Bochs/bochs/memory/misc_mem.cc
Volker Ruppert d1652093ac - applied some parts of the patch from Andrew Zabolotny <zap@cobra.ru>
* changed all %ll format descriptions to FMT_LL macro so that
    Microsoft Visual C works correctly (it uses %I64)
  * missing type conversions added
  * cdrom.cc: variable types for win32 fixed
  * removed some unused variables in eth_win32.cc and harddrv.cc
  * added missing includes in make_cmos_image.c and niclist.c
2003-06-07 19:16:55 +00:00

389 lines
10 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: misc_mem.cc,v 1.38 2003-06-07 19:16:54 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS BX_MEM(0)->
#if BX_PROVIDE_CPU_MEMORY
Bit32u
BX_MEM_C::get_memory_in_k(void)
{
return(BX_MEM_THIS megabytes * 1024);
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if BX_PROVIDE_CPU_MEMORY
// BX_MEM_C constructor
BX_MEM_C::BX_MEM_C(void)
{
char mem[6];
snprintf(mem, 6, "MEM%d", BX_SIM_ID);
put(mem);
settype(MEMLOG);
vector = NULL;
actual_vector = NULL;
len = 0;
megabytes = 0;
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if BX_PROVIDE_CPU_MEMORY
void BX_CPP_AttrRegparmN(2)
BX_MEM_C::alloc_vector_aligned (size_t bytes, size_t alignment)
{
if (actual_vector != NULL) {
BX_INFO (("freeing existing memory vector"));
delete [] actual_vector;
actual_vector = NULL;
vector = NULL;
}
Bit64u test_mask = alignment - 1;
actual_vector = new Bit8u [bytes+test_mask];
// round address forward to nearest multiple of alignment. Alignment
// MUST BE a power of two for this to work.
Bit64u masked = ((Bit64u)(actual_vector + test_mask)) & ~test_mask;
vector = (Bit8u *)masked;
// sanity check: no lost bits during pointer conversion
BX_ASSERT (sizeof(masked) >= sizeof(vector));
// sanity check: after realignment, everything fits in allocated space
BX_ASSERT (vector+bytes <= actual_vector+bytes+test_mask);
BX_INFO (("allocated memory at %p. after alignment, vector=%p",
actual_vector, vector));
}
#endif
#if BX_PROVIDE_CPU_MEMORY
// BX_MEM_C constructor
BX_MEM_C::BX_MEM_C(size_t memsize)
{
vector = NULL;
actual_vector = NULL;
alloc_vector_aligned (memsize, BX_MEM_VECTOR_ALIGN);
len = memsize;
megabytes = len / (1024*1024);
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if BX_PROVIDE_CPU_MEMORY
// BX_MEM_C destructor
BX_MEM_C::~BX_MEM_C(void)
{
if (this-> vector != NULL) {
delete [] actual_vector;
actual_vector = NULL;
vector = NULL;
}
else {
BX_DEBUG(("(%u) memory not freed as it wasn't allocated!", BX_SIM_ID));
}
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if BX_PROVIDE_CPU_MEMORY
void
BX_MEM_C::init_memory(int memsize)
{
BX_DEBUG(("Init $Id: misc_mem.cc,v 1.38 2003-06-07 19:16:54 vruppert Exp $"));
// you can pass 0 if memory has been allocated already through
// the constructor, or the desired size of memory if it hasn't
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS megabytes) ));
if (BX_MEM_THIS vector == NULL) {
// memory not already allocated, do now...
alloc_vector_aligned (memsize, BX_MEM_VECTOR_ALIGN);
BX_MEM_THIS len = memsize;
BX_MEM_THIS megabytes = memsize / (1024*1024);
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS megabytes) ));
}
#if BX_DEBUGGER
if (megabytes > BX_MAX_DIRTY_PAGE_TABLE_MEGS) {
BX_INFO(("Error: memory larger than dirty page table can handle"));
BX_PANIC(("Error: increase BX_MAX_DIRTY_PAGE_TABLE_MEGS"));
}
#endif
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if BX_PROVIDE_CPU_MEMORY
void
BX_MEM_C::load_ROM(const char *path, Bit32u romaddress, Bit8u type)
{
struct stat stat_buf;
int fd, ret;
unsigned long size, offset;
if (*path == '\0') {
if (type == 1) {
BX_PANIC(( "ROM: System BIOS image undefined."));
}
else {
BX_PANIC(( "ROM: VGA BIOS image undefined."));
}
return;
}
// read in ROM BIOS image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
if (type > 0) {
BX_PANIC(( "ROM: couldn't open ROM image file '%s'.", path));
}
else {
BX_ERROR(( "ROM: couldn't open ROM image file '%s'.", path));
}
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
if (type > 0) {
BX_PANIC(( "ROM: couldn't stat ROM image file '%s'.", path));
}
else {
BX_ERROR(( "ROM: couldn't stat ROM image file '%s'.", path));
}
return;
}
size = stat_buf.st_size;
if ( (romaddress + size) > BX_MEM_THIS len ) {
BX_PANIC(( "ROM: ROM address range > physical memsize!"));
return;
}
offset = 0;
while (size > 0) {
ret = read(fd, (bx_ptr_t) &BX_MEM_THIS vector[romaddress + offset], size);
if (ret <= 0) {
BX_PANIC(( "ROM: read failed on BIOS image: '%s'",path));
}
size -= ret;
offset += ret;
}
close(fd);
BX_INFO(("rom at 0x%05x/%u ('%s')",
(unsigned) romaddress,
(unsigned) stat_buf.st_size,
path
));
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if BX_PCI_SUPPORT
Bit8u* BX_CPP_AttrRegparmN(1)
BX_MEM_C::pci_fetch_ptr(Bit32u addr)
{
if (bx_options.Oi440FXSupport->get ()) {
switch (DEV_pci_rd_memtype (addr)) {
case 0x1: // Read from ShadowRAM
return (&BX_MEM_THIS shadow[addr - 0xc0000]);
case 0x0: // Read from ROM
return (&BX_MEM_THIS vector[addr]);
default:
BX_PANIC(("pci_fetch_ptr(): default case"));
return(0);
}
}
else
return (&BX_MEM_THIS vector[addr]);
}
#endif
#if ( BX_DEBUGGER || BX_DISASM || BX_GDBSTUB)
bx_bool
BX_MEM_C::dbg_fetch_mem(Bit32u addr, unsigned len, Bit8u *buf)
{
if ( (addr + len) > this->len ) {
BX_INFO(("dbg_fetch_mem out of range. 0x%x > 0x%x",
addr+len, this->len));
return(0); // error, beyond limits of memory
}
for (; len>0; len--) {
#if BX_SUPPORT_VGA
if ( (addr & 0xfffe0000) == 0x000a0000 ) {
*buf = DEV_vga_mem_read(addr);
}
else {
#endif
#if BX_PCI_SUPPORT == 0
*buf = vector[addr];
#else
if ( bx_options.Oi440FXSupport->get () &&
((addr >= 0x000C0000) && (addr <= 0x000FFFFF)) ) {
switch (DEV_pci_rd_memtype (addr)) {
case 0x1: // Fetch from ShadowRAM
*buf = shadow[addr - 0xc0000];
// BX_INFO(("Fetching from ShadowRAM %06x, len %u !", (unsigned)addr, (unsigned)len));
break;
case 0x0: // Fetch from ROM
*buf = vector[addr];
// BX_INFO(("Fetching from ROM %06x, Data %02x ", (unsigned)addr, *buf));
break;
default:
BX_PANIC(("dbg_fetch_mem: default case"));
}
}
else
*buf = vector[addr];
#endif // #if BX_PCI_SUPPORT == 0
}
buf++;
addr++;
}
return(1);
}
#endif
#if BX_DEBUGGER || BX_GDBSTUB
bx_bool
BX_MEM_C::dbg_set_mem(Bit32u addr, unsigned len, Bit8u *buf)
{
if ( (addr + len) > this->len ) {
return(0); // error, beyond limits of memory
}
for (; len>0; len--) {
#if BX_SUPPORT_VGA
if ( (addr & 0xfffe0000) == 0x000a0000 ) {
DEV_vga_mem_write(addr, *buf);
}
else
#endif
vector[addr] = *buf;
buf++;
addr++;
}
return(1);
}
#endif
bx_bool
BX_MEM_C::dbg_crc32(unsigned long (*f)(unsigned char *buf, int len),
Bit32u addr1, Bit32u addr2, Bit32u *crc)
{
unsigned len;
*crc = 0;
if (addr1 > addr2)
return(0);
if (addr2 >= this->len) {
return(0); // error, specified address past last phy mem addr
}
len = 1 + addr2 - addr1;
*crc = f(vector + addr1, len);
return(1);
}
Bit8u * BX_CPP_AttrRegparmN(3)
BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, Bit32u a20Addr, unsigned op)
// Return a host address corresponding to the guest physical memory
// address (with A20 already applied), given that the calling
// code will perform an 'op' operation. This address will be
// used for direct access to guest memory as an acceleration by
// a few instructions, like REP {MOV, INS, OUTS, etc}.
// Values of 'op' are { BX_READ, BX_WRITE, BX_RW }.
// The other assumption is that the calling code _only_ accesses memory
// directly within the page that encompasses the address requested.
{
if ( a20Addr >= BX_MEM_THIS len )
return(NULL); // Error, requested addr is out of bounds.
if (op == BX_READ) {
if ( (a20Addr > 0x9ffff) && (a20Addr < 0xc0000) )
return(NULL); // Vetoed! Mem mapped IO (VGA)
#if !BX_PCI_SUPPORT
return( (Bit8u *) & vector[a20Addr] );
#else
else if ( (a20Addr < 0xa0000) || (a20Addr > 0xfffff)
|| (!bx_options.Oi440FXSupport->get ()) )
return( (Bit8u *) & vector[a20Addr] );
else {
switch (DEV_pci_rd_memtype (a20Addr)) {
case 0x0: // Read from ROM
return ( (Bit8u *) & vector[a20Addr]);
case 0x1: // Read from ShadowRAM
return( (Bit8u *) & shadow[a20Addr - 0xc0000]);
default:
BX_PANIC(("getHostMemAddr(): default case"));
return(0);
}
}
#endif
}
else { // op == {BX_WRITE, BX_RW}
Bit8u *retAddr;
if ( (a20Addr < 0xa0000) || (a20Addr > 0xfffff) ) {
retAddr = (Bit8u *) & vector[a20Addr];
}
#if !BX_PCI_SUPPORT
else
return(NULL); // Vetoed! Mem mapped IO (VGA) and ROMs
#else
else if ( (a20Addr < 0xc0000) || (!bx_options.Oi440FXSupport->get ()) )
return(NULL); // Vetoed! Mem mapped IO (VGA) and ROMs
else if (DEV_pci_wr_memtype (a20Addr) == 1) {
// Write to ShadowRAM
retAddr = (Bit8u *) & shadow[a20Addr - 0xc0000];
}
else
return(NULL); // Vetoed! ROMs
#endif
#if BX_SupportICache
cpu->iCache.decWriteStamp(cpu, a20Addr);
#endif
return(retAddr);
}
}