Bochs/bochs/iodev/cmos.cc
2005-12-04 17:43:09 +00:00

842 lines
27 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: cmos.cc,v 1.51 2005-12-04 17:43:09 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "iodev.h"
#define LOG_THIS theCmosDevice->
bx_cmos_c *theCmosDevice = NULL;
// CMOS register definitions from Ralf Brown's interrupt list v6.1, in a file
// called cmos.lst. In cases where there are multiple uses for a given
// register in the interrupt list, I only listed the purpose that Bochs
// actually uses it for, but I wrote "alternatives" next to it.
#define REG_SEC 0x00
#define REG_SEC_ALARM 0x01
#define REG_MIN 0x02
#define REG_MIN_ALARM 0x03
#define REG_HOUR 0x04
#define REG_HOUR_ALARM 0x05
#define REG_WEEK_DAY 0x06
#define REG_MONTH_DAY 0x07
#define REG_MONTH 0x08
#define REG_YEAR 0x09
#define REG_STAT_A 0x0a
#define REG_STAT_B 0x0b
#define REG_STAT_C 0x0c
#define REG_STAT_D 0x0d
#define REG_DIAGNOSTIC_STATUS 0x0e /* alternatives */
#define REG_SHUTDOWN_STATUS 0x0f
#define REG_EQUIPMENT_BYTE 0x14
#define REG_CSUM_HIGH 0x2e
#define REG_CSUM_LOW 0x2f
#define REG_IBM_CENTURY_BYTE 0x32 /* alternatives */
#define REG_IBM_PS2_CENTURY_BYTE 0x37 /* alternatives */
// Bochs CMOS map
//
// Idx Len Description
// 0x10 1 floppy drive types
// 0x11 1 configuration bits
// 0x12 1 harddisk types
// 0x13 1 advanced configuration bits
// 0x15 2 base memory in 1k
// 0x17 2 memory size above 1M in 1k
// 0x19 2 extended harddisk types
// 0x1b 9 harddisk configuration (hd0)
// 0x24 9 harddisk configuration (hd1)
// 0x2d 1 boot sequence (fd/hd)
// 0x30 2 memory size above 1M in 1k
// 0x34 2 memory size above 16M in 64k
// 0x38 1 eltorito boot sequence (#3) + bootsig check
// 0x39 2 ata translation policy (ata0...ata3)
// 0x3d 1 eltorito boot sequence (#1 + #2)
//
Bit8u bcd_to_bin(Bit8u value, bx_bool is_binary)
{
if (is_binary)
return value;
else
return ((value >> 4) * 10) + (value & 0x0f);
}
Bit8u bin_to_bcd(Bit8u value, bx_bool is_binary)
{
if (is_binary)
return value;
else
return ((value / 10) << 4) | (value % 10);
}
int
libcmos_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
theCmosDevice = new bx_cmos_c ();
bx_devices.pluginCmosDevice = theCmosDevice;
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theCmosDevice, BX_PLUGIN_CMOS);
return(0); // Success
}
void
libcmos_LTX_plugin_fini(void)
{
}
bx_cmos_c::bx_cmos_c(void)
{
put("CMOS");
settype(CMOSLOG);
unsigned i;
for (i=0; i<128; i++)
s.reg[i] = 0;
s.periodic_timer_index = BX_NULL_TIMER_HANDLE;
s.one_second_timer_index = BX_NULL_TIMER_HANDLE;
s.uip_timer_index = BX_NULL_TIMER_HANDLE;
}
bx_cmos_c::~bx_cmos_c(void)
{
BX_DEBUG(("Exit."));
}
void
bx_cmos_c::init(void)
{
BX_DEBUG(("Init $Id: cmos.cc,v 1.51 2005-12-04 17:43:09 vruppert Exp $"));
// CMOS RAM & RTC
DEV_register_ioread_handler(this, read_handler, 0x0070, "CMOS RAM", 1);
DEV_register_ioread_handler(this, read_handler, 0x0071, "CMOS RAM", 1);
DEV_register_iowrite_handler(this, write_handler, 0x0070, "CMOS RAM", 1);
DEV_register_iowrite_handler(this, write_handler, 0x0071, "CMOS RAM", 1);
DEV_register_irq(8, "CMOS RTC");
if (BX_CMOS_THIS s.periodic_timer_index == BX_NULL_TIMER_HANDLE) {
BX_CMOS_THIS s.periodic_timer_index =
DEV_register_timer(this, periodic_timer_handler,
1000000, 1,0, "cmos"); // continuous, not-active
}
if (BX_CMOS_THIS s.one_second_timer_index == BX_NULL_TIMER_HANDLE) {
BX_CMOS_THIS s.one_second_timer_index =
DEV_register_timer(this, one_second_timer_handler,
1000000, 1,0, "cmos"); // continuous, not-active
}
if (BX_CMOS_THIS s.uip_timer_index == BX_NULL_TIMER_HANDLE) {
BX_CMOS_THIS s.uip_timer_index =
DEV_register_timer(this, uip_timer_handler,
244, 0, 0, "cmos"); // one-shot, not-active
}
if (bx_options.clock.Otime0->get () == BX_CLOCK_TIME0_LOCAL) {
BX_INFO(("Using local time for initial clock"));
BX_CMOS_THIS s.timeval = time(NULL);
} else if (bx_options.clock.Otime0->get () == BX_CLOCK_TIME0_UTC) {
bx_bool utc_ok = 0;
BX_INFO(("Using utc time for initial clock"));
BX_CMOS_THIS s.timeval = time(NULL);
#if BX_HAVE_GMTIME
#if BX_HAVE_MKTIME
struct tm *utc_holder = gmtime(&BX_CMOS_THIS s.timeval);
utc_holder->tm_isdst = -1;
utc_ok = 1;
BX_CMOS_THIS s.timeval = mktime(utc_holder);
#elif BX_HAVE_TIMELOCAL
struct tm *utc_holder = gmtime(&BX_CMOS_THIS s.timeval);
utc_holder->tm_isdst = 0; // XXX Is this correct???
utc_ok = 1;
BX_CMOS_THIS s.timeval = timelocal(utc_holder);
#endif //BX_HAVE_MKTIME
#endif //BX_HAVE_GMTIME
if (!utc_ok) {
BX_ERROR(("UTC time is not supported on your platform. Using current time(NULL)"));
}
} else {
BX_INFO(("Using specified time for initial clock"));
BX_CMOS_THIS s.timeval = bx_options.clock.Otime0->get ();
}
// load CMOS from image file if requested.
if (bx_options.cmosimage.Oenabled->get ()) {
int fd, ret;
struct stat stat_buf;
fd = open(bx_options.cmosimage.Opath->getptr (), O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
BX_PANIC(("trying to open cmos image file '%s'",
bx_options.cmosimage.Opath->getptr ()));
}
ret = fstat(fd, &stat_buf);
if (ret) {
BX_PANIC(("CMOS: could not fstat() image file."));
}
if ((stat_buf.st_size != 64) && (stat_buf.st_size != 128)) {
BX_PANIC(("CMOS: image file size must be 64 or 128"));
}
ret = ::read(fd, (bx_ptr_t) BX_CMOS_THIS s.reg, (unsigned)stat_buf.st_size);
if (ret != stat_buf.st_size) {
BX_PANIC(("CMOS: error reading cmos file."));
}
close(fd);
BX_INFO(("successfuly read from image file '%s'.",
bx_options.cmosimage.Opath->getptr ()));
BX_CMOS_THIS s.rtc_mode_12hour = ((BX_CMOS_THIS s.reg[REG_STAT_B] & 0x02) == 0);
BX_CMOS_THIS s.rtc_mode_binary = ((BX_CMOS_THIS s.reg[REG_STAT_B] & 0x04) != 0);
if (bx_options.cmosimage.Ortc_init->get ()) {
update_timeval();
} else {
update_clock();
}
} else {
// CMOS values generated
BX_CMOS_THIS s.reg[REG_STAT_A] = 0x26;
BX_CMOS_THIS s.reg[REG_STAT_B] = 0x02;
BX_CMOS_THIS s.reg[REG_STAT_C] = 0x00;
BX_CMOS_THIS s.reg[REG_STAT_D] = 0x80;
#if BX_SUPPORT_FPU == 1
BX_CMOS_THIS s.reg[REG_EQUIPMENT_BYTE] |= 0x02;
#endif
BX_CMOS_THIS s.rtc_mode_12hour = 0;
BX_CMOS_THIS s.rtc_mode_binary = 0;
update_clock();
}
char *tmptime;
while( (tmptime = strdup(ctime(&(BX_CMOS_THIS s.timeval)))) == NULL) {
BX_PANIC(("Out of memory."));
}
tmptime[strlen(tmptime)-1]='\0';
BX_INFO(("Setting initial clock to: %s (time0=%u)", tmptime, (Bit32u)BX_CMOS_THIS s.timeval));
BX_CMOS_THIS s.timeval_change = 0;
}
void bx_cmos_c::reset(unsigned type)
{
BX_CMOS_THIS s.cmos_mem_address = 0;
// RESET affects the following registers:
// CRA: no effects
// CRB: bits 4,5,6 forced to 0
// CRC: bits 4,5,6,7 forced to 0
// CRD: no effects
BX_CMOS_THIS s.reg[REG_STAT_B] &= 0x8f;
BX_CMOS_THIS s.reg[REG_STAT_C] = 0;
// One second timer for updating clock & alarm functions
bx_pc_system.activate_timer(BX_CMOS_THIS s.one_second_timer_index,
1000000, 1);
// handle periodic interrupt rate select
BX_CMOS_THIS CRA_change();
}
void bx_cmos_c::save_image(void)
{
int fd, ret;
// save CMOS to image file if requested.
if (bx_options.cmosimage.Oenabled->get ()) {
fd = open(bx_options.cmosimage.Opath->getptr (), O_WRONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
ret = ::write(fd, (bx_ptr_t) BX_CMOS_THIS s.reg, 128);
if (ret != 128) {
BX_PANIC(("CMOS: error writing cmos file."));
}
close(fd);
}
}
void bx_cmos_c::CRA_change(void)
{
Bit8u nibble, dcc;
// Periodic Interrupt timer
nibble = BX_CMOS_THIS s.reg[REG_STAT_A] & 0x0f;
dcc = (BX_CMOS_THIS s.reg[REG_STAT_A] >> 4) & 0x07;
if ((nibble == 0) || ((dcc & 0x06) == 0)) {
// No Periodic Interrupt Rate when 0, deactivate timer
bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
BX_CMOS_THIS s.periodic_interval_usec = (Bit32u) -1; // max value
} else {
// values 0001b and 0010b are the same as 1000b and 1001b
if (nibble <= 2)
nibble += 7;
BX_CMOS_THIS s.periodic_interval_usec = (unsigned) (1000000.0L /
(32768.0L / (1 << (nibble - 1))));
// if Periodic Interrupt Enable bit set, activate timer
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x40)
bx_pc_system.activate_timer(BX_CMOS_THIS s.periodic_timer_index,
BX_CMOS_THIS s.periodic_interval_usec, 1);
else
bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
}
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_cmos_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_CMOS_SMF
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
Bit32u
bx_cmos_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif
Bit8u ret8;
if (bx_dbg.cmos)
BX_INFO(("CMOS read of CMOS register 0x%02x",
(unsigned) BX_CMOS_THIS s.cmos_mem_address));
switch (address) {
case 0x0070:
// this register is write-only on most machines
BX_INFO(("read of index port 0x70. returning 0xff"));
return(0xff);
break;
case 0x0071:
ret8 = BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address];
// all bits of Register C are cleared after a read occurs.
if (BX_CMOS_THIS s.cmos_mem_address == REG_STAT_C) {
BX_CMOS_THIS s.reg[REG_STAT_C] = 0x00;
DEV_pic_lower_irq(8);
}
return(ret8);
break;
default:
BX_PANIC(("unsupported cmos read, address=0x%04x!",
(unsigned) address));
return(0);
break;
}
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_cmos_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_CMOS_SMF
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void
bx_cmos_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_CMOS_SMF
BX_DEBUG(("CMOS write to address: 0x%04x = 0x%02x", address, value));
switch (address) {
case 0x0070:
BX_CMOS_THIS s.cmos_mem_address = value & 0x7F;
break;
case 0x0071:
switch (BX_CMOS_THIS s.cmos_mem_address) {
case REG_SEC_ALARM: // seconds alarm
case REG_MIN_ALARM: // minutes alarm
case REG_HOUR_ALARM: // hours alarm
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
BX_DEBUG(("alarm time changed to %02x:%02x:%02x", BX_CMOS_THIS s.reg[REG_HOUR_ALARM],
BX_CMOS_THIS s.reg[REG_MIN_ALARM], BX_CMOS_THIS s.reg[REG_SEC_ALARM]));
break;
case REG_SEC: // seconds
case REG_MIN: // minutes
case REG_HOUR: // hours
case REG_WEEK_DAY: // day of the week
case REG_MONTH_DAY: // day of the month
case REG_MONTH: // month
case REG_YEAR: // year
case REG_IBM_CENTURY_BYTE: // century
case REG_IBM_PS2_CENTURY_BYTE: // century (PS/2)
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
if (BX_CMOS_THIS s.cmos_mem_address == REG_IBM_PS2_CENTURY_BYTE) {
BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] = value;
}
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x80) {
BX_CMOS_THIS s.timeval_change = 1;
} else {
update_timeval();
}
break;
case REG_STAT_A: // Control Register A
// bit 7: Update in Progress (read-only)
// 1 = signifies time registers will be updated within 244us
// 0 = time registers will not occur before 244us
// note: this bit reads 0 when CRB bit 7 is 1
// bit 6..4: Divider Chain Control
// 000 oscillator disabled
// 001 oscillator disabled
// 010 Normal operation
// 011 TEST
// 100 TEST
// 101 TEST
// 110 Divider Chain RESET
// 111 Divider Chain RESET
// bit 3..0: Periodic Interrupt Rate Select
// 0000 None
// 0001 3.90625 ms
// 0010 7.8125 ms
// 0011 122.070 us
// 0100 244.141 us
// 0101 488.281 us
// 0110 976.562 us
// 0111 1.953125 ms
// 1000 3.90625 ms
// 1001 7.8125 ms
// 1010 15.625 ms
// 1011 31.25 ms
// 1100 62.5 ms
// 1101 125 ms
// 1110 250 ms
// 1111 500 ms
unsigned dcc;
dcc = (value >> 4) & 0x07;
if ((dcc & 0x06) == 0x06) {
BX_INFO(("CRA: divider chain RESET"));
} else if (dcc > 0x02) {
BX_PANIC(("CRA: divider chain control 0x%02x", dcc));
}
BX_CMOS_THIS s.reg[REG_STAT_A] &= 0x80;
BX_CMOS_THIS s.reg[REG_STAT_A] |= (value & 0x7f);
BX_CMOS_THIS CRA_change();
break;
case REG_STAT_B: // Control Register B
// bit 0: Daylight Savings Enable
// 1 = enable daylight savings
// 0 = disable daylight savings
// bit 1: 24/12 hour mode
// 1 = 24 hour format
// 0 = 12 hour format
// bit 2: Data Mode
// 1 = binary format
// 0 = BCD format
// bit 3: "square wave enable"
// Not supported and always read as 0
// bit 4: Update Ended Interrupt Enable
// 1 = enable generation of update ended interrupt
// 0 = disable
// bit 5: Alarm Interrupt Enable
// 1 = enable generation of alarm interrupt
// 0 = disable
// bit 6: Periodic Interrupt Enable
// 1 = enable generation of periodic interrupt
// 0 = disable
// bit 7: Set mode
// 1 = user copy of time is "frozen" allowing time registers
// to be accessed without regard for an occurance of an update
// 0 = time updates occur normally
if (value & 0x01)
BX_ERROR(("write status reg B, daylight savings unsupported"));
value &= 0xf7; // bit3 always 0
// Note: setting bit 7 clears bit 4
if (value & 0x80)
value &= 0xef;
unsigned prev_CRB;
prev_CRB = BX_CMOS_THIS s.reg[REG_STAT_B];
BX_CMOS_THIS s.reg[REG_STAT_B] = value;
if ( (prev_CRB & 0x02) != (value & 0x02) ) {
BX_CMOS_THIS s.rtc_mode_12hour = ((value & 0x02) == 0);
update_clock();
}
if ( (prev_CRB & 0x04) != (value & 0x04) ) {
BX_CMOS_THIS s.rtc_mode_binary = ((value & 0x04) != 0);
update_clock();
}
if ((prev_CRB & 0x40) != (value & 0x40)) {
// Periodic Interrupt Enabled changed
if (prev_CRB & 0x40) {
// transition from 1 to 0, deactivate timer
bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
} else {
// transition from 0 to 1
// if rate select is not 0, activate timer
if ((BX_CMOS_THIS s.reg[REG_STAT_A] & 0x0f) != 0) {
bx_pc_system.activate_timer(
BX_CMOS_THIS s.periodic_timer_index,
BX_CMOS_THIS s.periodic_interval_usec, 1);
}
}
}
if ((prev_CRB >= 0x80) && (value < 0x80) && BX_CMOS_THIS s.timeval_change) {
update_timeval();
BX_CMOS_THIS s.timeval_change = 0;
}
break;
case REG_STAT_C: // Control Register C
case REG_STAT_D: // Control Register D
BX_ERROR(("write to control register 0x%02x ignored (read-only)",
BX_CMOS_THIS s.cmos_mem_address));
break;
case REG_DIAGNOSTIC_STATUS:
BX_DEBUG(("write register 0x0e: 0x%02x", value));
BX_CMOS_THIS s.reg[REG_DIAGNOSTIC_STATUS] = value;
break;
case REG_SHUTDOWN_STATUS:
switch (value) {
case 0x00: /* proceed with normal POST (soft reset) */
BX_DEBUG(("Reg 0Fh(00): shutdown action = normal POST"));
break;
case 0x01: /* shutdown after memory size check */
BX_DEBUG(("Reg 0Fh(01): request to change shutdown action"
" to shutdown after memory size check"));
break;
case 0x02: /* shutdown after successful memory test */
BX_DEBUG(("Reg 0Fh(02): request to change shutdown action"
" to shutdown after successful memory test"));
break;
case 0x03: /* shutdown after failed memory test */
BX_DEBUG(("Reg 0Fh(03): request to change shutdown action"
" to shutdown after successful memory test"));
break;
case 0x04: /* jump to disk bootstrap routine */
BX_DEBUG(("Reg 0Fh(04): request to change shutdown action "
"to jump to disk bootstrap routine."));
break;
case 0x05: /* flush keyboard (issue EOI) and jump via 40h:0067h */
BX_DEBUG(("Reg 0Fh(05): request to change shutdown action "
"to flush keyboard (issue EOI) and jump via 40h:0067h."));
break;
case 0x06:
BX_DEBUG(("Reg 0Fh(06): Shutdown after memory test !"));
break;
case 0x07: /* reset (after failed test in virtual mode) */
BX_DEBUG(("Reg 0Fh(07): request to change shutdown action "
"to reset (after failed test in virtual mode)."));
break;
case 0x08: /* used by POST during protected-mode RAM test (return to POST) */
BX_DEBUG(("Reg 0Fh(08): request to change shutdown action "
"to return to POST (used by POST during protected-mode RAM test)."));
break;
case 0x09: /* return to BIOS extended memory block move
(interrupt 15h, func 87h was in progress) */
BX_DEBUG(("Reg 0Fh(09): request to change shutdown action "
"to return to BIOS extended memory block move."));
break;
case 0x0a: /* jump to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0a): request to change shutdown action"
" to jump to DWORD at 40:67"));
break;
case 0x0b: /* iret to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0b): request to change shutdown action"
" to iret to DWORD at 40:67"));
break;
case 0x0c: /* retf to DWORD pointer at 40:67 */
BX_DEBUG(("Reg 0Fh(0c): request to change shutdown action"
" to retf to DWORD at 40:67"));
break;
default:
BX_ERROR(("unsupported shutdown status: 0x%02x!", value));
}
BX_CMOS_THIS s.reg[REG_SHUTDOWN_STATUS] = value;
break;
default:
BX_DEBUG(("write reg 0x%02x: value = 0x%02x",
BX_CMOS_THIS s.cmos_mem_address, value));
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
}
break;
}
}
void
bx_cmos_c::checksum_cmos(void)
{
unsigned i;
Bit16u sum;
sum = 0;
for (i=0x10; i<=0x2d; i++) {
sum += BX_CMOS_THIS s.reg[i];
}
BX_CMOS_THIS s.reg[REG_CSUM_HIGH] = (sum >> 8) & 0xff; /* checksum high */
BX_CMOS_THIS s.reg[REG_CSUM_LOW] = (sum & 0xff); /* checksum low */
}
void
bx_cmos_c::periodic_timer_handler(void *this_ptr)
{
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
class_ptr->periodic_timer();
}
void
bx_cmos_c::periodic_timer()
{
// if periodic interrupts are enabled, trip IRQ 8, and
// update status register C
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x40) {
BX_CMOS_THIS s.reg[REG_STAT_C] |= 0xc0; // Interrupt Request, Periodic Int
DEV_pic_raise_irq(8);
}
}
void
bx_cmos_c::one_second_timer_handler(void *this_ptr)
{
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
class_ptr->one_second_timer();
}
void
bx_cmos_c::one_second_timer()
{
// divider chain reset - RTC stopped
if ((BX_CMOS_THIS s.reg[REG_STAT_A] & 0x60) == 0x60)
return;
// update internal time/date buffer
BX_CMOS_THIS s.timeval++;
// Dont update CMOS user copy of time/date if CRB bit7 is 1
// Nothing else do to
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x80)
return;
BX_CMOS_THIS s.reg[REG_STAT_A] |= 0x80; // set UIP bit
// UIP timer for updating clock & alarm functions
bx_pc_system.activate_timer(BX_CMOS_THIS s.uip_timer_index,
244, 0);
}
void
bx_cmos_c::uip_timer_handler(void *this_ptr)
{
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
class_ptr->uip_timer();
}
void
bx_cmos_c::uip_timer()
{
update_clock();
// if update interrupts are enabled, trip IRQ 8, and
// update status register C
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x10) {
BX_CMOS_THIS s.reg[REG_STAT_C] |= 0x90; // Interrupt Request, Update Ended
DEV_pic_raise_irq(8);
}
// compare CMOS user copy of time/date to alarm time/date here
if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x20) {
// Alarm interrupts enabled
bx_bool alarm_match = 1;
if ( (BX_CMOS_THIS s.reg[REG_SEC_ALARM] & 0xc0) != 0xc0 ) {
// seconds alarm not in dont care mode
if (BX_CMOS_THIS s.reg[REG_SEC] != BX_CMOS_THIS s.reg[REG_SEC_ALARM])
alarm_match = 0;
}
if ( (BX_CMOS_THIS s.reg[REG_MIN_ALARM] & 0xc0) != 0xc0 ) {
// minutes alarm not in dont care mode
if (BX_CMOS_THIS s.reg[REG_MIN] != BX_CMOS_THIS s.reg[REG_MIN_ALARM])
alarm_match = 0;
}
if ( (BX_CMOS_THIS s.reg[REG_HOUR_ALARM] & 0xc0) != 0xc0 ) {
// hours alarm not in dont care mode
if (BX_CMOS_THIS s.reg[REG_HOUR] != BX_CMOS_THIS s.reg[REG_HOUR_ALARM])
alarm_match = 0;
}
if (alarm_match) {
BX_CMOS_THIS s.reg[REG_STAT_C] |= 0xa0; // Interrupt Request, Alarm Int
DEV_pic_raise_irq(8);
}
}
BX_CMOS_THIS s.reg[REG_STAT_A] &= 0x7f; // clear UIP bit
}
void
bx_cmos_c::update_clock()
{
struct tm *time_calendar;
unsigned year, month, day, century;
Bit8u val_bcd, hour;
time_calendar = localtime(& BX_CMOS_THIS s.timeval);
// update seconds
BX_CMOS_THIS s.reg[REG_SEC] = bin_to_bcd(time_calendar->tm_sec,
BX_CMOS_THIS s.rtc_mode_binary);
// update minutes
BX_CMOS_THIS s.reg[REG_MIN] = bin_to_bcd(time_calendar->tm_min,
BX_CMOS_THIS s.rtc_mode_binary);
// update hours
if (BX_CMOS_THIS s.rtc_mode_12hour) {
hour = time_calendar->tm_hour;
val_bcd = (hour > 11) ? 0x80 : 0x00;
if (hour > 11) hour -= 12;
if (hour == 0) hour = 12;
val_bcd |= bin_to_bcd(hour, BX_CMOS_THIS s.rtc_mode_binary);
BX_CMOS_THIS s.reg[REG_HOUR] = val_bcd;
} else {
BX_CMOS_THIS s.reg[REG_HOUR] = bin_to_bcd(time_calendar->tm_hour,
BX_CMOS_THIS s.rtc_mode_binary);
}
// update day of the week
day = time_calendar->tm_wday + 1; // 0..6 to 1..7
BX_CMOS_THIS s.reg[REG_WEEK_DAY] = bin_to_bcd(day,
BX_CMOS_THIS s.rtc_mode_binary);
// update day of the month
day = time_calendar->tm_mday;
BX_CMOS_THIS s.reg[REG_MONTH_DAY] = bin_to_bcd(day,
BX_CMOS_THIS s.rtc_mode_binary);
// update month
month = time_calendar->tm_mon + 1;
BX_CMOS_THIS s.reg[REG_MONTH] = bin_to_bcd(month,
BX_CMOS_THIS s.rtc_mode_binary);
// update year
year = time_calendar->tm_year % 100;
BX_CMOS_THIS s.reg[REG_YEAR] = bin_to_bcd(year,
BX_CMOS_THIS s.rtc_mode_binary);
// update century
century = (time_calendar->tm_year / 100) + 19;
BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] = bin_to_bcd(century,
BX_CMOS_THIS s.rtc_mode_binary);
// Raul Hudea pointed out that some bioses also use reg 0x37 for the
// century byte. Tony Heller says this is critical in getting WinXP to run.
BX_CMOS_THIS s.reg[REG_IBM_PS2_CENTURY_BYTE] =
BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE];
}
void
bx_cmos_c::update_timeval()
{
struct tm time_calendar;
Bit8u val_bin, pm_flag;
// update seconds
time_calendar.tm_sec = bcd_to_bin(BX_CMOS_THIS s.reg[REG_SEC],
BX_CMOS_THIS s.rtc_mode_binary);
// update minutes
time_calendar.tm_min = bcd_to_bin(BX_CMOS_THIS s.reg[REG_MIN],
BX_CMOS_THIS s.rtc_mode_binary);
// update hours
if (BX_CMOS_THIS s.rtc_mode_12hour) {
pm_flag = BX_CMOS_THIS s.reg[REG_HOUR] & 0x80;
val_bin = bcd_to_bin(BX_CMOS_THIS s.reg[REG_HOUR] & 0x70,
BX_CMOS_THIS s.rtc_mode_binary);
if ((val_bin < 12) & (pm_flag > 0)) {
val_bin += 12;
} else if ((val_bin == 12) & (pm_flag == 0)) {
val_bin = 0;
}
time_calendar.tm_hour = val_bin;
} else {
time_calendar.tm_hour = bcd_to_bin(BX_CMOS_THIS s.reg[REG_HOUR],
BX_CMOS_THIS s.rtc_mode_binary);
}
// update day of the month
time_calendar.tm_mday = bcd_to_bin(BX_CMOS_THIS s.reg[REG_MONTH_DAY],
BX_CMOS_THIS s.rtc_mode_binary);
// update month
time_calendar.tm_mon = bcd_to_bin(BX_CMOS_THIS s.reg[REG_MONTH],
BX_CMOS_THIS s.rtc_mode_binary) - 1;
// update year
val_bin = bcd_to_bin(BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE],
BX_CMOS_THIS s.rtc_mode_binary);
val_bin = (val_bin - 19) * 100;
val_bin += bcd_to_bin(BX_CMOS_THIS s.reg[REG_YEAR],
BX_CMOS_THIS s.rtc_mode_binary);
time_calendar.tm_year = val_bin;
BX_CMOS_THIS s.timeval = mktime(& time_calendar);
}