Bochs/bochs/memory/memory.cc
Volker Ruppert e5eac65b59 - removed wrong character from FSF address (converted invisible and useless
2-byte character)
- updated FSF address in some files
- added license to some files
2009-02-08 09:05:52 +00:00

377 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: memory.cc,v 1.74 2009-02-08 09:05:52 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "cpu/cpu.h"
#include "iodev/iodev.h"
#define LOG_THIS BX_MEM_THIS
#if BX_PROVIDE_CPU_MEMORY
//
// Memory map inside the 1st megabyte:
//
// 0x00000 - 0x7ffff DOS area (512K)
// 0x80000 - 0x9ffff Optional fixed memory hole (128K)
// 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K)
// 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K)
// 0xe0000 - 0xeffff Lower BIOS Area (64K)
// 0xf0000 - 0xfffff Upper BIOS Area (64K)
//
void BX_MEM_C::writePhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data)
{
Bit8u *data_ptr;
bx_phy_address a20addr = A20ADDR(addr);
struct memory_handler_struct *memory_handler = NULL;
// Note: accesses should always be contained within a single page now
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("writePhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
#if BX_SUPPORT_MONITOR_MWAIT
BX_MEM_THIS check_monitor(a20addr, len);
#endif
if (cpu != NULL) {
#if BX_SUPPORT_IODEBUG
bx_devices.pluginIODebug->mem_write(cpu, a20addr, len, data);
#endif
BX_INSTR_PHY_WRITE(cpu->which_cpu(), a20addr, len);
#if BX_SUPPORT_APIC
bx_generic_apic_c *local_apic = &cpu->local_apic;
if (local_apic->is_selected(a20addr, len)) {
local_apic->write(a20addr, (Bit32u *)data, len);
return;
}
#endif
if ((a20addr & 0xfffe0000) == 0x000a0000 && (BX_MEM_THIS smram_available))
{
// SMRAM memory space
if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted))
goto mem_write;
}
}
memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20];
while (memory_handler) {
if (memory_handler->begin <= a20addr &&
memory_handler->end >= a20addr &&
memory_handler->write_handler(a20addr, len, data, memory_handler->param))
{
return;
}
memory_handler = memory_handler->next;
}
mem_write:
// all memory access feets in single 4K page
if (a20addr < BX_MEM_THIS len) {
#if BX_SUPPORT_ICACHE
pageWriteStampTable.decWriteStamp(a20addr);
#endif
// all of data is within limits of physical memory
if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff))
{
if (len == 8) {
WriteHostQWordToLittleEndian(BX_MEM_THIS get_vector(a20addr), *(Bit64u*)data);
return;
}
if (len == 4) {
WriteHostDWordToLittleEndian(BX_MEM_THIS get_vector(a20addr), *(Bit32u*)data);
return;
}
if (len == 2) {
WriteHostWordToLittleEndian(BX_MEM_THIS get_vector(a20addr), *(Bit16u*)data);
return;
}
if (len == 1) {
* (BX_MEM_THIS get_vector(a20addr)) = * (Bit8u *) data;
return;
}
// len == other, just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff))
{
while(1) {
// addr *not* in range 000A0000 .. 000FFFFF
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
// addr must be in range 000A0000 .. 000FFFFF
for(unsigned i=0; i<len; i++) {
// SMMRAM
if (a20addr <= 0x000bffff) {
// devices are not allowed to access SMMRAM under VGA memory
if (cpu) {
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
}
goto inc_one;
}
// adapter ROM C0000 .. DFFFF
// ROM BIOS memory E0000 .. FFFFF
#if BX_SUPPORT_PCI == 0
// ignore write to ROM
#else
// Write Based on 440fx Programming
if (BX_MEM_THIS pci_enabled && ((a20addr & 0xfffc0000) == 0x000c0000))
{
switch (DEV_pci_wr_memtype(a20addr)) {
case 0x1: // Writes to ShadowRAM
BX_DEBUG(("Writing to ShadowRAM: address 0x" FMT_PHY_ADDRX ", data %02x", a20addr, *data_ptr));
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
break;
case 0x0: // Writes to ROM, Inhibit
BX_DEBUG(("Write to ROM ignored: address 0x" FMT_PHY_ADDRX ", data %02x", a20addr, *data_ptr));
break;
default:
BX_PANIC(("writePhysicalPage: default case"));
}
}
#endif
inc_one:
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
else {
// access outside limits of physical memory, ignore
BX_DEBUG(("Write outside the limits of physical memory (0x"FMT_PHY_ADDRX") (ignore)", a20addr));
}
}
void BX_MEM_C::readPhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data)
{
Bit8u *data_ptr;
bx_phy_address a20addr = A20ADDR(addr);
struct memory_handler_struct *memory_handler = NULL;
// Note: accesses should always be contained within a single page now
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("readPhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
if (cpu != NULL) {
#if BX_SUPPORT_IODEBUG
bx_devices.pluginIODebug->mem_read(cpu, a20addr, len, data);
#endif
BX_INSTR_PHY_READ(cpu->which_cpu(), a20addr, len);
#if BX_SUPPORT_APIC
bx_generic_apic_c *local_apic = &cpu->local_apic;
if (local_apic->is_selected (a20addr, len)) {
local_apic->read(a20addr, data, len);
return;
}
#endif
if ((a20addr & 0xfffe0000) == 0x000a0000 && (BX_MEM_THIS smram_available))
{
// SMRAM memory space
if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted))
goto mem_read;
}
}
memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20];
while (memory_handler) {
if (memory_handler->begin <= a20addr &&
memory_handler->end >= a20addr &&
memory_handler->read_handler(a20addr, len, data, memory_handler->param))
{
return;
}
memory_handler = memory_handler->next;
}
mem_read:
if (a20addr <= BX_MEM_THIS len) {
// all of data is within limits of physical memory
if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff))
{
if (len == 8) {
ReadHostQWordFromLittleEndian(BX_MEM_THIS get_vector(a20addr), * (Bit64u*) data);
return;
}
if (len == 4) {
ReadHostDWordFromLittleEndian(BX_MEM_THIS get_vector(a20addr), * (Bit32u*) data);
return;
}
if (len == 2) {
ReadHostWordFromLittleEndian(BX_MEM_THIS get_vector(a20addr), * (Bit16u*) data);
return;
}
if (len == 1) {
* (Bit8u *) data = * (BX_MEM_THIS get_vector(a20addr));
return;
}
// len == other case can just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff))
{
while(1) {
// addr *not* in range 00080000 .. 000FFFFF
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
// addr must be in range 000A0000 .. 000FFFFF
for (unsigned i=0; i<len; i++) {
// SMMRAM
if (a20addr <= 0x000bffff) {
// devices are not allowed to access SMMRAM under VGA memory
if (cpu) *data_ptr = *(BX_MEM_THIS get_vector(a20addr));
goto inc_one;
}
#if BX_SUPPORT_PCI
if (BX_MEM_THIS pci_enabled && ((a20addr & 0xfffc0000) == 0x000c0000))
{
switch (DEV_pci_rd_memtype(a20addr)) {
case 0x0: // Read from ROM
if ((a20addr & 0xfffe0000) == 0x000e0000) {
*data_ptr = BX_MEM_THIS rom[a20addr & BIOS_MASK];
}
else {
*data_ptr = BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ];
}
break;
case 0x1: // Read from ShadowRAM
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
break;
default:
BX_PANIC(("readPhysicalPage: default case"));
}
}
else
#endif // #if BX_SUPPORT_PCI
{
if ((a20addr & 0xfffc0000) != 0x000c0000) {
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
}
else if ((a20addr & 0xfffe0000) == 0x000e0000) {
*data_ptr = BX_MEM_THIS rom[a20addr & BIOS_MASK];
}
else {
*data_ptr = BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ];
}
}
inc_one:
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
else
{ // access outside limits of physical memory
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
for (unsigned i = 0; i < len; i++) {
#if BX_PHY_ADDRESS_LONG
if (a20addr >= BX_CONST64(0xFFFFFFFF))
*data_ptr = 0xff;
else
#endif
if (a20addr >= (bx_phy_address)~BIOS_MASK)
*data_ptr = BX_MEM_THIS rom[a20addr & BIOS_MASK];
else
*data_ptr = 0xff;
addr++;
a20addr = (addr);
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
}
#endif // #if BX_PROVIDE_CPU_MEMORY