487 lines
16 KiB
C++
487 lines
16 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2005-2014 The Bochs Project
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
bx_address bx_asize_mask[] = {
|
|
0xffff, // as16 (asize = '00)
|
|
0xffffffff, // as32 (asize = '01)
|
|
#if BX_SUPPORT_X86_64
|
|
BX_CONST64(0xffffffffffffffff), // as64 (asize = '10)
|
|
BX_CONST64(0xffffffffffffffff) // as64 (asize = '11)
|
|
#endif
|
|
};
|
|
|
|
#if BX_SUPPORT_EVEX
|
|
#define BX_MAX_MEM_ACCESS_LENGTH 64
|
|
#else
|
|
#if BX_SUPPORT_AVX
|
|
#define BX_MAX_MEM_ACCESS_LENGTH 32
|
|
#else
|
|
#define BX_MAX_MEM_ACCESS_LENGTH 16
|
|
#endif
|
|
#endif
|
|
|
|
bx_bool BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
if (seg->cache.valid==0) {
|
|
BX_DEBUG(("write_virtual_checks(): segment descriptor not valid"));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_ERROR(("write_virtual_checks(): segment not present"));
|
|
return 0;
|
|
}
|
|
|
|
length--;
|
|
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: // read only
|
|
case 4: case 5: // read only, expand down
|
|
case 8: case 9: // execute only
|
|
case 10: case 11: // execute/read
|
|
case 12: case 13: // execute only, conforming
|
|
case 14: case 15: // execute/read-only, conforming
|
|
BX_ERROR(("write_virtual_checks(): no write access to seg"));
|
|
return 0;
|
|
|
|
case 2: case 3: /* read/write */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length)
|
|
|| length > seg->cache.u.segment.limit_scaled)
|
|
{
|
|
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w"));
|
|
return 0;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) {
|
|
// Mark cache as being OK type for succeeding read/writes. The limit
|
|
// checks still needs to be done though, but is more simple. We
|
|
// could probably also optimize that out with a flag for the case
|
|
// when limit is the maximum 32bit value. Limit should accomodate
|
|
// at least a dword, since we subtract from it in the simple
|
|
// limit check in other functions, and we don't want the value to roll.
|
|
// Only normal segments (not expand down) are handled this way.
|
|
seg->cache.valid |= SegAccessROK | SegAccessWOK;
|
|
}
|
|
break;
|
|
|
|
case 6: case 7: /* read/write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if (offset <= seg->cache.u.segment.limit_scaled ||
|
|
offset > upper_limit || (upper_limit - offset) < length)
|
|
{
|
|
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w ED"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("write_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
bx_bool BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
if (seg->cache.valid==0) {
|
|
BX_DEBUG(("read_virtual_checks(): segment descriptor not valid"));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_ERROR(("read_virtual_checks(): segment not present"));
|
|
return 0;
|
|
}
|
|
|
|
length--;
|
|
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: /* read only */
|
|
case 2: case 3: /* read/write */
|
|
case 10: case 11: /* execute/read */
|
|
case 14: case 15: /* execute/read-only, conforming */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length)
|
|
|| length > seg->cache.u.segment.limit_scaled)
|
|
{
|
|
BX_ERROR(("read_virtual_checks(): read beyond limit"));
|
|
return 0;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) {
|
|
// Mark cache as being OK type for succeeding reads. See notes for
|
|
// write checks; similar code.
|
|
seg->cache.valid |= SegAccessROK;
|
|
}
|
|
break;
|
|
|
|
case 4: case 5: /* read only, expand down */
|
|
case 6: case 7: /* read/write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if (offset <= seg->cache.u.segment.limit_scaled ||
|
|
offset > upper_limit || (upper_limit - offset) < length)
|
|
{
|
|
BX_ERROR(("read_virtual_checks(): read beyond limit ED"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case 8: case 9: /* execute only */
|
|
case 12: case 13: /* execute only, conforming */
|
|
/* can't read or write an execute-only segment */
|
|
BX_ERROR(("read_virtual_checks(): execute only"));
|
|
return 0;
|
|
|
|
default:
|
|
BX_PANIC(("read_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
bx_bool BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::execute_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
if (seg->cache.valid==0) {
|
|
BX_DEBUG(("execute_virtual_checks(): segment descriptor not valid"));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_ERROR(("execute_virtual_checks(): segment not present"));
|
|
return 0;
|
|
}
|
|
|
|
length--;
|
|
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: /* read only */
|
|
case 2: case 3: /* read/write */
|
|
case 10: case 11: /* execute/read */
|
|
case 14: case 15: /* execute/read-only, conforming */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length)
|
|
|| length > seg->cache.u.segment.limit_scaled)
|
|
{
|
|
BX_ERROR(("execute_virtual_checks(): read beyond limit"));
|
|
return 0;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= (BX_MAX_MEM_ACCESS_LENGTH-1)) {
|
|
// Mark cache as being OK type for succeeding reads. See notes for
|
|
// write checks; similar code.
|
|
seg->cache.valid |= SegAccessROK;
|
|
}
|
|
break;
|
|
|
|
case 8: case 9: /* execute only */
|
|
case 12: case 13: /* execute only, conforming */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length)
|
|
|| length > seg->cache.u.segment.limit_scaled)
|
|
{
|
|
BX_ERROR(("execute_virtual_checks(): read beyond limit execute only"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case 4: case 5: /* read only, expand down */
|
|
case 6: case 7: /* read/write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if (offset <= seg->cache.u.segment.limit_scaled ||
|
|
offset > upper_limit || (upper_limit - offset) < length)
|
|
{
|
|
BX_ERROR(("execute_virtual_checks(): read beyond limit ED"));
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("execute_virtual_checks(): unknown descriptor type=%d", seg->cache.type));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
const char *BX_CPU_C::strseg(bx_segment_reg_t *seg)
|
|
{
|
|
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]) return("ES");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) return("CS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) return("SS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) return("DS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) return("FS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]) return("GS");
|
|
else {
|
|
BX_PANIC(("undefined segment passed to strseg()!"));
|
|
return("??");
|
|
}
|
|
}
|
|
|
|
int BX_CPU_C::int_number(unsigned s)
|
|
{
|
|
if (s == BX_SEG_REG_SS)
|
|
return BX_SS_EXCEPTION;
|
|
else
|
|
return BX_GP_EXCEPTION;
|
|
}
|
|
|
|
Bit8u BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::system_read_byte(bx_address laddr)
|
|
{
|
|
Bit8u data;
|
|
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & 0x01) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
data = *hostAddr;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 1, 0, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 1, 0, BX_READ, 0x0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit16u BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::system_read_word(bx_address laddr)
|
|
{
|
|
Bit16u data;
|
|
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & 0x01) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
ReadHostWordFromLittleEndian(hostAddr, data);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 2, 0, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 2, 0, BX_READ, 0x0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit32u BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::system_read_dword(bx_address laddr)
|
|
{
|
|
Bit32u data;
|
|
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & 0x01) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
ReadHostDWordFromLittleEndian(hostAddr, data);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 4, 0, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 4, 0, BX_READ, 0x0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit64u BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::system_read_qword(bx_address laddr)
|
|
{
|
|
Bit64u data;
|
|
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & 0x01) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
ReadHostQWordFromLittleEndian(hostAddr, data);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 8, 0, BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 8, 0, BX_READ, 0x0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::system_write_byte(bx_address laddr, Bit8u data)
|
|
{
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
|
Bit32u lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & 0x04) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, 0, BX_WRITE, (Bit8u*) &data);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 1);
|
|
*hostAddr = data;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 1, 0, 0x0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::system_write_word(bx_address laddr, Bit16u data)
|
|
{
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
|
|
Bit32u lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & 0x04) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, 0, BX_WRITE, (Bit8u*) &data);
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
|
WriteHostWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 2, 0, 0x0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::system_write_dword(bx_address laddr, Bit32u data)
|
|
{
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
|
|
Bit32u lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & 0x04) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, 0, BX_WRITE, (Bit8u*) &data);
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
|
WriteHostDWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 4, 0, 0x0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
Bit8u* BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::v2h_read_byte(bx_address laddr, bx_bool user)
|
|
{
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & (0x01 << user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
return hostAddr;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit8u* BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::v2h_write_byte(bx_address laddr, bx_bool user)
|
|
{
|
|
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
|
|
if (tlbEntry->lpf == lpf)
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
if (tlbEntry->accessBits & (0x04 << user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(tlbEntry->ppf);
|
|
return hostAddr;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|