Bochs/bochs/cpu/io.cc

817 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: io.cc,v 1.38 2007-07-09 15:16:12 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#include "iodev/iodev.h"
#if BX_SUPPORT_X86_64==0
// Make life easier for merging cpu64 and cpu32 code.
#define RDI EDI
#define RSI ESI
#define RAX EAX
#endif
//
// Repeat Speedups methods
//
#if BX_SupportRepeatSpeedups
Bit32u BX_CPU_C::FastRepINSW(bxInstruction_c *i, bx_address dstOff, Bit16u port, Bit32u wordCount)
{
Bit32u paddrDst, wordsFitDst;
signed int pointerDelta;
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
// Do segment checks for the 1st word. We do not want to
// trip an exception beyond this, because the address would
// be incorrect. After we know how many bytes we will directly
// transfer, we can do the full segment limit check ourselves
// without generating an exception.
write_virtual_checks(dstSegPtr, dstOff, 2);
bx_address laddrDst = BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_ES) + dstOff;
if (BX_CPU_THIS_PTR cr0.get_PG())
paddrDst = dtranslate_linear(laddrDst, CPL==3, BX_WRITE);
else
paddrDst = laddrDst;
// If we want to write directly into the physical memory array,
// we need the A20 address.
paddrDst = A20ADDR(paddrDst);
Bit8u *hostAddrDst = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS,
paddrDst, BX_WRITE, DATA_ACCESS);
// Check that native host access was not vetoed for that page, and
// that the address is word aligned.
if (!hostAddrDst || (paddrDst & 1)) return 0;
// See how many words can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward
// Note: 1st word must not cross page boundary.
if ((paddrDst & 0xfff) > 0xffe) return 0;
wordsFitDst = (2 + (paddrDst & 0xfff)) >> 1;
pointerDelta = -2;
}
else {
// Counting upward
wordsFitDst = (0x1000 - (paddrDst & 0xfff)) >> 1;
pointerDelta = 2;
}
// Restrict word count to the number that will fit in this page.
if (wordCount > wordsFitDst)
wordCount = wordsFitDst;
// If after all the restrictions, there is anything left to do...
if (wordCount) {
Bit32u dstSegLimit = dstSegPtr->cache.u.segment.limit_scaled;
unsigned count;
// For 16-bit addressing mode, clamp the segment limits to 16bits
// so we don't have to worry about computations using si/di
// rolling over 16-bit boundaries.
if (!i->as32L()) {
if (dstSegLimit > 0xffff)
dstSegLimit = 0xffff;
}
// Before we copy memory, we need to make sure that the segments
// allow the accesses up to the given source and dest offset. If
// the cache.valid bits have SegAccessWOK and ROK, we know that
// the cache is valid for those operations, and that the segments
// are non-expand down (thus we can make a simple limit check).
if (!(dstSegPtr->cache.valid & SegAccessWOK)) return 0;
if (BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64)
{
// Now make sure transfer will fit within the constraints of the
// segment boundaries, 0..limit for non expand-down. We know
// wordCount >= 1 here.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward
Bit32u minOffset = (wordCount-1) << 1;
if (dstOff < minOffset) return 0;
}
else {
// Counting upward
Bit32u dstMaxOffset = (dstSegLimit - (wordCount<<1)) + 1;
if (dstOff > dstMaxOffset) return 0;
}
}
for (count=0; count<wordCount; ) {
bx_devices.bulkIOQuantumsTransferred = 0;
if (BX_CPU_THIS_PTR get_DF()==0) { // Only do accel for DF=0
bx_devices.bulkIOHostAddr = hostAddrDst;
bx_devices.bulkIOQuantumsRequested = (wordCount - count);
}
else
bx_devices.bulkIOQuantumsRequested = 0;
Bit16u temp16 = BX_INP(port, 2);
if (bx_devices.bulkIOQuantumsTransferred) {
hostAddrDst = bx_devices.bulkIOHostAddr;
count += bx_devices.bulkIOQuantumsTransferred;
}
else {
#ifdef BX_LITTLE_ENDIAN
* (Bit16u *) hostAddrDst = temp16;
#else
* (Bit16u *) hostAddrDst = ((temp16 >> 8) | (temp16 << 8));
#endif
hostAddrDst += pointerDelta;
count++;
}
// Terminate early if there was an event.
if (BX_CPU_THIS_PTR async_event) break;
}
// Reset for next non-bulk IO
bx_devices.bulkIOQuantumsRequested = 0;
return count;
}
return 0;
}
Bit32u BX_CPU_C::FastRepOUTSW(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff, Bit16u port, Bit32u wordCount)
{
Bit32u paddrSrc, wordsFitSrc;
signed int pointerDelta;
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
// Do segment checks for the 1st word. We do not want to
// trip an exception beyond this, because the address would
// be incorrect. After we know how many bytes we will directly
// transfer, we can do the full segment limit check ourselves
// without generating an exception.
read_virtual_checks(srcSegPtr, srcOff, 2);
bx_address laddrSrc = BX_CPU_THIS_PTR get_segment_base(srcSeg) + srcOff;
if (BX_CPU_THIS_PTR cr0.get_PG())
paddrSrc = dtranslate_linear(laddrSrc, CPL==3, BX_READ);
else
paddrSrc = laddrSrc;
// If we want to write directly into the physical memory array,
// we need the A20 address.
paddrSrc = A20ADDR(paddrSrc);
Bit8u *hostAddrSrc = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS,
paddrSrc, BX_READ, DATA_ACCESS);
// Check that native host access was not vetoed for that page, and
// that the address is word aligned.
if (hostAddrSrc && ! (paddrSrc & 1)) {
// See how many words can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward
// Note: 1st word must not cross page boundary.
if ((paddrSrc & 0xfff) > 0xffe) return 0;
wordsFitSrc = (2 + (paddrSrc & 0xfff)) >> 1;
pointerDelta = (unsigned) -2;
}
else {
// Counting upward
wordsFitSrc = (0x1000 - (paddrSrc & 0xfff)) >> 1;
pointerDelta = 2;
}
// Restrict word count to the number that will fit in this page.
if (wordCount > wordsFitSrc)
wordCount = wordsFitSrc;
// If after all the restrictions, there is anything left to do...
if (wordCount) {
Bit32u srcSegLimit = srcSegPtr->cache.u.segment.limit_scaled;
unsigned count;
// For 16-bit addressing mode, clamp the segment limits to 16bits
// so we don't have to worry about computations using si/di
// rolling over 16-bit boundaries.
if (!i->as32L()) {
if (srcSegLimit > 0xffff)
srcSegLimit = 0xffff;
}
// Before we copy memory, we need to make sure that the segments
// allow the accesses up to the given source and dest offset. If
// the cache.valid bits have SegAccessWOK and ROK, we know that
// the cache is valid for those operations, and that the segments
// are non-expand down (thus we can make a simple limit check).
if ( !(srcSegPtr->cache.valid & SegAccessROK) ) return 0;
if (BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64)
{
// Now make sure transfer will fit within the constraints of the
// segment boundaries, 0..limit for non expand-down. We know
// wordCount >= 1 here.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward
Bit32u minOffset = (wordCount-1) << 1;
if (srcOff < minOffset) return 0;
}
else {
// Counting upward
Bit32u srcMaxOffset = (srcSegLimit - (wordCount<<1)) + 1;
if (srcOff > srcMaxOffset) return 0;
}
}
for (count=0; count<wordCount; ) {
bx_devices.bulkIOQuantumsTransferred = 0;
if (BX_CPU_THIS_PTR get_DF()==0) { // Only do accel for DF=0
bx_devices.bulkIOHostAddr = hostAddrSrc;
bx_devices.bulkIOQuantumsRequested = (wordCount - count);
}
else
bx_devices.bulkIOQuantumsRequested = 0;
Bit16u temp16 = * (Bit16u *) hostAddrSrc;
#ifdef BX_LITTLE_ENDIAN
BX_OUTP(port, temp16, 2);
#else
BX_OUTP(port, ((temp16 >> 8) | (temp16 << 8)), 2);
#endif
if (bx_devices.bulkIOQuantumsTransferred) {
hostAddrSrc = bx_devices.bulkIOHostAddr;
count += bx_devices.bulkIOQuantumsTransferred;
}
else {
hostAddrSrc += pointerDelta;
count++;
}
// Terminate early if there was an event.
if (BX_CPU_THIS_PTR async_event) break;
}
// Reset for next non-bulk IO
bx_devices.bulkIOQuantumsRequested = 0;
return count;
}
}
return 0;
}
#endif
//
// REP INS methods
//
void BX_CPU_C::REP_INSB_YbDX(bxInstruction_c *i)
{
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB_YbDX);
}
void BX_CPU_C::REP_INSW_YwDX(bxInstruction_c *i)
{
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW_YwDX);
}
void BX_CPU_C::REP_INSD_YdDX(bxInstruction_c *i)
{
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD_YdDX);
}
//
// INSB/INSW/INSD methods
//
void BX_CPU_C::INSB_YbDX(bxInstruction_c *i)
{
Bit8u value8=0;
if (BX_CPU_THIS_PTR cr0.get_PE() && (BX_CPU_THIS_PTR get_VM() || (CPL>BX_CPU_THIS_PTR get_IOPL()))) {
if (! BX_CPU_THIS_PTR allow_io(DX, 1)) {
BX_DEBUG(("INSB_YbDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
// Write a zero to memory, to trigger any segment or page
// faults before reading from IO port.
write_virtual_byte(BX_SEG_REG_ES, RDI, &value8);
value8 = BX_INP(DX, 1);
/* no seg override possible */
write_virtual_byte(BX_SEG_REG_ES, RDI, &value8);
if (BX_CPU_THIS_PTR get_DF())
RDI--;
else
RDI++;
}
else
#endif
if (i->as32L()) {
// Write a zero to memory, to trigger any segment or page
// faults before reading from IO port.
write_virtual_byte(BX_SEG_REG_ES, EDI, &value8);
value8 = BX_INP(DX, 1);
/* no seg override possible */
write_virtual_byte(BX_SEG_REG_ES, EDI, &value8);
if (BX_CPU_THIS_PTR get_DF()) {
RDI = EDI - 1;
}
else {
RDI = EDI + 1;
}
}
else {
// Write a zero to memory, to trigger any segment or page
// faults before reading from IO port.
write_virtual_byte(BX_SEG_REG_ES, DI, &value8);
value8 = BX_INP(DX, 1);
/* no seg override possible */
write_virtual_byte(BX_SEG_REG_ES, DI, &value8);
if (BX_CPU_THIS_PTR get_DF())
DI--;
else
DI++;
}
}
// input word from port to string
void BX_CPU_C::INSW_YwDX(bxInstruction_c *i)
{
bx_address edi;
unsigned int incr = 2;
#if BX_SUPPORT_X86_64
if (i->as64L())
edi = RDI;
else
#endif
if (i->as32L())
edi = EDI;
else
edi = DI;
Bit16u value16=0;
#if BX_SupportRepeatSpeedups
#if (BX_DEBUGGER == 0)
/* If conditions are right, we can transfer IO to physical memory
* in a batch, rather than one instruction at a time.
*/
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) {
Bit32u wordCount;
#if BX_SUPPORT_X86_64
if (i->as64L())
wordCount = RCX; // Truncated to 32bits. (we're only doing 1 page)
else
#endif
if (i->as32L())
wordCount = ECX;
else
wordCount = CX;
BX_ASSERT(wordCount > 0);
wordCount = FastRepINSW(i, edi, DX, wordCount);
if (wordCount)
{
// Decrement the ticks count by the number of iterations, minus
// one, since the main cpu loop will decrement one. Also,
// the count is predecremented before examined, so defintely
// don't roll it under zero.
BX_TICKN(wordCount-1);
#if BX_SUPPORT_X86_64
if (i->as64L())
RCX -= (wordCount-1);
else
#endif
if (i->as32L())
ECX -= (wordCount-1);
else
CX -= (wordCount-1);
incr = wordCount << 1; // count * 2.
goto doIncr;
}
}
#endif // (BX_DEBUGGER == 0)
#endif // #if BX_SupportRepeatSpeedups
// Write a zero to memory, to trigger any segment or page
// faults before reading from IO port.
write_virtual_word(BX_SEG_REG_ES, edi, &value16);
value16 = BX_INP(DX, 2);
/* no seg override allowed */
write_virtual_word(BX_SEG_REG_ES, edi, &value16);
incr = 2;
#if BX_SupportRepeatSpeedups
#if (BX_DEBUGGER == 0)
doIncr:
#endif
#endif
#if BX_SUPPORT_X86_64
if (i->as64L()) {
if (BX_CPU_THIS_PTR get_DF())
RDI = RDI - incr;
else
RDI = RDI + incr;
}
else
#endif
if (i->as32L()) {
if (BX_CPU_THIS_PTR get_DF())
RDI = EDI - incr;
else
RDI = EDI + incr;
}
else {
if (BX_CPU_THIS_PTR get_DF())
DI = DI - incr;
else
DI = DI + incr;
}
}
// input doubleword from port to string
void BX_CPU_C::INSD_YdDX(bxInstruction_c *i)
{
if (BX_CPU_THIS_PTR cr0.get_PE() && (BX_CPU_THIS_PTR get_VM() || (CPL>BX_CPU_THIS_PTR get_IOPL()))) {
if (! BX_CPU_THIS_PTR allow_io(DX, 4)) {
BX_DEBUG(("INSD_YdDX: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
bx_address edi;
#if BX_SUPPORT_X86_64
if (i->as64L())
edi = RDI;
else
#endif
if (i->as32L())
edi = EDI;
else
edi = DI;
Bit32u value32=0;
// Write a zero to memory, to trigger any segment or page
// faults before reading from IO port.
write_virtual_dword(BX_SEG_REG_ES, edi, &value32);
value32 = BX_INP(DX, 4);
/* no seg override allowed */
write_virtual_dword(BX_SEG_REG_ES, edi, &value32);
#if BX_SUPPORT_X86_64
if (i->as64L()) {
if (BX_CPU_THIS_PTR get_DF())
RDI = RDI - 4;
else
RDI = RDI + 4;
}
else
#endif
if (i->as32L()) {
if (BX_CPU_THIS_PTR get_DF())
RDI = EDI - 4;
else
RDI = EDI + 4;
}
else {
if (BX_CPU_THIS_PTR get_DF())
DI = DI - 4;
else
DI = DI + 4;
}
}
//
// REP OUTS methods
//
void BX_CPU_C::REP_OUTSB_DXXb(bxInstruction_c *i)
{
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB_DXXb);
}
void BX_CPU_C::REP_OUTSW_DXXw(bxInstruction_c *i)
{
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW_DXXw);
}
void BX_CPU_C::REP_OUTSD_DXXd(bxInstruction_c *i)
{
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD_DXXd);
}
//
// OUTSB/OUTSW/OUTSD methods
//
void BX_CPU_C::OUTSB_DXXb(bxInstruction_c *i)
{
Bit8u value8;
bx_address esi;
if (BX_CPU_THIS_PTR cr0.get_PE() && (BX_CPU_THIS_PTR get_VM() || (CPL>BX_CPU_THIS_PTR get_IOPL()))) {
if (! BX_CPU_THIS_PTR allow_io(DX, 1)) {
BX_DEBUG(("OUTSB_DXXb: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#if BX_SUPPORT_X86_64
if (i->as64L())
esi = RSI;
else
#endif
if (i->as32L())
esi = ESI;
else
esi = SI;
read_virtual_byte(i->seg(), esi, &value8);
BX_OUTP(DX, value8, 1);
#if BX_SUPPORT_X86_64
if (i->as64L()) {
if (BX_CPU_THIS_PTR get_DF())
RSI--;
else
RSI++;
}
else
#endif
if (i->as32L()) {
if (BX_CPU_THIS_PTR get_DF())
RSI--;
else
RSI++;
}
else {
if (BX_CPU_THIS_PTR get_DF())
SI--;
else
SI++;
}
}
// output word string to port
void BX_CPU_C::OUTSW_DXXw(bxInstruction_c *i)
{
bx_address esi;
unsigned incr = 2;
if (BX_CPU_THIS_PTR cr0.get_PE() && (BX_CPU_THIS_PTR get_VM() || (CPL>BX_CPU_THIS_PTR get_IOPL()))) {
if (! BX_CPU_THIS_PTR allow_io(DX, 2)) {
BX_DEBUG(("OUTSW_DXXw: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#if BX_SUPPORT_X86_64
if (i->as64L())
esi = RSI;
else
#endif
if (i->as32L())
esi = ESI;
else
esi = SI;
Bit16u value16=0;
#if BX_SupportRepeatSpeedups
#if (BX_DEBUGGER == 0)
/* If conditions are right, we can transfer IO to physical memory
* in a batch, rather than one instruction at a time.
*/
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) {
Bit32u wordCount;
#if BX_SUPPORT_X86_64
if (i->as64L())
wordCount = RCX; // Truncated to 32bits. (we're only doing 1 page)
else
#endif
if (i->as32L())
wordCount = ECX;
else
wordCount = CX;
BX_ASSERT(wordCount > 0);
wordCount = FastRepOUTSW(i, i->seg(), esi, DX, wordCount);
if (wordCount)
{
// Decrement eCX. Note, the main loop will decrement 1 also, so
// decrement by one less than expected, like the case above.
BX_TICKN(wordCount-1); // Main cpu loop also decrements one more.
#if BX_SUPPORT_X86_64
if (i->as64L())
RCX -= (wordCount-1);
else
#endif
if (i->as32L())
ECX -= (wordCount-1);
else
CX -= (wordCount-1);
incr = wordCount << 1; // count * 2.
goto doIncr;
}
}
#endif // (BX_DEBUGGER == 0)
#endif // #if BX_SupportRepeatSpeedups
read_virtual_word(i->seg(), esi, &value16);
BX_OUTP(DX, value16, 2);
incr = 2;
#if BX_SupportRepeatSpeedups
#if (BX_DEBUGGER == 0)
doIncr:
#endif
#endif
#if BX_SUPPORT_X86_64
if (i->as64L()) {
if (BX_CPU_THIS_PTR get_DF())
RSI = RSI - incr;
else
RSI = RSI + incr;
}
else
#endif
if (i->as32L()) {
if (BX_CPU_THIS_PTR get_DF())
RSI = ESI - incr;
else
RSI = ESI + incr;
}
else {
if (BX_CPU_THIS_PTR get_DF())
SI = SI - incr;
else
SI = SI + incr;
}
}
// output doubleword string to port
void BX_CPU_C::OUTSD_DXXd(bxInstruction_c *i)
{
if (BX_CPU_THIS_PTR cr0.get_PE() && (BX_CPU_THIS_PTR get_VM() || (CPL>BX_CPU_THIS_PTR get_IOPL()))) {
if (! BX_CPU_THIS_PTR allow_io(DX, 4)) {
BX_DEBUG(("OUTSD_DXXd: I/O access not allowed !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
bx_address esi;
#if BX_SUPPORT_X86_64
if (i->as64L())
esi = RSI;
else
#endif
if (i->as32L())
esi = ESI;
else
esi = SI;
Bit32u value32=0;
read_virtual_dword(i->seg(), esi, &value32);
BX_OUTP(DX, value32, 4);
#if BX_SUPPORT_X86_64
if (i->as64L()) {
if (BX_CPU_THIS_PTR get_DF())
RSI = RSI - 4;
else
RSI = RSI + 4;
}
else
#endif
if (i->as32L()) {
if (BX_CPU_THIS_PTR get_DF())
RSI = ESI - 4;
else
RSI = ESI + 4;
}
else {
if (BX_CPU_THIS_PTR get_DF())
SI = SI - 4;
else
SI = SI + 4;
}
}
//
// non repeatable IN/OUT methods
//
void BX_CPU_C::IN_ALIb(bxInstruction_c *i)
{
AL = BX_CPU_THIS_PTR inp8(i->Ib());
}
void BX_CPU_C::IN_AXIb(bxInstruction_c *i)
{
AX = BX_CPU_THIS_PTR inp16(i->Ib());
}
void BX_CPU_C::IN_EAXIb(bxInstruction_c *i)
{
RAX = BX_CPU_THIS_PTR inp32(i->Ib());
}
void BX_CPU_C::OUT_IbAL(bxInstruction_c *i)
{
BX_CPU_THIS_PTR outp8(i->Ib(), AL);
}
void BX_CPU_C::OUT_IbAX(bxInstruction_c *i)
{
BX_CPU_THIS_PTR outp16(i->Ib(), AX);
}
void BX_CPU_C::OUT_IbEAX(bxInstruction_c *i)
{
BX_CPU_THIS_PTR outp32(i->Ib(), EAX);
}
void BX_CPU_C::IN_ALDX(bxInstruction_c *i)
{
AL = BX_CPU_THIS_PTR inp8(DX);
}
void BX_CPU_C::IN_AXDX(bxInstruction_c *i)
{
AX = BX_CPU_THIS_PTR inp16(DX);
}
void BX_CPU_C::IN_EAXDX(bxInstruction_c *i)
{
RAX = BX_CPU_THIS_PTR inp32(DX);
}
void BX_CPU_C::OUT_DXAL(bxInstruction_c *i)
{
BX_CPU_THIS_PTR outp8(DX, AL);
}
void BX_CPU_C::OUT_DXAX(bxInstruction_c *i)
{
BX_CPU_THIS_PTR outp16(DX, AX);
}
void BX_CPU_C::OUT_DXEAX(bxInstruction_c *i)
{
BX_CPU_THIS_PTR outp32(DX, EAX);
}