)/BX_PIT_THIS s.usec_per_second ):( REAL_USEC_TO_TICKS(a) ))
bx_pit_c::bx_pit_c( void )
{
put("PIT");
settype(PITLOG);
s.speaker_data_on=0;
/* 8254 PIT (Programmable Interval Timer) */
BX_PIT_THIS s.timer_handle[1] = BX_NULL_TIMER_HANDLE;
BX_PIT_THIS s.timer_handle[2] = BX_NULL_TIMER_HANDLE;
BX_PIT_THIS s.timer_handle[0] = BX_NULL_TIMER_HANDLE;
}
bx_pit_c::~bx_pit_c( void )
{
}
int
bx_pit_c::init( void )
{
bx_devices.register_irq(0, "8254 PIT");
bx_devices.register_io_read_handler(this, read_handler, 0x0040, "8254 PIT");
bx_devices.register_io_read_handler(this, read_handler, 0x0041, "8254 PIT");
bx_devices.register_io_read_handler(this, read_handler, 0x0042, "8254 PIT");
bx_devices.register_io_read_handler(this, read_handler, 0x0043, "8254 PIT");
bx_devices.register_io_read_handler(this, read_handler, 0x0061, "8254 PIT");
bx_devices.register_io_write_handler(this, write_handler, 0x0040, "8254 PIT");
bx_devices.register_io_write_handler(this, write_handler, 0x0041, "8254 PIT");
bx_devices.register_io_write_handler(this, write_handler, 0x0042, "8254 PIT");
bx_devices.register_io_write_handler(this, write_handler, 0x0043, "8254 PIT");
bx_devices.register_io_write_handler(this, write_handler, 0x0061, "8254 PIT");
BX_DEBUG(("pit: starting init"));
BX_PIT_THIS s.speaker_data_on = 0;
BX_PIT_THIS s.refresh_clock_div2 = 0;
BX_PIT_THIS s.use_realtime = bx_options.Orealtime_pit->get ();
BX_PIT_THIS s.timer.init();
if (BX_PIT_THIS s.timer_handle[0] == BX_NULL_TIMER_HANDLE) {
BX_PIT_THIS s.timer_handle[0] = bx_pc_system.register_timer(this, timer_handler, (unsigned) 100 , 1, 1, "pit_wrap");
}
BX_DEBUG(("pit: RESETting timer."));
bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0],
BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
BX_PIT_THIS s.last_usec=bx_pc_system.time_usec();
BX_PIT_THIS s.total_ticks=0;
if (BX_PIT_THIS s.use_realtime) {
BX_PIT_THIS s.usec_per_second=USEC_PER_SECOND;
BX_PIT_THIS s.ticks_per_second=TICKS_PER_SECOND;
BX_PIT_THIS s.total_sec=0;
BX_PIT_THIS s.stored_delta=0;
#if BX_HAVE_REALTIME_USEC
BX_PIT_THIS s.last_time=((bx_get_realtime64_usec()*(Bit64u)TIME_MULTIPLIER/(Bit64u)TIME_DIVIDER))+(Bit64u)TIME_HEADSTART*(Bit64u)USEC_PER_SECOND;
#else
BX_PIT_THIS s.last_time=((time(NULL)*TIME_MULTIPLIER/TIME_DIVIDER)+TIME_HEADSTART)*USEC_PER_SECOND;
BX_PIT_THIS s.max_ticks = AHEAD_CEILING;
#endif
} else {
BX_PIT_THIS s.total_usec=0;
}
BX_DEBUG(("pit: finished init"));
BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%d",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
return(1);
}
void
bx_pit_c::reset(unsigned type)
{
}
void
bx_pit_c::timer_handler(void *this_ptr) {
bx_pit_c * class_ptr = (bx_pit_c *) this_ptr;
class_ptr->handle_timer();
}
void
bx_pit_c::handle_timer() {
Bit64u time_passed = bx_pc_system.time_usec()-BX_PIT_THIS s.last_usec;
Bit32u time_passed32 = time_passed;
BX_DEBUG(("pit: entering timer handler"));
if(time_passed32) {
periodic(time_passed32);
}
BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed;
if(time_passed ||
(BX_PIT_THIS s.last_next_event_time
!= BX_PIT_THIS s.timer.get_next_event_time())
) {
BX_DEBUG(("pit: RESETting timer."));
bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0],
BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
}
BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_pit_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
Bit32u
bx_pit_c::read( Bit32u address, unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
BX_DEBUG(("pit: entering read handler"));
handle_timer();
if (io_len > 1)
BX_PANIC(("pit: io read from port %04x, len=%u", (unsigned) address,
(unsigned) io_len));
if (bx_dbg.pit)
BX_INFO(("pit: io read from port %04x", (unsigned) address));
switch (address) {
case 0x40: /* timer 0 - system ticks */
return(BX_PIT_THIS s.timer.read(0));
break;
case 0x41: /* timer 1 read */
return(BX_PIT_THIS s.timer.read(1));
break;
case 0x42: /* timer 2 read */
return(BX_PIT_THIS s.timer.read(2));
break;
case 0x43: /* timer 1 read */
return(BX_PIT_THIS s.timer.read(3));
break;
case 0x61:
/* AT, port 61h */
BX_PIT_THIS s.refresh_clock_div2 = !BX_PIT_THIS s.refresh_clock_div2;
return( (BX_PIT_THIS s.timer.read_OUT(2)<<5) |
(BX_PIT_THIS s.refresh_clock_div2<<4) |
(BX_PIT_THIS s.speaker_data_on<<1) |
(BX_PIT_THIS s.timer.read_GATE(2)?1:0) );
break;
default:
BX_PANIC(("pit: unsupported io read from port %04x", address));
}
return(0); /* keep compiler happy */
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_pit_c::write_handler(void *this_ptr, Bit32u address, Bit32u dvalue, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
class_ptr->write(address, dvalue, io_len);
}
void
bx_pit_c::write( Bit32u address, Bit32u dvalue,
unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
Bit8u value;
Bit64u time_passed = bx_pc_system.time_usec()-BX_PIT_THIS s.last_usec;
Bit32u time_passed32 = time_passed;
BX_DEBUG(("pit: entering write handler"));
if(time_passed32) {
periodic(time_passed32);
}
BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed;
value = (Bit8u ) dvalue;
if (io_len > 1)
BX_PANIC(("pit: io write to port %04x, len=%u", (unsigned) address,
(unsigned) io_len));
if (bx_dbg.pit)
BX_INFO(("pit: write to port %04x = %02x",
(unsigned) address, (unsigned) value));
switch (address) {
case 0x40: /* timer 0: write count register */
BX_PIT_THIS s.timer.write(0,value);
break;
case 0x41: /* timer 1: write count register */
BX_PIT_THIS s.timer.write( 1,value );
break;
case 0x42: /* timer 2: write count register */
BX_PIT_THIS s.timer.write( 2,value );
break;
case 0x43: /* timer 0-2 mode control */
BX_PIT_THIS s.timer.write( 3,value );
break;
case 0x61:
BX_PIT_THIS s.speaker_data_on = (value >> 1) & 0x01;
/*??? only on AT+ */
BX_PIT_THIS s.timer.set_GATE(2, value & 0x01);
#if BX_CPU_LEVEL < 2
/* ??? XT: */
bx_kbd_port61h_write(value);
#endif
break;
default:
BX_PANIC(("pit: unsupported io write to port %04x = %02x",
(unsigned) address, (unsigned) value));
}
if ((BX_PIT_THIS s.timer.read_OUT(0))==1) {
DEV_pic_raise_irq(0);
} else {
DEV_pic_lower_irq(0);
}
if(time_passed ||
(BX_PIT_THIS s.last_next_event_time
!= BX_PIT_THIS s.timer.get_next_event_time())
) {
BX_DEBUG(("pit: RESETting timer."));
bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0],
BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
}
BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
}
int
bx_pit_c::SaveState( class state_file *fd )
{
fd->write_check ("8254 start");
fd->write (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s));
fd->write_check ("8254 end");
return(0);
}
int
bx_pit_c::LoadState( class state_file *fd )
{
fd->read_check ("8254 start");
fd->read (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s));
fd->read_check ("8254 end");
return(0);
}
#if 0
void
bx_kbd_port61h_write(Bit8u value)
{
// PcError("KBD_PORT61H_WRITE(): not implemented yet");
UNUSED( value );
}
#endif
bx_bool
bx_pit_c::periodic( Bit32u usec_delta )
{
bx_bool prev_timer0_out = BX_PIT_THIS s.timer.read_OUT(0);
bx_bool want_interrupt = 0;
Bit32u ticks_delta = 0;
#ifdef BX_SCHEDULED_DIE_TIME
if (bx_pc_system.time_ticks() > BX_SCHEDULED_DIE_TIME) {
BX_ERROR (("ticks exceeded scheduled die time, quitting"));
BX_EXIT (2);
}
#endif
if (BX_PIT_THIS s.use_realtime) {
#if BX_HAVE_REALTIME_USEC
Bit64u real_time_delta = bx_get_realtime64_usec() - BX_PIT_THIS s.last_time;
Bit64u real_time_total = real_time_delta + BX_PIT_THIS s.total_sec;
Bit64u em_time_delta = (Bit64u)usec_delta + (Bit64u)BX_PIT_THIS s.stored_delta;
BX_PIT_THIS s.ticks_per_second = TICKS_PER_SECOND;
//Start out with the number of ticks we would like
// to have to line up with real time.
ticks_delta = REAL_USEC_TO_TICKS(real_time_total) - BX_PIT_THIS s.total_ticks;
if(REAL_USEC_TO_TICKS(real_time_total) < BX_PIT_THIS s.total_ticks) {
//This slows us down if we're already ahead.
// probably only an issue on startup, but it solves some problems.
ticks_delta = 0;
}
if(ticks_delta > REAL_USEC_TO_TICKS((Bit64u)(MAX_MULT * real_time_delta))) {
//This keeps us from going too fast in relation to real time.
ticks_delta = REAL_USEC_TO_TICKS((Bit64u)(MAX_MULT * real_time_delta));
BX_PIT_THIS s.ticks_per_second = (Bit64u)(MAX_MULT * TICKS_PER_SECOND);
}
if(ticks_delta > em_time_delta * TICKS_PER_SECOND / MIN_USEC_PER_SECOND) {
//This keeps us from having too few instructions between ticks.
ticks_delta = em_time_delta * TICKS_PER_SECOND / MIN_USEC_PER_SECOND;
}
if(ticks_delta > BX_PIT_THIS s.timer.get_next_event_time()) {
//This keeps us from missing ticks.
ticks_delta = BX_PIT_THIS s.timer.get_next_event_time();
}
if(ticks_delta) {
# if DEBUG_REALTIME_WITH_PRINTF
if(((BX_PIT_THIS s.last_time + real_time_delta) / USEC_PER_SECOND) > (BX_PIT_THIS s.last_time / USEC_PER_SECOND)) {
printf("useconds: %lld, expected ticks: %lld, ticks: %lld, diff: %lld\n",
(Bit64u) BX_PIT_THIS s.total_sec,
(Bit64u)REAL_USEC_TO_TICKS(BX_PIT_THIS s.total_sec),
(Bit64u)BX_PIT_THIS s.total_ticks,
(Bit64u)(REAL_USEC_TO_TICKS(BX_PIT_THIS s.total_sec) - BX_PIT_THIS s.total_ticks)
);
}
# endif
BX_PIT_THIS s.last_time += real_time_delta;
BX_PIT_THIS s.total_sec += real_time_delta;
BX_PIT_THIS s.last_sec_usec += em_time_delta;
// BX_PIT_THIS s.total_usec += em_time_delta;
BX_PIT_THIS s.stored_delta = 0;
BX_PIT_THIS s.total_ticks += ticks_delta;
} else {
BX_PIT_THIS s.stored_delta = em_time_delta;
}
Bit64u a,b;
a=(BX_PIT_THIS s.usec_per_second);
b=((Bit64u)USEC_PER_SECOND * em_time_delta / real_time_delta);
BX_PIT_THIS s.usec_per_second = ALPHA_LOWER(a,b);
#else
ticks_delta=(Bit32u)(USEC_TO_TICKS(usec_delta));
if((BX_PIT_THIS s.total_ticks + ticks_delta) < (BX_PIT_THIS s.max_ticks)) {
BX_PIT_THIS s.total_ticks += ticks_delta;
} else {
if(BX_PIT_THIS s.total_ticks >= (BX_PIT_THIS s.max_ticks)) {
ticks_delta = 0;
} else {
ticks_delta = (BX_PIT_THIS s.max_ticks) - BX_PIT_THIS s.total_ticks;
BX_PIT_THIS s.total_ticks += ticks_delta;
}
}
second_update_data();
#endif
} else {
BX_PIT_THIS s.total_usec += usec_delta;
ticks_delta=(Bit32u)((USEC_TO_TICKS((Bit64u)(BX_PIT_THIS s.total_usec)))-BX_PIT_THIS s.total_ticks);
BX_PIT_THIS s.total_ticks += ticks_delta;
while ((BX_PIT_THIS s.total_ticks >= TICKS_PER_SECOND) && (BX_PIT_THIS s.total_usec >= USEC_PER_SECOND)) {
BX_PIT_THIS s.total_ticks -= TICKS_PER_SECOND;
BX_PIT_THIS s.total_usec -= USEC_PER_SECOND;
}
}
while(ticks_delta>0) {
Bit32u maxchange=BX_PIT_THIS s.timer.get_next_event_time();
Bit32u timedelta=maxchange;
if((maxchange==0) || (maxchange>ticks_delta)) {
timedelta=ticks_delta;
}
BX_PIT_THIS s.timer.clock_all(timedelta);
if ( (prev_timer0_out==0) ) {
if ((BX_PIT_THIS s.timer.read_OUT(0))==1) {
DEV_pic_raise_irq(0);
prev_timer0_out=1;
}
} else {
if ((BX_PIT_THIS s.timer.read_OUT(0))==0) {
DEV_pic_lower_irq(0);
prev_timer0_out=0;
}
}
prev_timer0_out=BX_PIT_THIS s.timer.read_OUT(0);
ticks_delta-=timedelta;
}
return(want_interrupt);
}
#if !BX_HAVE_REALTIME_USEC
void
bx_pit_c::second_update_data(void) {
Bit64u timediff;
timediff=((time(NULL)*TIME_MULTIPLIER/TIME_DIVIDER)*USEC_PER_SECOND)-BX_PIT_THIS s.last_time;
BX_PIT_THIS s.last_time += timediff;
if(timediff) {
Bit64s tickstemp;
BX_PIT_THIS s.total_sec += timediff;
BX_PIT_THIS s.max_ticks = BX_MIN( (((BX_PIT_THIS s.total_sec)*(Bit64u)(TICKS_PER_SECOND))/USEC_PER_SECOND) + AHEAD_CEILING , BX_PIT_THIS s.total_ticks + (Bit64u)(TICKS_PER_SECOND*MAX_MULT) );
#if DEBUG_REALTIME_WITH_PRINTF
printf("timediff: %lld, total_sec: %lld, total_ticks: %lld\n",timediff, BX_PIT_THIS s.total_sec, BX_PIT_THIS s.total_ticks);
#endif
tickstemp =
((((BX_PIT_THIS s.total_sec)*TICKS_PER_SECOND)/USEC_PER_SECOND)-BX_PIT_THIS s.total_ticks)
+ TICKS_PER_SECOND;
// while((BX_PIT_THIS s.total_sec >= 0) && (BX_PIT_THIS s.total_ticks >= TICKS_PER_SECOND)) {
// BX_PIT_THIS s.total_sec -= 1;
// BX_PIT_THIS s.total_ticks -= TICKS_PER_SECOND;
// }
if(tickstemp > (TICKS_PER_SECOND*MAX_MULT)) {
#if DEBUG_REALTIME_WITH_PRINTF
if (tickstemp>(2*TICKS_PER_SECOND)) {
printf("Running WAY too slow. tps:%lld\n",tickstemp);
} else {
printf("Running slow. tps:%lld\n",tickstemp);
}
#endif
tickstemp = (Bit64u)(TICKS_PER_SECOND*MAX_MULT);
#if DEBUG_REALTIME_WITH_PRINTF
printf("..................new tps:%lld\n",tickstemp);
#endif
} else if(tickstemp < (TICKS_PER_SECOND*MIN_MULT)) {
#if DEBUG_REALTIME_WITH_PRINTF
if(tickstemp<0) {
printf("Running WAY too fast. tps:%lld\n",tickstemp);
} else {
printf("Running fast. tps:%lld\n",tickstemp);
}
#endif
tickstemp = (Bit64u)(TICKS_PER_SECOND*MIN_MULT);
#if DEBUG_REALTIME_WITH_PRINTF
printf("..................new tps:%lld\n",tickstemp);
#endif
}
BX_PIT_THIS s.ticks_per_second = tickstemp;
// BX_PIT_THIS s.usec_per_second = ALPHA_LOWER(BX_PIT_THIS s.usec_per_second,((bx_pc_system.time_usec()-BX_PIT_THIS s.last_sec_usec)*USEC_PER_SECOND/timediff));
BX_PIT_THIS s.usec_per_second = ((bx_pc_system.time_usec()-BX_PIT_THIS s.last_sec_usec)*USEC_PER_SECOND/timediff);
BX_PIT_THIS s.usec_per_second = BX_MAX(BX_PIT_THIS s.usec_per_second , MIN_USEC_PER_SECOND);
BX_PIT_THIS s.last_sec_usec = bx_pc_system.time_usec();
#if DEBUG_REALTIME_WITH_PRINTF
printf("Parms: ticks_per_second=%lld, usec_per_second=%lld\n",BX_PIT_THIS s.ticks_per_second, BX_PIT_THIS s.usec_per_second);
printf("total_usec: %lld\n", bx_pc_system.time_usec());
#endif
}
}
#endif // #if !BX_HAVE_REALTIME_USEC
#endif // #if BX_USE_NEW_PIT