92568f7525
~10% speedup byu optimization of 32-bit mem access
2286 lines
49 KiB
C++
2286 lines
49 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: string.cc,v 1.61 2008-06-12 19:14:39 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
#if BX_SUPPORT_X86_64==0
|
|
#define RSI ESI
|
|
#define RDI EDI
|
|
#define RAX EAX
|
|
#define RCX ECX
|
|
#endif
|
|
|
|
//
|
|
// Repeat Speedups methods
|
|
//
|
|
|
|
#if BX_SupportRepeatSpeedups
|
|
Bit32u BX_CPU_C::FastRepMOVSB(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff, unsigned dstSeg, bx_address dstOff, Bit32u count)
|
|
{
|
|
Bit32u bytesFitSrc, bytesFitDst;
|
|
signed int pointerDelta;
|
|
bx_address laddrDst, laddrSrc;
|
|
Bit8u *hostAddrSrc, *hostAddrDst;
|
|
|
|
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
|
|
if (!(srcSegPtr->cache.valid & SegAccessROK4G))
|
|
return 0;
|
|
|
|
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
|
|
if (!(dstSegPtr->cache.valid & SegAccessWOK4G))
|
|
return 0;
|
|
|
|
laddrSrc = BX_CPU_THIS_PTR get_laddr(srcSeg, srcOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrSrc = v2h_read_byte(laddrSrc, CPL);
|
|
#else
|
|
bx_phy_address paddrSrc;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrSrc = dtranslate_linear(laddrSrc, CPL, BX_READ);
|
|
}
|
|
else {
|
|
paddrSrc = laddrSrc;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrSrc = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrSrc), BX_READ, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrSrc) return 0;
|
|
|
|
laddrDst = BX_CPU_THIS_PTR get_laddr(dstSeg, dstOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrDst = v2h_write_byte(laddrDst, CPL);
|
|
#else
|
|
bx_phy_address paddrDst;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE);
|
|
}
|
|
else {
|
|
paddrDst = laddrDst;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrDst) return 0;
|
|
|
|
// See how many bytes can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward.
|
|
bytesFitSrc = 1 + PAGE_OFFSET(laddrSrc);
|
|
bytesFitDst = 1 + PAGE_OFFSET(laddrDst);
|
|
pointerDelta = (signed int) -1;
|
|
}
|
|
else {
|
|
// Counting upward.
|
|
bytesFitSrc = 0x1000 - PAGE_OFFSET(laddrSrc);
|
|
bytesFitDst = 0x1000 - PAGE_OFFSET(laddrDst);
|
|
pointerDelta = (signed int) 1;
|
|
}
|
|
|
|
// Restrict word count to the number that will fit in either
|
|
// source or dest pages.
|
|
if (count > bytesFitSrc)
|
|
count = bytesFitSrc;
|
|
if (count > bytesFitDst)
|
|
count = bytesFitDst;
|
|
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
|
|
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (count) {
|
|
// Transfer data directly using host addresses
|
|
for (unsigned j=0; j<count; j++) {
|
|
* (Bit8u *) hostAddrDst = * (Bit8u *) hostAddrSrc;
|
|
hostAddrDst += pointerDelta;
|
|
hostAddrSrc += pointerDelta;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit32u BX_CPU_C::FastRepMOVSW(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff, unsigned dstSeg, bx_address dstOff, Bit32u count)
|
|
{
|
|
Bit32u wordsFitSrc, wordsFitDst;
|
|
signed int pointerDelta;
|
|
bx_address laddrDst, laddrSrc;
|
|
Bit8u *hostAddrSrc, *hostAddrDst;
|
|
|
|
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
|
|
if (!(srcSegPtr->cache.valid & SegAccessROK4G))
|
|
return 0;
|
|
|
|
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
|
|
if (!(dstSegPtr->cache.valid & SegAccessWOK4G))
|
|
return 0;
|
|
|
|
laddrSrc = BX_CPU_THIS_PTR get_laddr(srcSeg, srcOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrSrc = v2h_read_byte(laddrSrc, CPL);
|
|
#else
|
|
bx_phy_address paddrSrc;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrSrc = dtranslate_linear(laddrSrc, CPL, BX_READ);
|
|
}
|
|
else {
|
|
paddrSrc = laddrSrc;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrSrc = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrSrc), BX_READ, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrSrc) return 0;
|
|
|
|
laddrDst = BX_CPU_THIS_PTR get_laddr(dstSeg, dstOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrDst = v2h_write_byte(laddrDst, CPL);
|
|
#else
|
|
bx_phy_address paddrDst;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE);
|
|
}
|
|
else {
|
|
paddrDst = laddrDst;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrDst) return 0;
|
|
|
|
// See how many words can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward.
|
|
// Note: 1st word must not cross page boundary.
|
|
if (((laddrSrc & 0xfff) > 0xffe) || ((laddrDst & 0xfff) > 0xffe))
|
|
return 0;
|
|
wordsFitSrc = (2 + PAGE_OFFSET(laddrSrc)) >> 1;
|
|
wordsFitDst = (2 + PAGE_OFFSET(laddrDst)) >> 1;
|
|
pointerDelta = (signed int) -2;
|
|
}
|
|
else {
|
|
// Counting upward.
|
|
wordsFitSrc = (0x1000 - PAGE_OFFSET(laddrSrc)) >> 1;
|
|
wordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 1;
|
|
pointerDelta = (signed int) 2;
|
|
}
|
|
|
|
// Restrict word count to the number that will fit in either
|
|
// source or dest pages.
|
|
if (count > wordsFitSrc)
|
|
count = wordsFitSrc;
|
|
if (count > wordsFitDst)
|
|
count = wordsFitDst;
|
|
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
|
|
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (count) {
|
|
// Transfer data directly using host addresses
|
|
for (unsigned j=0; j<count; j++) {
|
|
CopyHostWordLittleEndian(hostAddrDst, hostAddrSrc);
|
|
hostAddrDst += pointerDelta;
|
|
hostAddrSrc += pointerDelta;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit32u BX_CPU_C::FastRepMOVSD(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff, unsigned dstSeg, bx_address dstOff, Bit32u count)
|
|
{
|
|
Bit32u dwordsFitSrc, dwordsFitDst;
|
|
signed int pointerDelta;
|
|
bx_address laddrDst, laddrSrc;
|
|
Bit8u *hostAddrSrc, *hostAddrDst;
|
|
|
|
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
|
|
if (!(srcSegPtr->cache.valid & SegAccessROK4G))
|
|
return 0;
|
|
|
|
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
|
|
if (!(dstSegPtr->cache.valid & SegAccessWOK4G))
|
|
return 0;
|
|
|
|
laddrSrc = BX_CPU_THIS_PTR get_laddr(srcSeg, srcOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrSrc = v2h_read_byte(laddrSrc, CPL);
|
|
#else
|
|
bx_phy_address paddrSrc;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrSrc = dtranslate_linear(laddrSrc, CPL, BX_READ);
|
|
}
|
|
else {
|
|
paddrSrc = laddrSrc;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrSrc = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrSrc), BX_READ, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrSrc) return 0;
|
|
|
|
laddrDst = BX_CPU_THIS_PTR get_laddr(dstSeg, dstOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrDst = v2h_write_byte(laddrDst, CPL);
|
|
#else
|
|
bx_phy_address paddrDst;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE);
|
|
}
|
|
else {
|
|
paddrDst = laddrDst;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrDst) return 0;
|
|
|
|
// See how many dwords can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward.
|
|
// Note: 1st dword must not cross page boundary.
|
|
if (((laddrSrc & 0xfff) > 0xffc) || ((laddrDst & 0xfff) > 0xffc))
|
|
return 0;
|
|
dwordsFitSrc = (4 + PAGE_OFFSET(laddrSrc)) >> 2;
|
|
dwordsFitDst = (4 + PAGE_OFFSET(laddrDst)) >> 2;
|
|
pointerDelta = (signed int) -4;
|
|
}
|
|
else {
|
|
// Counting upward.
|
|
dwordsFitSrc = (0x1000 - PAGE_OFFSET(laddrSrc)) >> 2;
|
|
dwordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 2;
|
|
pointerDelta = (signed int) 4;
|
|
}
|
|
|
|
// Restrict dword count to the number that will fit in either
|
|
// source or dest pages.
|
|
if (count > dwordsFitSrc)
|
|
count = dwordsFitSrc;
|
|
if (count > dwordsFitDst)
|
|
count = dwordsFitDst;
|
|
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
|
|
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (count) {
|
|
// Transfer data directly using host addresses
|
|
for (unsigned j=0; j<count; j++) {
|
|
CopyHostDWordLittleEndian(hostAddrDst, hostAddrSrc);
|
|
hostAddrDst += pointerDelta;
|
|
hostAddrSrc += pointerDelta;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit32u BX_CPU_C::FastRepSTOSB(bxInstruction_c *i, unsigned dstSeg, bx_address dstOff, Bit8u val, Bit32u count)
|
|
{
|
|
Bit32u bytesFitDst;
|
|
signed int pointerDelta;
|
|
bx_address laddrDst;
|
|
Bit8u *hostAddrDst;
|
|
|
|
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
|
|
if ((dstSegPtr->cache.valid & SegAccessWOK4G) != SegAccessWOK4G)
|
|
return 0;
|
|
|
|
laddrDst = BX_CPU_THIS_PTR get_laddr(dstSeg, dstOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrDst = v2h_write_byte(laddrDst, CPL);
|
|
#else
|
|
bx_phy_address paddrDst;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE);
|
|
}
|
|
else {
|
|
paddrDst = laddrDst;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrDst) return 0;
|
|
|
|
// See how many bytes can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward.
|
|
bytesFitDst = 1 + PAGE_OFFSET(laddrDst);
|
|
pointerDelta = (signed int) -1;
|
|
}
|
|
else {
|
|
// Counting upward.
|
|
bytesFitDst = 0x1000 - PAGE_OFFSET(laddrDst);
|
|
pointerDelta = (signed int) 1;
|
|
}
|
|
|
|
// Restrict word count to the number that will fit in either
|
|
// source or dest pages.
|
|
if (count > bytesFitDst)
|
|
count = bytesFitDst;
|
|
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
|
|
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (count) {
|
|
// Transfer data directly using host addresses
|
|
for (unsigned j=0; j<count; j++) {
|
|
* (Bit8u *) hostAddrDst = val;
|
|
hostAddrDst += pointerDelta;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit32u BX_CPU_C::FastRepSTOSW(bxInstruction_c *i, unsigned dstSeg, bx_address dstOff, Bit16u val, Bit32u count)
|
|
{
|
|
Bit32u wordsFitDst;
|
|
signed int pointerDelta;
|
|
bx_address laddrDst;
|
|
Bit8u *hostAddrDst;
|
|
|
|
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
|
|
if ((dstSegPtr->cache.valid & SegAccessWOK4G) != SegAccessWOK4G)
|
|
return 0;
|
|
|
|
laddrDst = BX_CPU_THIS_PTR get_laddr(dstSeg, dstOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrDst = v2h_write_byte(laddrDst, CPL);
|
|
#else
|
|
bx_phy_address paddrDst;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE);
|
|
}
|
|
else {
|
|
paddrDst = laddrDst;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrDst) return 0;
|
|
|
|
// See how many words can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward.
|
|
// Note: 1st word must not cross page boundary.
|
|
if ((laddrDst & 0xfff) > 0xffe) return 0;
|
|
wordsFitDst = (2 + PAGE_OFFSET(laddrDst)) >> 1;
|
|
pointerDelta = (signed int) -2;
|
|
}
|
|
else {
|
|
// Counting upward.
|
|
wordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 1;
|
|
pointerDelta = (signed int) 2;
|
|
}
|
|
|
|
// Restrict word count to the number that will fit in either
|
|
// source or dest pages.
|
|
if (count > wordsFitDst)
|
|
count = wordsFitDst;
|
|
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
|
|
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (count) {
|
|
// Transfer data directly using host addresses
|
|
for (unsigned j=0; j<count; j++) {
|
|
WriteHostWordToLittleEndian(hostAddrDst, val);
|
|
hostAddrDst += pointerDelta;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit32u BX_CPU_C::FastRepSTOSD(bxInstruction_c *i, unsigned dstSeg, bx_address dstOff, Bit32u val, Bit32u count)
|
|
{
|
|
Bit32u dwordsFitDst;
|
|
signed int pointerDelta;
|
|
bx_address laddrDst;
|
|
Bit8u *hostAddrDst;
|
|
|
|
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
|
|
if (!(dstSegPtr->cache.valid & SegAccessWOK4G))
|
|
return 0;
|
|
|
|
laddrDst = BX_CPU_THIS_PTR get_laddr(dstSeg, dstOff);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrDst = v2h_write_byte(laddrDst, CPL);
|
|
#else
|
|
bx_phy_address paddrDst;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG()) {
|
|
paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE);
|
|
}
|
|
else {
|
|
paddrDst = laddrDst;
|
|
}
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS);
|
|
#endif
|
|
if (! hostAddrDst) return 0;
|
|
|
|
// See how many dwords can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward.
|
|
// Note: 1st dword must not cross page boundary.
|
|
if ((laddrDst & 0xfff) > 0xffc) return 0;
|
|
dwordsFitDst = (4 + PAGE_OFFSET(laddrDst)) >> 2;
|
|
pointerDelta = (signed int) -4;
|
|
}
|
|
else {
|
|
// Counting upward.
|
|
dwordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 2;
|
|
pointerDelta = (signed int) 4;
|
|
}
|
|
|
|
// Restrict dword count to the number that will fit in either
|
|
// source or dest pages.
|
|
if (count > dwordsFitDst)
|
|
count = dwordsFitDst;
|
|
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
|
|
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (count) {
|
|
// Transfer data directly using host addresses
|
|
for (unsigned j=0; j<count; j++) {
|
|
WriteHostDWordToLittleEndian(hostAddrDst, val);
|
|
hostAddrDst += pointerDelta;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// REP MOVS methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSB_XbYb(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSB64_XbYb);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSB32_XbYb);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSB16_XbYb);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSW_XwYw(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSW64_XwYw);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSW32_XwYw);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSW16_XwYw);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSD_XdYd(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSD64_XdYd);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSD32_XdYd);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSD16_XdYd);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSQ_XqYq(bxInstruction_c *i)
|
|
{
|
|
if (i->as64L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSQ64_XqYq);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSQ32_XqYq);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// MOVSB/MOVSW/MOVSD/MOVSQ methods
|
|
//
|
|
|
|
// 16 bit address size
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSB16_XbYb(bxInstruction_c *i)
|
|
{
|
|
Bit8u temp8;
|
|
|
|
Bit32u incr = 1;
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
/* If conditions are right, we can transfer IO to physical memory
|
|
* in a batch, rather than one instruction at a time */
|
|
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
|
|
{
|
|
Bit32u byteCount = FastRepMOVSB(i, i->seg(), SI, BX_SEG_REG_ES, DI, CX);
|
|
if (byteCount) {
|
|
// Decrement the ticks count by the number of iterations, minus
|
|
// one, since the main cpu loop will decrement one. Also,
|
|
// the count is predecremented before examined, so defintely
|
|
// don't roll it under zero.
|
|
BX_TICKN(byteCount-1);
|
|
|
|
// Decrement eCX. Note, the main loop will decrement 1 also, so
|
|
// decrement by one less than expected, like the case above.
|
|
CX -= (byteCount-1);
|
|
|
|
incr = byteCount;
|
|
}
|
|
else {
|
|
temp8 = read_virtual_byte(i->seg(), SI);
|
|
write_virtual_byte_32(BX_SEG_REG_ES, DI, temp8);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
temp8 = read_virtual_byte_32(i->seg(), SI);
|
|
write_virtual_byte_32(BX_SEG_REG_ES, DI, temp8);
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
/* decrement SI, DI */
|
|
SI -= incr;
|
|
DI -= incr;
|
|
}
|
|
else {
|
|
/* increment SI, DI */
|
|
SI += incr;
|
|
DI += incr;
|
|
}
|
|
}
|
|
|
|
// 32 bit address size
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSB32_XbYb(bxInstruction_c *i)
|
|
{
|
|
Bit8u temp8;
|
|
|
|
Bit32u incr = 1;
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
/* If conditions are right, we can transfer IO to physical memory
|
|
* in a batch, rather than one instruction at a time */
|
|
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
|
|
{
|
|
Bit32u byteCount = FastRepMOVSB(i, i->seg(), ESI, BX_SEG_REG_ES, EDI, ECX);
|
|
if (byteCount) {
|
|
// Decrement the ticks count by the number of iterations, minus
|
|
// one, since the main cpu loop will decrement one. Also,
|
|
// the count is predecremented before examined, so defintely
|
|
// don't roll it under zero.
|
|
BX_TICKN(byteCount-1);
|
|
|
|
// Decrement eCX. Note, the main loop will decrement 1 also, so
|
|
// decrement by one less than expected, like the case above.
|
|
RCX = ECX - (byteCount-1);
|
|
|
|
incr = byteCount;
|
|
}
|
|
else {
|
|
temp8 = read_virtual_byte(i->seg(), ESI);
|
|
write_virtual_byte(BX_SEG_REG_ES, EDI, temp8);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
temp8 = read_virtual_byte(i->seg(), ESI);
|
|
write_virtual_byte(BX_SEG_REG_ES, EDI, temp8);
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
RSI = ESI - incr;
|
|
RDI = EDI - incr;
|
|
}
|
|
else {
|
|
RSI = ESI + incr;
|
|
RDI = EDI + incr;
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
// 64 bit address size
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSB64_XbYb(bxInstruction_c *i)
|
|
{
|
|
Bit8u temp8;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
temp8 = read_virtual_byte_64(i->seg(), rsi);
|
|
write_virtual_byte_64(BX_SEG_REG_ES, rdi, temp8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
/* decrement RSI, RDI */
|
|
rsi--;
|
|
rdi--;
|
|
}
|
|
else {
|
|
/* increment RSI, RDI */
|
|
rsi++;
|
|
rdi++;
|
|
}
|
|
|
|
RSI = rsi;
|
|
RDI = rdi;
|
|
}
|
|
#endif
|
|
|
|
/* 16 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSW16_XwYw(bxInstruction_c *i)
|
|
{
|
|
Bit16u temp16;
|
|
|
|
Bit32u incr = 2;
|
|
|
|
Bit16u si = SI;
|
|
Bit16u di = DI;
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
/* If conditions are right, we can transfer IO to physical memory
|
|
* in a batch, rather than one instruction at a time.
|
|
*/
|
|
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
|
|
{
|
|
Bit32u wordCount = FastRepMOVSW(i, i->seg(), si, BX_SEG_REG_ES, di, CX);
|
|
if (wordCount) {
|
|
// Decrement the ticks count by the number of iterations, minus
|
|
// one, since the main cpu loop will decrement one. Also,
|
|
// the count is predecremented before examined, so defintely
|
|
// don't roll it under zero.
|
|
BX_TICKN(wordCount-1);
|
|
|
|
// Decrement eCX. Note, the main loop will decrement 1 also, so
|
|
// decrement by one less than expected, like the case above.
|
|
CX -= (wordCount-1);
|
|
|
|
incr = wordCount << 1; // count * 2
|
|
}
|
|
else {
|
|
temp16 = read_virtual_word_32(i->seg(), si);
|
|
write_virtual_word_32(BX_SEG_REG_ES, di, temp16);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
temp16 = read_virtual_word_32(i->seg(), si);
|
|
write_virtual_word_32(BX_SEG_REG_ES, di, temp16);
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
/* decrement SI, DI */
|
|
si -= incr;
|
|
di -= incr;
|
|
}
|
|
else {
|
|
/* increment SI, DI */
|
|
si += incr;
|
|
di += incr;
|
|
}
|
|
|
|
SI = si;
|
|
DI = di;
|
|
}
|
|
|
|
/* 16 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSW32_XwYw(bxInstruction_c *i)
|
|
{
|
|
Bit16u temp16;
|
|
|
|
Bit32u esi = ESI;
|
|
Bit32u edi = EDI;
|
|
|
|
temp16 = read_virtual_word(i->seg(), esi);
|
|
write_virtual_word(BX_SEG_REG_ES, edi, temp16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 2;
|
|
edi -= 2;
|
|
}
|
|
else {
|
|
esi += 2;
|
|
edi += 2;
|
|
}
|
|
|
|
// zero extension of RSI/RDI
|
|
RSI = esi;
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 16 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSW64_XwYw(bxInstruction_c *i)
|
|
{
|
|
Bit16u temp16;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
temp16 = read_virtual_word_64(i->seg(), rsi);
|
|
write_virtual_word_64(BX_SEG_REG_ES, rdi, temp16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 2;
|
|
rdi -= 2;
|
|
}
|
|
else {
|
|
rsi += 2;
|
|
rdi += 2;
|
|
}
|
|
|
|
RSI = rsi;
|
|
RDI = rdi;
|
|
}
|
|
#endif
|
|
|
|
/* 32 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD16_XdYd(bxInstruction_c *i)
|
|
{
|
|
Bit32u temp32;
|
|
|
|
Bit16u si = SI;
|
|
Bit16u di = DI;
|
|
|
|
temp32 = read_virtual_dword_32(i->seg(), si);
|
|
write_virtual_dword_32(BX_SEG_REG_ES, di, temp32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
si -= 4;
|
|
di -= 4;
|
|
}
|
|
else {
|
|
si += 4;
|
|
di += 4;
|
|
}
|
|
|
|
SI = si;
|
|
DI = di;
|
|
}
|
|
|
|
/* 32 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD32_XdYd(bxInstruction_c *i)
|
|
{
|
|
Bit32u temp32;
|
|
|
|
Bit32u incr = 4;
|
|
|
|
Bit32u esi = ESI;
|
|
Bit32u edi = EDI;
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
/* If conditions are right, we can transfer IO to physical memory
|
|
* in a batch, rather than one instruction at a time.
|
|
*/
|
|
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
|
|
{
|
|
Bit32u dwordCount = FastRepMOVSD(i, i->seg(), esi, BX_SEG_REG_ES, edi, ECX);
|
|
if (dwordCount) {
|
|
// Decrement the ticks count by the number of iterations, minus
|
|
// one, since the main cpu loop will decrement one. Also,
|
|
// the count is predecremented before examined, so defintely
|
|
// don't roll it under zero.
|
|
BX_TICKN(dwordCount-1);
|
|
|
|
// Decrement eCX. Note, the main loop will decrement 1 also, so
|
|
// decrement by one less than expected, like the case above.
|
|
RCX = ECX - (dwordCount-1);
|
|
|
|
incr = dwordCount << 2; // count * 4
|
|
}
|
|
else {
|
|
temp32 = read_virtual_dword(i->seg(), esi);
|
|
write_virtual_dword(BX_SEG_REG_ES, edi, temp32);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
temp32 = read_virtual_dword(i->seg(), esi);
|
|
write_virtual_dword(BX_SEG_REG_ES, edi, temp32);
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= incr;
|
|
edi -= incr;
|
|
}
|
|
else {
|
|
esi += incr;
|
|
edi += incr;
|
|
}
|
|
|
|
// zero extension of RSI/RDI
|
|
RSI = esi;
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
|
|
/* 32 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD64_XdYd(bxInstruction_c *i)
|
|
{
|
|
Bit32u temp32;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
temp32 = read_virtual_dword_64(i->seg(), rsi);
|
|
write_virtual_dword_64(BX_SEG_REG_ES, rdi, temp32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 4;
|
|
rdi -= 4;
|
|
}
|
|
else {
|
|
rsi += 4;
|
|
rdi += 4;
|
|
}
|
|
|
|
RSI = rsi;
|
|
RDI = rdi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSQ32_XqYq(bxInstruction_c *i)
|
|
{
|
|
Bit64u temp64;
|
|
|
|
Bit32u esi = ESI;
|
|
Bit32u edi = EDI;
|
|
|
|
temp64 = read_virtual_qword_64(i->seg(), esi);
|
|
write_virtual_qword_64(BX_SEG_REG_ES, edi, temp64);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 8;
|
|
edi -= 8;
|
|
}
|
|
else {
|
|
esi += 8;
|
|
edi += 8;
|
|
}
|
|
|
|
// zero extension of RSI/RDI
|
|
RSI = esi;
|
|
RDI = edi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSQ64_XqYq(bxInstruction_c *i)
|
|
{
|
|
Bit64u temp64;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
temp64 = read_virtual_qword_64(i->seg(), rsi);
|
|
write_virtual_qword_64(BX_SEG_REG_ES, rdi, temp64);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 8;
|
|
rdi -= 8;
|
|
}
|
|
else {
|
|
rsi += 8;
|
|
rdi += 8;
|
|
}
|
|
|
|
RSI = rsi;
|
|
RDI = rdi;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// REP CMPS methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSB_XbYb(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSB64_XbYb);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSB32_XbYb);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSB16_XbYb);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSW_XwYw(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSW64_XwYw);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSW32_XwYw);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSW16_XwYw);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSD_XdYd(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSD64_XdYd);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSD32_XdYd);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSD16_XdYd);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSQ_XqYq(bxInstruction_c *i)
|
|
{
|
|
if (i->as64L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSQ64_XqYq);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::CMPSQ32_XqYq);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// CMPSB/CMPSW/CMPSD/CMPSQ methods
|
|
//
|
|
|
|
/* 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSB16_XbYb(bxInstruction_c *i)
|
|
{
|
|
Bit8u op1_8, op2_8, diff_8;
|
|
|
|
Bit16u si = SI;
|
|
Bit16u di = DI;
|
|
|
|
op1_8 = read_virtual_byte_32(i->seg(), si);
|
|
op2_8 = read_virtual_byte_32(BX_SEG_REG_ES, di);
|
|
|
|
diff_8 = op1_8 - op2_8;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
si--;
|
|
di--;
|
|
}
|
|
else {
|
|
si++;
|
|
di++;
|
|
}
|
|
|
|
DI = di;
|
|
SI = si;
|
|
}
|
|
|
|
/* 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSB32_XbYb(bxInstruction_c *i)
|
|
{
|
|
Bit8u op1_8, op2_8, diff_8;
|
|
|
|
Bit32u esi = ESI;
|
|
Bit32u edi = EDI;
|
|
|
|
op1_8 = read_virtual_byte(i->seg(), esi);
|
|
op2_8 = read_virtual_byte(BX_SEG_REG_ES, edi);
|
|
|
|
diff_8 = op1_8 - op2_8;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi--;
|
|
edi--;
|
|
}
|
|
else {
|
|
esi++;
|
|
edi++;
|
|
}
|
|
|
|
// zero extension of RSI/RDI
|
|
RDI = edi;
|
|
RSI = esi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSB64_XbYb(bxInstruction_c *i)
|
|
{
|
|
Bit8u op1_8, op2_8, diff_8;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
op1_8 = read_virtual_byte_64(i->seg(), rsi);
|
|
op2_8 = read_virtual_byte_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_8 = op1_8 - op2_8;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi--;
|
|
rdi--;
|
|
}
|
|
else {
|
|
rsi++;
|
|
rdi++;
|
|
}
|
|
|
|
RDI = rdi;
|
|
RSI = rsi;
|
|
}
|
|
#endif
|
|
|
|
/* 16 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSW16_XwYw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16, diff_16;
|
|
|
|
Bit16u si = SI;
|
|
Bit16u di = DI;
|
|
|
|
op1_16 = read_virtual_word_32(i->seg(), si);
|
|
op2_16 = read_virtual_word_32(BX_SEG_REG_ES, di);
|
|
|
|
diff_16 = op1_16 - op2_16;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
si -= 2;
|
|
di -= 2;
|
|
}
|
|
else {
|
|
si += 2;
|
|
di += 2;
|
|
}
|
|
|
|
DI = di;
|
|
SI = si;
|
|
}
|
|
|
|
/* 16 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSW32_XwYw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16, diff_16;
|
|
|
|
Bit32u esi = ESI;
|
|
Bit32u edi = EDI;
|
|
|
|
op1_16 = read_virtual_word(i->seg(), esi);
|
|
op2_16 = read_virtual_word(BX_SEG_REG_ES, edi);
|
|
|
|
diff_16 = op1_16 - op2_16;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 2;
|
|
edi -= 2;
|
|
}
|
|
else {
|
|
esi += 2;
|
|
edi += 2;
|
|
}
|
|
|
|
// zero extension of RSI/RDI
|
|
RDI = edi;
|
|
RSI = esi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 16 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSW64_XwYw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16, diff_16;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
op1_16 = read_virtual_word_64(i->seg(), rsi);
|
|
op2_16 = read_virtual_word_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_16 = op1_16 - op2_16;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 2;
|
|
rdi -= 2;
|
|
}
|
|
else {
|
|
rsi += 2;
|
|
rdi += 2;
|
|
}
|
|
|
|
RDI = rdi;
|
|
RSI = rsi;
|
|
}
|
|
#endif
|
|
|
|
/* 32 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSD16_XdYd(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32, op2_32, diff_32;
|
|
|
|
Bit16u si = SI;
|
|
Bit16u di = DI;
|
|
|
|
op1_32 = read_virtual_dword_32(i->seg(), si);
|
|
op2_32 = read_virtual_dword_32(BX_SEG_REG_ES, di);
|
|
|
|
diff_32 = op1_32 - op2_32;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
si -= 4;
|
|
di -= 4;
|
|
}
|
|
else {
|
|
si += 4;
|
|
di += 4;
|
|
}
|
|
|
|
DI = di;
|
|
SI = si;
|
|
}
|
|
|
|
/* 32 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSD32_XdYd(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32, op2_32, diff_32;
|
|
|
|
Bit32u esi = ESI;
|
|
Bit32u edi = EDI;
|
|
|
|
op1_32 = read_virtual_dword(i->seg(), esi);
|
|
op2_32 = read_virtual_dword(BX_SEG_REG_ES, edi);
|
|
|
|
diff_32 = op1_32 - op2_32;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 4;
|
|
edi -= 4;
|
|
}
|
|
else {
|
|
esi += 4;
|
|
edi += 4;
|
|
}
|
|
|
|
// zero extension of RSI/RDI
|
|
RDI = edi;
|
|
RSI = esi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
|
|
/* 32 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSD64_XdYd(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32, op2_32, diff_32;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
op1_32 = read_virtual_dword_64(i->seg(), rsi);
|
|
op2_32 = read_virtual_dword_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_32 = op1_32 - op2_32;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 4;
|
|
rdi -= 4;
|
|
}
|
|
else {
|
|
rsi += 4;
|
|
rdi += 4;
|
|
}
|
|
|
|
RDI = rdi;
|
|
RSI = rsi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSQ32_XqYq(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64, op2_64, diff_64;
|
|
|
|
Bit32u esi = ESI;
|
|
Bit32u edi = EDI;
|
|
|
|
op1_64 = read_virtual_qword_64(i->seg(), esi);
|
|
op2_64 = read_virtual_qword_64(BX_SEG_REG_ES, edi);
|
|
|
|
diff_64 = op1_64 - op2_64;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 8;
|
|
edi -= 8;
|
|
}
|
|
else {
|
|
esi += 8;
|
|
edi += 8;
|
|
}
|
|
|
|
// zero extension of RSI/RDI
|
|
RDI = edi;
|
|
RSI = esi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSQ64_XqYq(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64, op2_64, diff_64;
|
|
|
|
Bit64u rsi = RSI;
|
|
Bit64u rdi = RDI;
|
|
|
|
op1_64 = read_virtual_qword_64(i->seg(), rsi);
|
|
op2_64 = read_virtual_qword_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_64 = op1_64 - op2_64;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 8;
|
|
rdi -= 8;
|
|
}
|
|
else {
|
|
rsi += 8;
|
|
rdi += 8;
|
|
}
|
|
|
|
RDI = rdi;
|
|
RSI = rsi;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// REP SCAS methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASB_ALXb(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASB64_ALXb);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASB32_ALXb);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASB16_ALXb);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASW_AXXw(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASW64_AXXw);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASW32_AXXw);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASW16_AXXw);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASD_EAXXd(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASD64_EAXXd);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASD32_EAXXd);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASD16_EAXXd);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASQ_RAXXq(bxInstruction_c *i)
|
|
{
|
|
if (i->as64L()) {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASQ64_RAXXq);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat_ZFL(i, &BX_CPU_C::SCASQ32_RAXXq);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// SCASB/SCASW/SCASD/SCASQ methods
|
|
//
|
|
|
|
/* 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASB16_ALXb(bxInstruction_c *i)
|
|
{
|
|
Bit8u op1_8 = AL, op2_8, diff_8;
|
|
|
|
Bit16u di = DI;
|
|
|
|
op2_8 = read_virtual_byte_32(BX_SEG_REG_ES, di);
|
|
|
|
diff_8 = op1_8 - op2_8;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
di--;
|
|
}
|
|
else {
|
|
di++;
|
|
}
|
|
|
|
DI = di;
|
|
}
|
|
|
|
/* 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASB32_ALXb(bxInstruction_c *i)
|
|
{
|
|
Bit8u op1_8 = AL, op2_8, diff_8;
|
|
|
|
Bit32u edi = EDI;
|
|
|
|
op2_8 = read_virtual_byte(BX_SEG_REG_ES, edi);
|
|
diff_8 = op1_8 - op2_8;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi--;
|
|
}
|
|
else {
|
|
edi++;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASB64_ALXb(bxInstruction_c *i)
|
|
{
|
|
Bit8u op1_8 = AL, op2_8, diff_8;
|
|
|
|
Bit64u rdi = RDI;
|
|
|
|
op2_8 = read_virtual_byte_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_8 = op1_8 - op2_8;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi--;
|
|
}
|
|
else {
|
|
rdi++;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
#endif
|
|
|
|
/* 16 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASW16_AXXw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16 = AX, op2_16, diff_16;
|
|
|
|
Bit16u di = DI;
|
|
|
|
op2_16 = read_virtual_word_32(BX_SEG_REG_ES, di);
|
|
diff_16 = op1_16 - op2_16;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
di -= 2;
|
|
}
|
|
else {
|
|
di += 2;
|
|
}
|
|
|
|
DI = di;
|
|
}
|
|
|
|
/* 16 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASW32_AXXw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16 = AX, op2_16, diff_16;
|
|
|
|
Bit32u edi = EDI;
|
|
|
|
op2_16 = read_virtual_word(BX_SEG_REG_ES, edi);
|
|
diff_16 = op1_16 - op2_16;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi -= 2;
|
|
}
|
|
else {
|
|
edi += 2;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 16 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASW64_AXXw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16 = AX, op2_16, diff_16;
|
|
|
|
Bit64u rdi = RDI;
|
|
|
|
op2_16 = read_virtual_word_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_16 = op1_16 - op2_16;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi -= 2;
|
|
}
|
|
else {
|
|
rdi += 2;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
#endif
|
|
|
|
/* 32 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASD16_EAXXd(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32 = EAX, op2_32, diff_32;
|
|
|
|
Bit16u di = DI;
|
|
|
|
op2_32 = read_virtual_dword_32(BX_SEG_REG_ES, di);
|
|
diff_32 = op1_32 - op2_32;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
di -= 4;
|
|
}
|
|
else {
|
|
di += 4;
|
|
}
|
|
|
|
DI = di;
|
|
}
|
|
|
|
/* 32 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASD32_EAXXd(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32 = EAX, op2_32, diff_32;
|
|
|
|
Bit32u edi = EDI;
|
|
|
|
op2_32 = read_virtual_dword(BX_SEG_REG_ES, edi);
|
|
diff_32 = op1_32 - op2_32;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi -= 4;
|
|
}
|
|
else {
|
|
edi += 4;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
|
|
/* 32 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASD64_EAXXd(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32 = EAX, op2_32, diff_32;
|
|
|
|
Bit64u rdi = RDI;
|
|
|
|
op2_32 = read_virtual_dword_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_32 = op1_32 - op2_32;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi -= 4;
|
|
}
|
|
else {
|
|
rdi += 4;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASQ32_RAXXq(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64 = RAX, op2_64, diff_64;
|
|
|
|
Bit32u edi = EDI;
|
|
|
|
op2_64 = read_virtual_qword_64(BX_SEG_REG_ES, edi);
|
|
|
|
diff_64 = op1_64 - op2_64;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi -= 8;
|
|
}
|
|
else {
|
|
edi += 8;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASQ64_RAXXq(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64 = RAX, op2_64, diff_64;
|
|
|
|
Bit64u rdi = RDI;
|
|
|
|
op2_64 = read_virtual_qword_64(BX_SEG_REG_ES, rdi);
|
|
|
|
diff_64 = op1_64 - op2_64;
|
|
|
|
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi -= 8;
|
|
}
|
|
else {
|
|
rdi += 8;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// REP STOS methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSB_YbAL(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSB64_YbAL);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSB32_YbAL);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSB16_YbAL);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSW_YwAX(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSW64_YwAX);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSW32_YwAX);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSW16_YwAX);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSD_YdEAX(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSD64_YdEAX);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSD32_YdEAX);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSD16_YdEAX);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSQ_YqRAX(bxInstruction_c *i)
|
|
{
|
|
if (i->as64L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSQ64_YqRAX);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSQ32_YqRAX);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// STOSB/STOSW/STOSD/STOSQ methods
|
|
//
|
|
|
|
// 16 bit address size
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSB16_YbAL(bxInstruction_c *i)
|
|
{
|
|
Bit16u di = DI;
|
|
|
|
write_virtual_byte_32(BX_SEG_REG_ES, di, AL);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
di--;
|
|
}
|
|
else {
|
|
di++;
|
|
}
|
|
|
|
DI = di;
|
|
}
|
|
|
|
// 32 bit address size
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSB32_YbAL(bxInstruction_c *i)
|
|
{
|
|
Bit32u incr = 1;
|
|
Bit32u edi = EDI;
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
/* If conditions are right, we can transfer IO to physical memory
|
|
* in a batch, rather than one instruction at a time.
|
|
*/
|
|
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
|
|
{
|
|
Bit32u byteCount = FastRepSTOSB(i, BX_SEG_REG_ES, edi, AL, ECX);
|
|
if (byteCount) {
|
|
// Decrement the ticks count by the number of iterations, minus
|
|
// one, since the main cpu loop will decrement one. Also,
|
|
// the count is predecremented before examined, so defintely
|
|
// don't roll it under zero.
|
|
BX_TICKN(byteCount-1);
|
|
|
|
// Decrement eCX. Note, the main loop will decrement 1 also, so
|
|
// decrement by one less than expected, like the case above.
|
|
RCX = ECX - (byteCount-1);
|
|
|
|
incr = byteCount;
|
|
}
|
|
else {
|
|
write_virtual_byte(BX_SEG_REG_ES, edi, AL);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
write_virtual_byte(BX_SEG_REG_ES, edi, AL);
|
|
}
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi -= incr;
|
|
}
|
|
else {
|
|
edi += incr;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
// 64 bit address size
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSB64_YbAL(bxInstruction_c *i)
|
|
{
|
|
Bit64u rdi = RDI;
|
|
|
|
write_virtual_byte_64(BX_SEG_REG_ES, rdi, AL);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi--;
|
|
}
|
|
else {
|
|
rdi++;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
#endif
|
|
|
|
/* 16 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSW16_YwAX(bxInstruction_c *i)
|
|
{
|
|
Bit16u di = DI;
|
|
|
|
write_virtual_word_32(BX_SEG_REG_ES, di, AX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
di -= 2;
|
|
}
|
|
else {
|
|
di += 2;
|
|
}
|
|
|
|
DI = di;
|
|
}
|
|
|
|
/* 16 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSW32_YwAX(bxInstruction_c *i)
|
|
{
|
|
Bit32u edi = EDI;
|
|
|
|
write_virtual_word(BX_SEG_REG_ES, edi, AX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi -= 2;
|
|
}
|
|
else {
|
|
edi += 2;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 16 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSW64_YwAX(bxInstruction_c *i)
|
|
{
|
|
Bit64u rdi = RDI;
|
|
|
|
write_virtual_word_64(BX_SEG_REG_ES, rdi, AX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi -= 2;
|
|
}
|
|
else {
|
|
rdi += 2;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
#endif
|
|
|
|
/* 32 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSD16_YdEAX(bxInstruction_c *i)
|
|
{
|
|
Bit16u di = DI;
|
|
|
|
write_virtual_dword_32(BX_SEG_REG_ES, di, EAX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
di -= 4;
|
|
}
|
|
else {
|
|
di += 4;
|
|
}
|
|
|
|
DI = di;
|
|
}
|
|
|
|
/* 32 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSD32_YdEAX(bxInstruction_c *i)
|
|
{
|
|
Bit32u edi = EDI;
|
|
|
|
write_virtual_dword(BX_SEG_REG_ES, edi, EAX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi -= 4;
|
|
}
|
|
else {
|
|
edi += 4;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
|
|
/* 32 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSD64_YdEAX(bxInstruction_c *i)
|
|
{
|
|
Bit64u rdi = RDI;
|
|
|
|
write_virtual_dword_64(BX_SEG_REG_ES, rdi, EAX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi -= 4;
|
|
}
|
|
else {
|
|
rdi += 4;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSQ32_YqRAX(bxInstruction_c *i)
|
|
{
|
|
Bit32u edi = EDI;
|
|
|
|
write_virtual_qword_64(BX_SEG_REG_ES, edi, RAX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
edi -= 8;
|
|
}
|
|
else {
|
|
edi += 8;
|
|
}
|
|
|
|
// zero extension of RDI
|
|
RDI = edi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSQ64_YqRAX(bxInstruction_c *i)
|
|
{
|
|
Bit64u rdi = RDI;
|
|
|
|
write_virtual_qword_64(BX_SEG_REG_ES, rdi, RAX);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rdi -= 8;
|
|
}
|
|
else {
|
|
rdi += 8;
|
|
}
|
|
|
|
RDI = rdi;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// REP LODS methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSB_ALXb(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSB64_ALXb);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSB32_ALXb);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSB16_ALXb);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSW_AXXw(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSW64_AXXw);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSW32_AXXw);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSW16_AXXw);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSD_EAXXd(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L())
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSD64_EAXXd);
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSD32_EAXXd);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSD16_EAXXd);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSQ_RAXXq(bxInstruction_c *i)
|
|
{
|
|
if (i->as64L()) {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSQ64_RAXXq);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSQ32_RAXXq);
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// LODSB/LODSW/LODSD/LODSQ methods
|
|
//
|
|
|
|
/* 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSB16_ALXb(bxInstruction_c *i)
|
|
{
|
|
Bit16u si = SI;
|
|
|
|
AL = read_virtual_byte_32(i->seg(), si);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
si--;
|
|
}
|
|
else {
|
|
si++;
|
|
}
|
|
|
|
SI = si;
|
|
}
|
|
|
|
/* 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSB32_ALXb(bxInstruction_c *i)
|
|
{
|
|
Bit32u esi = ESI;
|
|
|
|
AL = read_virtual_byte(i->seg(), esi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi--;
|
|
}
|
|
else {
|
|
esi++;
|
|
}
|
|
|
|
// zero extension of RSI
|
|
RSI = esi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSB64_ALXb(bxInstruction_c *i)
|
|
{
|
|
Bit64u rsi = RSI;
|
|
|
|
AL = read_virtual_byte_64(i->seg(), rsi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi--;
|
|
}
|
|
else {
|
|
rsi++;
|
|
}
|
|
|
|
RSI = rsi;
|
|
}
|
|
#endif
|
|
|
|
/* 16 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSW16_AXXw(bxInstruction_c *i)
|
|
{
|
|
Bit16u si = SI;
|
|
|
|
AX = read_virtual_word_32(i->seg(), si);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
si -= 2;
|
|
}
|
|
else {
|
|
si += 2;
|
|
}
|
|
|
|
SI = si;
|
|
}
|
|
|
|
/* 16 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSW32_AXXw(bxInstruction_c *i)
|
|
{
|
|
Bit32u esi = ESI;
|
|
|
|
AX = read_virtual_word(i->seg(), esi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 2;
|
|
}
|
|
else {
|
|
esi += 2;
|
|
}
|
|
|
|
// zero extension of RSI
|
|
RSI = esi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 16 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSW64_AXXw(bxInstruction_c *i)
|
|
{
|
|
Bit64u rsi = RSI;
|
|
|
|
AX = read_virtual_word_64(i->seg(), rsi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 2;
|
|
}
|
|
else {
|
|
rsi += 2;
|
|
}
|
|
|
|
RSI = rsi;
|
|
}
|
|
#endif
|
|
|
|
/* 32 bit opsize mode, 16 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSD16_EAXXd(bxInstruction_c *i)
|
|
{
|
|
Bit16u si = SI;
|
|
|
|
RAX = read_virtual_dword_32(i->seg(), si);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
si -= 4;
|
|
}
|
|
else {
|
|
si += 4;
|
|
}
|
|
|
|
SI = si;
|
|
}
|
|
|
|
/* 32 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSD32_EAXXd(bxInstruction_c *i)
|
|
{
|
|
Bit32u esi = ESI;
|
|
|
|
RAX = read_virtual_dword(i->seg(), esi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 4;
|
|
}
|
|
else {
|
|
esi += 4;
|
|
}
|
|
|
|
// zero extension of RSI
|
|
RSI = esi;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
|
|
/* 32 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSD64_EAXXd(bxInstruction_c *i)
|
|
{
|
|
Bit64u rsi = RSI;
|
|
|
|
RAX = read_virtual_dword_64(i->seg(), rsi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 4;
|
|
}
|
|
else {
|
|
rsi += 4;
|
|
}
|
|
|
|
RSI = rsi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 32 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSQ32_RAXXq(bxInstruction_c *i)
|
|
{
|
|
Bit32u esi = ESI;
|
|
|
|
RAX = read_virtual_qword_64(i->seg(), esi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
esi -= 8;
|
|
}
|
|
else {
|
|
esi += 8;
|
|
}
|
|
|
|
// zero extension of RSI
|
|
RSI = esi;
|
|
}
|
|
|
|
/* 64 bit opsize mode, 64 bit address size */
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSQ64_RAXXq(bxInstruction_c *i)
|
|
{
|
|
Bit64u rsi = RSI;
|
|
|
|
RAX = read_virtual_qword_64(i->seg(), rsi);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
rsi -= 8;
|
|
}
|
|
else {
|
|
rsi += 8;
|
|
}
|
|
|
|
RSI = rsi;
|
|
}
|
|
|
|
#endif
|