Bochs/bochs/cpu/stack_pro.cc
2007-11-30 08:49:12 +00:00

331 lines
8.3 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: stack_pro.cc,v 1.33 2007-11-30 08:49:12 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPU_C::push_16(Bit16u value16)
{
/* must use StackAddrSize, and either RSP, ESP or SP accordingly */
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
{
write_virtual_word(BX_SEG_REG_SS, RSP-2, &value16);
RSP -= 2;
}
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* StackAddrSize = 32 */
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (ESP-2), &value16);
ESP -= 2;
}
else
{
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (SP-2), &value16);
SP -= 2;
}
}
/* push 32 bit operand */
void BX_CPU_C::push_32(Bit32u value32)
{
/* must use StackAddrSize, and either RSP, ESP or SP accordingly */
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
{
write_virtual_dword(BX_SEG_REG_SS, RSP-4, &value32);
RSP -= 4;
}
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* StackAddrSize = 32 */
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (ESP-4), &value32);
ESP -= 4;
}
else
{
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (SP-4), &value32);
SP -= 4;
}
}
/* push 64 bit operand */
void BX_CPU_C::push_64(Bit64u value64)
{
/* must use StackAddrSize, and either RSP, ESP or SP accordingly */
#if BX_CPU_LEVEL >= 3
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
{
write_virtual_qword(BX_SEG_REG_SS, RSP-8, &value64);
RSP -= 8;
}
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* StackAddrSize = 32 */
write_virtual_qword(BX_SEG_REG_SS, (Bit32u) (ESP-8), &value64);
ESP -= 8;
}
else
#endif
{
write_virtual_qword(BX_SEG_REG_SS, (Bit16u) (SP-8), &value64);
SP -= 8;
}
}
/* pop 16 bit operand from the stack */
void BX_CPU_C::pop_16(Bit16u *value16_ptr)
{
bx_address temp_RSP;
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
temp_RSP = RSP;
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_RSP = ESP;
else
temp_RSP = SP;
read_virtual_word(BX_SEG_REG_SS, temp_RSP, value16_ptr);
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
RSP += 2;
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += 2;
else
SP += 2;
}
/* pop 32 bit operand from the stack */
void BX_CPU_C::pop_32(Bit32u *value32_ptr)
{
bx_address temp_RSP;
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
temp_RSP = RSP;
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_RSP = ESP;
else
temp_RSP = SP;
read_virtual_dword(BX_SEG_REG_SS, temp_RSP, value32_ptr);
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
RSP += 4;
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += 4;
else
SP += 4;
}
/* pop 64 bit operand from the stack */
void BX_CPU_C::pop_64(Bit64u *value64_ptr)
{
bx_address temp_RSP;
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
temp_RSP = RSP;
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_RSP = ESP;
else
temp_RSP = SP;
read_virtual_qword(BX_SEG_REG_SS, temp_RSP, value64_ptr);
#if BX_SUPPORT_X86_64
if (StackAddrSize64())
RSP += 8;
else
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += 8;
else
SP += 8;
}
bx_bool BX_CPP_AttrRegparmN(3)
BX_CPU_C::can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes)
{
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
return(1);
}
#endif
// small stack compares against 16-bit SP
if (!descriptor->u.segment.d_b)
esp &= 0x0000ffff;
if (descriptor->valid==0) {
BX_ERROR(("can_push(): SS invalidated."));
return(0);
}
if (descriptor->p==0) {
BX_ERROR(("can_push(): descriptor not present"));
return(0);
}
if (IS_DATA_SEGMENT_EXPAND_DOWN(descriptor->type)) /* expand down segment */
{
Bit32u expand_down_limit;
if (descriptor->u.segment.d_b)
expand_down_limit = 0xffffffff;
else
expand_down_limit = 0x0000ffff;
if (esp==0) {
BX_PANIC(("can_push(): esp=0, wraparound?"));
return(0);
}
if (esp < bytes) {
BX_PANIC(("can_push(): expand-down: esp < N"));
return(0);
}
if ((esp - bytes) <= descriptor->u.segment.limit_scaled) {
BX_ERROR(("can_push(): expand-down: esp-N < limit"));
return(0);
}
if (esp > expand_down_limit) {
BX_ERROR(("can_push(): esp > expand-down-limit"));
return(0);
}
return(1);
}
else { /* normal (expand-up) segment */
if (descriptor->u.segment.limit_scaled==0) {
BX_PANIC(("can_push(): found limit of 0"));
return(0);
}
// Look at case where esp==0. Possibly, it's an intentional wraparound
// If so, limit must be the maximum for the given stack size
if (esp==0) {
if (descriptor->u.segment.d_b && (descriptor->u.segment.limit_scaled==0xffffffff))
return(1);
if ((descriptor->u.segment.d_b==0) && (descriptor->u.segment.limit_scaled>=0xffff))
return(1);
BX_ERROR(("can_push(): esp=0, normal, wraparound? limit=%08x",
descriptor->u.segment.limit_scaled));
return(0);
}
if (!descriptor->u.segment.d_b) {
// Weird case for 16-bit SP.
esp = ((esp-bytes) & 0xffff) + bytes;
}
if (esp < bytes) {
BX_INFO(("can_push(): expand-up: esp < N"));
return(0);
}
if ((esp-1) > descriptor->u.segment.limit_scaled) {
BX_INFO(("can_push(): expand-up: SP > limit"));
return(0);
}
/* all checks pass */
return(1);
}
}
bx_bool BX_CPU_C::can_pop(Bit32u bytes)
{
Bit32u temp_ESP, expand_down_limit;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
return(1);
}
#endif
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* Big bit set: use ESP */
temp_ESP = ESP;
expand_down_limit = 0xFFFFFFFF;
}
else { /* Big bit clear: use SP */
temp_ESP = SP;
expand_down_limit = 0xFFFF;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0) {
BX_ERROR(("can_pop(): SS invalidated."));
return(0); /* never gets here */
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p==0) {
BX_ERROR(("can_pop(): SS.p = 0"));
return(0);
}
if (IS_DATA_SEGMENT_EXPAND_DOWN(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type)) { /* expand down */
if (temp_ESP == expand_down_limit) {
BX_PANIC(("can_pop(): found SP=ffff"));
return(0);
}
if (((expand_down_limit - temp_ESP) + 1) >= bytes)
return(1);
return(0);
}
else { /* normal (expand-up) segment */
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled==0) {
BX_ERROR(("can_pop(): SS.limit = 0"));
return(0);
}
if ( temp_ESP == expand_down_limit ) {
BX_ERROR(("can_pop(): found SP=ffff"));
return(0);
}
if (temp_ESP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
BX_ERROR(("can_pop(): eSP > SS.limit"));
return(0);
}
if (((BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled - temp_ESP) + 1) >= bytes)
return(1);
return(0);
}
}