Bochs/bochs/cpu/debugstuff.cc
Todd T.Fries bdb89cd364 merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.

In general this provides a generic interface for logging.

logfunctions:: is a class that is inherited by some classes, and also
.   allocated as a standalone global called 'genlog'.  All logging uses
.   one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
.   class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
.   respectively.
.
.   An example usage:
.     BX_INFO(("Hello, World!\n"));

iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance.  It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf().  At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.

More cleanup is coming, but this works for now.  If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.

Comments, bugs, flames, to me: todd@fries.net
2001-05-15 14:49:57 +00:00

1016 lines
42 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::debug(Bit32u offset)
{
BX_INFO(("| EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n",
(unsigned) EAX, (unsigned) EBX, (unsigned) ECX, (unsigned) EDX));
BX_INFO(("| ESP=%08x EBP=%08x ESI=%08x EDI=%08x\n",
(unsigned) ESP, (unsigned) EBP, (unsigned) ESI, (unsigned) EDI));
BX_INFO(("| IOPL=%1u %s %s %s %s %s %s %s %s\n",
BX_CPU_THIS_PTR eflags.iopl,
BX_CPU_THIS_PTR get_OF() ? "OV" : "NV",
BX_CPU_THIS_PTR eflags.df ? "DW" : "UP",
BX_CPU_THIS_PTR eflags.if_ ? "EI" : "DI",
BX_CPU_THIS_PTR get_SF() ? "NG" : "PL",
BX_CPU_THIS_PTR get_ZF() ? "ZR" : "NZ",
BX_CPU_THIS_PTR get_AF() ? "AC" : "NA",
BX_CPU_THIS_PTR get_PF() ? "PE" : "PO",
BX_CPU_THIS_PTR get_CF() ? "CY" : "NC"));
BX_INFO(("| SEG selector base limit G D\n"));
BX_INFO(("| SEG sltr(index|ti|rpl) base limit G D\n"));
BX_INFO(("| DS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u\n",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b));
BX_INFO(("| ES:%04x( %04x| %01u| %1u) %08x %08x %1u %1u\n",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b));
BX_INFO(("| FS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u\n",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b));
BX_INFO(("| GS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u\n",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b));
BX_INFO(("| SS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u\n",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b));
BX_INFO(("| CS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u\n",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b));
BX_INFO(("| EIP=%08x (%08x)\n", (unsigned) BX_CPU_THIS_PTR eip,
(unsigned) BX_CPU_THIS_PTR prev_eip));
#if 0
/* (mch) Hack to display the area round EIP and prev_EIP */
char buf[100];
sprintf(buf, "%04x:%08x ", BX_CPU_THIS_PTR sregs[BX_SREG_CS].selector.value, BX_CPU_THIS_PTR eip);
for (int i = 0; i < 8; i++) {
Bit8u data;
BX_CPU_THIS_PTR read_virtual_byte(BX_SREG_CS, BX_CPU_THIS_PTR eip + i, &data);
sprintf(buf+strlen(buf), "%02x ", data);
}
sprintf(buf+strlen(buf), "\n");
BX_INFO((buf));
sprintf(buf, "%04x:%08x ", BX_CPU_THIS_PTR sregs[BX_SREG_CS].selector.value, BX_CPU_THIS_PTR prev_eip);
for (int i = 0; i < 8; i++) {
Bit8u data;
BX_CPU_THIS_PTR read_virtual_byte(BX_SREG_CS, BX_CPU_THIS_PTR prev_eip + i, &data);
sprintf(buf+strlen(buf), "%02x ", data);
}
sprintf(buf+strlen(buf), "\n");
BX_INFO((buf));
#endif
#if BX_DISASM
Boolean valid;
Bit32u phy_addr;
Bit8u instr_buf[32];
char char_buf[256];
unsigned isize;
dbg_xlate_linear2phy(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + offset,
&phy_addr, &valid);
if (valid) {
BX_MEM.dbg_fetch_mem(phy_addr, 16, instr_buf);
isize = bx_disassemble.disasm(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b,
instr_buf, char_buf);
for (unsigned j=0; j<isize; j++)
BX_INFO((">> %02x\n", (unsigned) instr_buf[j]));
BX_INFO((">> : %s\n", char_buf));
}
else {
BX_INFO(("(instruction unavailable) page not present\n"));
}
#else
UNUSED(offset);
#endif // #if BX_DISASM
}
#if BX_DEBUGGER
Bit32u
BX_CPU_C::dbg_get_reg(unsigned reg)
{
Bit32u return_val32;
switch (reg) {
case BX_DBG_REG_EAX: return(EAX);
case BX_DBG_REG_ECX: return(ECX);
case BX_DBG_REG_EDX: return(EDX);
case BX_DBG_REG_EBX: return(EBX);
case BX_DBG_REG_ESP: return(ESP);
case BX_DBG_REG_EBP: return(EBP);
case BX_DBG_REG_ESI: return(ESI);
case BX_DBG_REG_EDI: return(EDI);
case BX_DBG_REG_EIP: return(EIP);
case BX_DBG_REG_EFLAGS:
return_val32 = dbg_get_eflags();
return(return_val32);
case BX_DBG_REG_CS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
case BX_DBG_REG_SS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
case BX_DBG_REG_DS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
case BX_DBG_REG_ES: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
case BX_DBG_REG_FS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
case BX_DBG_REG_GS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
default:
BX_PANIC(("get_reg: request for unknown register\n"));
return(0);
}
}
Boolean
BX_CPU_C::dbg_set_reg(unsigned reg, Bit32u val)
{
// returns 1=OK, 0=can't change
bx_segment_reg_t *seg;
Bit32u current_sys_bits;
switch (reg) {
case BX_DBG_REG_EAX: EAX = val; return(1);
case BX_DBG_REG_ECX: ECX = val; return(1);
case BX_DBG_REG_EDX: EDX = val; return(1);
case BX_DBG_REG_EBX: EBX = val; return(1);
case BX_DBG_REG_ESP: ESP = val; return(1);
case BX_DBG_REG_EBP: EBP = val; return(1);
case BX_DBG_REG_ESI: ESI = val; return(1);
case BX_DBG_REG_EDI: EDI = val; return(1);
case BX_DBG_REG_EIP: EIP = val; return(1);
case BX_DBG_REG_EFLAGS:
BX_INFO(("dbg_set_reg: can not handle eflags yet.\n"));
if ( val & 0xffff0000 ) {
BX_INFO(("dbg_set_reg: can not set upper 16 bits of eflags.\n"));
return(0);
}
// make sure none of the system bits are being changed
current_sys_bits = (BX_CPU_THIS_PTR eflags.nt << 14) |
(BX_CPU_THIS_PTR eflags.iopl << 12) |
(BX_CPU_THIS_PTR eflags.tf << 8);
if ( current_sys_bits != (val & 0x0000f100) ) {
BX_INFO(("dbg_set_reg: can not modify NT, IOPL, or TF.\n"));
return(0);
}
BX_CPU_THIS_PTR set_CF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_PF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_AF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_ZF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_SF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR eflags.if_ = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.df = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR set_OF(val & 0x01);
if (BX_CPU_THIS_PTR eflags.if_)
BX_CPU_THIS_PTR async_event = 1;
return(1);
case BX_DBG_REG_CS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS];
break;
case BX_DBG_REG_SS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS];
break;
case BX_DBG_REG_DS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
break;
case BX_DBG_REG_ES:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
break;
case BX_DBG_REG_FS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS];
break;
case BX_DBG_REG_GS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS];
break;
default:
BX_PANIC(("dbg_set_reg: unrecognized register ID (%u)\n", reg));
return(0);
}
if (BX_CPU_THIS_PTR real_mode()) {
seg->selector.value = val;
seg->cache.valid = 1;
seg->cache.p = 1;
seg->cache.dpl = 0;
seg->cache.segment = 1; // regular segment
if (reg == BX_DBG_REG_CS) {
seg->cache.u.segment.executable = 1; // code segment
}
else {
seg->cache.u.segment.executable = 0; // data segment
}
seg->cache.u.segment.c_ed = 0; // expand up/non-conforming
seg->cache.u.segment.r_w = 1; // writeable
seg->cache.u.segment.a = 1; // accessed
seg->cache.u.segment.base = val << 4;
seg->cache.u.segment.limit = 0xffff;
seg->cache.u.segment.limit_scaled = 0xffff;
seg->cache.u.segment.g = 0; // byte granular
seg->cache.u.segment.d_b = 0; // default 16bit size
seg->cache.u.segment.avl = 0;
return(1); // ok
}
return(0); // can't change when not in real mode
}
unsigned
BX_CPU_C::dbg_query_pending(void)
{
unsigned ret = 0;
if ( BX_HRQ ) { // DMA Hold Request
ret |= BX_DBG_PENDING_DMA;
}
if ( BX_INTR && BX_CPU_THIS_PTR eflags.if_ ) {
ret |= BX_DBG_PENDING_IRQ;
}
return(ret);
}
Bit32u
BX_CPU_C::dbg_get_eflags(void)
{
Bit32u val32;
val32 =
(BX_CPU_THIS_PTR get_CF()) |
(BX_CPU_THIS_PTR eflags.bit1 << 1) |
((BX_CPU_THIS_PTR get_PF()) << 2) |
(BX_CPU_THIS_PTR eflags.bit3 << 3) |
((BX_CPU_THIS_PTR get_AF()>0) << 4) |
(BX_CPU_THIS_PTR eflags.bit5 << 5) |
((BX_CPU_THIS_PTR get_ZF()>0) << 6) |
((BX_CPU_THIS_PTR get_SF()>0) << 7) |
(BX_CPU_THIS_PTR eflags.tf << 8) |
(BX_CPU_THIS_PTR eflags.if_ << 9) |
(BX_CPU_THIS_PTR eflags.df << 10) |
((BX_CPU_THIS_PTR get_OF()>0) << 11) |
(BX_CPU_THIS_PTR eflags.iopl << 12) |
(BX_CPU_THIS_PTR eflags.nt << 14) |
(BX_CPU_THIS_PTR eflags.bit15 << 15) |
(BX_CPU_THIS_PTR eflags.rf << 16) |
(BX_CPU_THIS_PTR eflags.vm << 17);
#if BX_CPU_LEVEL >= 4
val32 |= (BX_CPU_THIS_PTR eflags.ac << 18);
//val32 |= (BX_CPU_THIS_PTR eflags.vif << 19);
//val32 |= (BX_CPU_THIS_PTR eflags.vip << 20);
val32 |= (BX_CPU_THIS_PTR eflags.id << 21);
#endif
return(val32);
}
Bit32u
BX_CPU_C::dbg_get_descriptor_l(bx_descriptor_t *d)
{
Bit32u val;
if (d->valid == 0) {
return(0);
}
if (d->segment) {
val = ((d->u.segment.base & 0xffff) << 16) |
(d->u.segment.limit & 0xffff);
return(val);
}
else {
switch (d->type) {
case 0: // Reserved (not yet defined)
BX_ERROR(( "#get_descriptor_l(): type %d not finished\n", d->type ));
return(0);
case 1: // available 16bit TSS
val = ((d->u.tss286.base & 0xffff) << 16) |
(d->u.tss286.limit & 0xffff);
return(val);
case 2: // LDT
val = ((d->u.ldt.base & 0xffff) << 16) |
d->u.ldt.limit;
return(val);
case 9: // available 32bit TSS
val = ((d->u.tss386.base & 0xffff) << 16) |
(d->u.tss386.limit & 0xffff);
return(val);
default:
BX_ERROR(( "#get_descriptor_l(): type %d not finished\n", d->type ));
return(0);
}
}
}
Bit32u
BX_CPU_C::dbg_get_descriptor_h(bx_descriptor_t *d)
{
Bit32u val;
if (d->valid == 0) {
return(0);
}
if (d->segment) {
val = (d->u.segment.base & 0xff000000) |
((d->u.segment.base >> 16) & 0x000000ff) |
(d->u.segment.executable << 11) |
(d->u.segment.c_ed << 10) |
(d->u.segment.r_w << 9) |
(d->u.segment.a << 8) |
(d->segment << 12) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.segment.limit & 0xf0000) |
(d->u.segment.avl << 20) |
(d->u.segment.d_b << 22) |
(d->u.segment.g << 23);
return(val);
}
else {
switch (d->type) {
case 0: // Reserved (not yet defined)
BX_ERROR(( "#get_descriptor_h(): type %d not finished\n", d->type ));
return(0);
case 1: // available 16bit TSS
val = ((d->u.tss286.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15);
return(val);
case 2: // LDT
val = ((d->u.ldt.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.ldt.base & 0xff000000);
return(val);
case 9: // available 32bit TSS
val = ((d->u.tss386.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.tss386.limit & 0xf0000) |
(d->u.tss386.avl << 20) |
(d->u.tss386.g << 23) |
(d->u.tss386.base & 0xff000000);
return(val);
default:
BX_ERROR(( "#get_descriptor_h(): type %d not finished\n", d->type ));
return(0);
}
}
}
Boolean
BX_CPU_C::dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no)
{
if (sreg_no > 5)
return(0);
sreg->sel = BX_CPU_THIS_PTR sregs[sreg_no].selector.value;
sreg->des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[sreg_no].cache);
sreg->des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[sreg_no].cache);
sreg->valid = BX_CPU_THIS_PTR sregs[sreg_no].cache.valid;
return(1);
}
Boolean
BX_CPU_C::dbg_get_cpu(bx_dbg_cpu_t *cpu)
{
cpu->eax = EAX;
cpu->ebx = EBX;
cpu->ecx = ECX;
cpu->edx = EDX;
cpu->ebp = EBP;
cpu->esi = ESI;
cpu->edi = EDI;
cpu->esp = ESP;
cpu->eflags = dbg_get_eflags();
cpu->eip = BX_CPU_THIS_PTR eip;
cpu->cs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
cpu->cs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache);
cpu->cs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache);
cpu->cs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid;
cpu->ss.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
cpu->ss.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache);
cpu->ss.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache);
cpu->ss.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid;
cpu->ds.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
cpu->ds.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache);
cpu->ds.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache);
cpu->ds.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid;
cpu->es.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
cpu->es.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache);
cpu->es.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache);
cpu->es.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid;
cpu->fs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
cpu->fs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache);
cpu->fs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache);
cpu->fs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid;
cpu->gs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
cpu->gs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache);
cpu->gs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache);
cpu->gs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid;
cpu->ldtr.sel = BX_CPU_THIS_PTR ldtr.selector.value;
cpu->ldtr.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR ldtr.cache);
cpu->ldtr.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR ldtr.cache);
cpu->ldtr.valid = BX_CPU_THIS_PTR ldtr.cache.valid;
cpu->tr.sel = BX_CPU_THIS_PTR tr.selector.value;
cpu->tr.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR tr.cache);
cpu->tr.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR tr.cache);
cpu->tr.valid = BX_CPU_THIS_PTR tr.cache.valid;
cpu->gdtr.base = BX_CPU_THIS_PTR gdtr.base;
cpu->gdtr.limit = BX_CPU_THIS_PTR gdtr.limit;
cpu->idtr.base = BX_CPU_THIS_PTR idtr.base;
cpu->idtr.limit = BX_CPU_THIS_PTR idtr.limit;
cpu->dr0 = BX_CPU_THIS_PTR dr0;
cpu->dr1 = BX_CPU_THIS_PTR dr1;
cpu->dr2 = BX_CPU_THIS_PTR dr2;
cpu->dr3 = BX_CPU_THIS_PTR dr3;
cpu->dr6 = BX_CPU_THIS_PTR dr6;
cpu->dr7 = BX_CPU_THIS_PTR dr7;
cpu->tr3 = 0;
cpu->tr4 = 0;
cpu->tr5 = 0;
cpu->tr6 = 0;
cpu->tr7 = 0;
// cr0:32=pg,cd,nw,am,wp,ne,ts,em,mp,pe
cpu->cr0 = BX_CPU_THIS_PTR cr0.val32;
cpu->cr1 = 0;
cpu->cr2 = BX_CPU_THIS_PTR cr2;
cpu->cr3 = BX_CPU_THIS_PTR cr3;
cpu->cr4 = 0;
cpu->inhibit_mask = BX_CPU_THIS_PTR inhibit_mask;
return(1);
}
Boolean
BX_CPU_C::dbg_set_cpu(bx_dbg_cpu_t *cpu)
{
// returns 1=OK, 0=Error
Bit32u val;
Bit32u type;
// =================================================
// Do checks first, before setting any CPU registers
// =================================================
// CS, SS, DS, ES, FS, GS descriptor checks
if (!cpu->cs.valid) {
BX_ERROR(( "Error: CS not valid\n" ));
return(0); // error
}
if ( (cpu->cs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: CS not application type\n" ));
return(0); // error
}
if ( (cpu->cs.des_h & 0x0800) == 0 ) {
BX_ERROR(( "Error: CS not executable\n" ));
return(0); // error
}
if (!cpu->ss.valid) {
BX_ERROR(( "Error: SS not valid\n" ));
return(0); // error
}
if ( (cpu->ss.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: SS not application type\n" ));
return(0); // error
}
if (cpu->ds.valid) {
if ( (cpu->ds.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: DS not application type\n" ));
return(0); // error
}
}
if (cpu->es.valid) {
if ( (cpu->es.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: ES not application type\n" ));
return(0); // error
}
}
if (cpu->fs.valid) {
if ( (cpu->fs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: FS not application type\n" ));
return(0); // error
}
}
if (cpu->gs.valid) {
if ( (cpu->gs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: GS not application type\n" ));
return(0); // error
}
}
if (cpu->ldtr.valid) {
if ( cpu->ldtr.des_h & 0x1000 ) {
BX_ERROR(( "Error: LDTR not system type\n" ));
return(0); // error
}
if ( ((cpu->ldtr.des_h >> 8) & 0x0f) != 2 ) {
BX_ERROR(( "Error: LDTR descriptor type not LDT\n" ));
return(0); // error
}
}
if (cpu->tr.valid) {
if ( cpu->tr.des_h & 0x1000 ) {
BX_ERROR(( "Error: TR not system type\n"));
return(0); // error
}
type = (cpu->tr.des_h >> 8) & 0x0f;
if ( (type != 1) && (type != 9) ) {
BX_ERROR(( "Error: TR descriptor type not TSS\n" ));
return(0); // error
}
}
// =============
// end of checks
// =============
EAX = cpu->eax;
EBX = cpu->ebx;
ECX = cpu->ecx;
EDX = cpu->edx;
EBP = cpu->ebp;
ESI = cpu->esi;
EDI = cpu->edi;
ESP = cpu->esp;
// eflags
val = cpu->eflags;
BX_CPU_THIS_PTR set_CF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_PF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_AF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_ZF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_SF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR eflags.tf = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.if_ = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.df = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR set_OF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR eflags.iopl = val & 0x03; val >>= 2;
BX_CPU_THIS_PTR eflags.nt = val & 0x01; val >>= 2;
BX_CPU_THIS_PTR eflags.rf = val & 0x01; val >>= 1;
BX_CPU_THIS_PTR eflags.vm = val & 0x01; val >>= 1;
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR eflags.ac = val & 0x01; val >>= 1;
//BX_CPU_THIS_PTR eflags.vif = val & 0x01;
val >>= 1;
//BX_CPU_THIS_PTR eflags.vip = val & 0x01;
val >>= 1;
BX_CPU_THIS_PTR eflags.id = val & 0x01;
#endif
BX_CPU_THIS_PTR eip = cpu->eip;
// CS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cpu->cs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cpu->cs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cpu->cs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = cpu->cs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = cpu->cs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (cpu->cs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (cpu->cs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (cpu->cs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type = (cpu->cs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (cpu->cs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (cpu->cs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (cpu->cs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (cpu->cs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (cpu->cs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base |= (cpu->cs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base |= (cpu->cs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = (cpu->cs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit |= (cpu->cs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = (cpu->cs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = (cpu->cs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = (cpu->cs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit;
// SS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = cpu->ss.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = cpu->ss.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (cpu->ss.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = cpu->ss.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = cpu->ss.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (cpu->ss.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (cpu->ss.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (cpu->ss.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type = (cpu->ss.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (cpu->ss.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (cpu->ss.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (cpu->ss.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (cpu->ss.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (cpu->ss.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base |= (cpu->ss.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base |= (cpu->ss.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = (cpu->ss.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit |= (cpu->ss.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = (cpu->ss.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = (cpu->ss.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = (cpu->ss.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit;
// DS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = cpu->ds.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = cpu->ds.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (cpu->ds.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = cpu->ds.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = cpu->ds.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (cpu->ds.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (cpu->ds.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (cpu->ds.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type = (cpu->ds.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (cpu->ds.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (cpu->ds.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (cpu->ds.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (cpu->ds.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (cpu->ds.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base |= (cpu->ds.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base |= (cpu->ds.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = (cpu->ds.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit |= (cpu->ds.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = (cpu->ds.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = (cpu->ds.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = (cpu->ds.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit;
// ES:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = cpu->es.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = cpu->es.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (cpu->es.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = cpu->es.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = cpu->es.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (cpu->es.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (cpu->es.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (cpu->es.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.type = (cpu->es.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (cpu->es.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (cpu->es.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (cpu->es.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (cpu->es.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (cpu->es.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base |= (cpu->es.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base |= (cpu->es.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = (cpu->es.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit |= (cpu->es.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g = (cpu->es.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b = (cpu->es.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.avl = (cpu->es.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit;
// FS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = cpu->fs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.index = cpu->fs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.ti = (cpu->fs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl = cpu->fs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = cpu->fs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.p = (cpu->fs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl = (cpu->fs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment = (cpu->fs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.type = (cpu->fs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.executable = (cpu->fs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.c_ed = (cpu->fs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.r_w = (cpu->fs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.a = (cpu->fs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base = (cpu->fs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base |= (cpu->fs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base |= (cpu->fs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit = (cpu->fs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit |= (cpu->fs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g = (cpu->fs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b = (cpu->fs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.avl = (cpu->fs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit;
// GS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = cpu->gs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.index = cpu->gs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.ti = (cpu->gs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl = cpu->gs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = cpu->gs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.p = (cpu->gs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl = (cpu->gs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment = (cpu->gs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.type = (cpu->gs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.executable = (cpu->gs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.c_ed = (cpu->gs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.r_w = (cpu->gs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.a = (cpu->gs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base = (cpu->gs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base |= (cpu->gs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base |= (cpu->gs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit = (cpu->gs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit |= (cpu->gs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g = (cpu->gs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b = (cpu->gs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.avl = (cpu->gs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit;
// LDTR:
BX_CPU_THIS_PTR ldtr.selector.value = cpu->ldtr.sel;
BX_CPU_THIS_PTR ldtr.selector.index = cpu->ldtr.sel >> 3;
BX_CPU_THIS_PTR ldtr.selector.ti = (cpu->ldtr.sel >> 2) & 0x01;
BX_CPU_THIS_PTR ldtr.selector.rpl = cpu->ldtr.sel & 0x03;
BX_CPU_THIS_PTR ldtr.cache.valid = cpu->ldtr.valid;
BX_CPU_THIS_PTR ldtr.cache.p = (cpu->ldtr.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.dpl = (cpu->ldtr.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR ldtr.cache.segment = (cpu->ldtr.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.type = (cpu->ldtr.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (cpu->ldtr.des_l >> 16);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base |= (cpu->ldtr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base |= (cpu->ldtr.des_h & 0xff000000);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = (cpu->ldtr.des_l & 0xffff);
// TR
type = (cpu->tr.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR tr.selector.value = cpu->tr.sel;
BX_CPU_THIS_PTR tr.selector.index = cpu->tr.sel >> 3;
BX_CPU_THIS_PTR tr.selector.ti = (cpu->tr.sel >> 2) & 0x01;
BX_CPU_THIS_PTR tr.selector.rpl = cpu->tr.sel & 0x03;
BX_CPU_THIS_PTR tr.cache.valid = cpu->tr.valid;
BX_CPU_THIS_PTR tr.cache.p = (cpu->tr.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR tr.cache.dpl = (cpu->tr.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR tr.cache.segment = (cpu->tr.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR tr.cache.type = type;
if (type == 1) { // 286 TSS
BX_CPU_THIS_PTR tr.cache.u.tss286.base = (cpu->tr.des_l >> 16);
BX_CPU_THIS_PTR tr.cache.u.tss286.base |= (cpu->tr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = (cpu->tr.des_l & 0xffff);
}
else { // type == 9, 386 TSS
BX_CPU_THIS_PTR tr.cache.u.tss386.base = (cpu->tr.des_l >> 16);
BX_CPU_THIS_PTR tr.cache.u.tss386.base |= (cpu->tr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR tr.cache.u.tss386.base |= (cpu->tr.des_h & 0xff000000);
BX_CPU_THIS_PTR tr.cache.u.tss386.limit = (cpu->tr.des_l & 0xffff);
BX_CPU_THIS_PTR tr.cache.u.tss386.limit |= (cpu->tr.des_h & 0x000f0000);
BX_CPU_THIS_PTR tr.cache.u.tss386.g = (cpu->tr.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR tr.cache.u.tss386.avl = (cpu->tr.des_h >> 20) & 0x01;
}
// gdtr
BX_CPU_THIS_PTR gdtr.base = cpu->gdtr.base;
BX_CPU_THIS_PTR gdtr.limit = cpu->gdtr.limit;
// idtr
BX_CPU_THIS_PTR idtr.base = cpu->idtr.base;
BX_CPU_THIS_PTR idtr.limit = cpu->idtr.limit;
BX_CPU_THIS_PTR dr0 = cpu->dr0;
BX_CPU_THIS_PTR dr1 = cpu->dr1;
BX_CPU_THIS_PTR dr2 = cpu->dr2;
BX_CPU_THIS_PTR dr3 = cpu->dr3;
BX_CPU_THIS_PTR dr6 = cpu->dr6;
BX_CPU_THIS_PTR dr7 = cpu->dr7;
// BX_CPU_THIS_PTR tr3 = cpu->tr3;
// BX_CPU_THIS_PTR tr4 = cpu->tr4;
// BX_CPU_THIS_PTR tr5 = cpu->tr5;
// BX_CPU_THIS_PTR tr6 = cpu->tr6;
// BX_CPU_THIS_PTR tr7 = cpu->tr7;
// cr0, cr1, cr2, cr3, cr4
SetCR0(cpu->cr0);
BX_CPU_THIS_PTR cr1 = cpu->cr1;
BX_CPU_THIS_PTR cr2 = cpu->cr2;
BX_CPU_THIS_PTR cr3 = cpu->cr3;
#if BX_CPU_LEVEL >= 5
BX_CPU_THIS_PTR cr4 = cpu->cr4;
#endif
BX_CPU_THIS_PTR inhibit_mask = cpu->inhibit_mask;
//
// flush cached items, prefetch, paging, etc
//
BX_CPU_THIS_PTR CR3_change(cpu->cr3);
BX_CPU_THIS_PTR invalidate_prefetch_q();
BX_CPU_THIS_PTR async_event = 1;
return(1);
}
#if BX_SIM_ID == 0
# define BX_DBG_NULL_CALLBACK bx_dbg_null_callback0
#else
# define BX_DBG_NULL_CALLBACK bx_dbg_null_callback1
#endif
void
BX_DBG_NULL_CALLBACK(unsigned val)
{
// bochs uses the pc_system variables, so this function is
// a stub for notification by the debugger, that a change
// occurred.
UNUSED(val);
}
void
#if BX_SIM_ID == 0
bx_dbg_init_cpu_mem_env0(bx_dbg_callback_t *callback, int argc, char *argv[])
#else
bx_dbg_init_cpu_mem_env1(bx_dbg_callback_t *callback, int argc, char *argv[])
#endif
{
UNUSED(argc);
UNUSED(argv);
callback->setphymem = BX_MEM.dbg_set_mem;
callback->getphymem = BX_MEM.dbg_fetch_mem;
callback->xlate_linear2phy = BX_CPU.dbg_xlate_linear2phy;
callback->set_reg = BX_CPU.dbg_set_reg;
callback->get_reg = BX_CPU.dbg_get_reg;
callback->get_sreg = BX_CPU.dbg_get_sreg;
callback->get_cpu = BX_CPU.dbg_get_cpu;
callback->set_cpu = BX_CPU.dbg_set_cpu;
callback->dirty_page_tbl_size = sizeof(BX_MEM.dbg_dirty_pages);
callback->dirty_page_tbl = BX_MEM.dbg_dirty_pages;
callback->atexit = BX_CPU.atexit;
callback->query_pending = BX_CPU.dbg_query_pending;
callback->execute = BX_CPU.cpu_loop;
callback->take_irq = BX_CPU.dbg_take_irq;
callback->take_dma = BX_CPU.dbg_take_dma;
callback->reset_cpu = BX_CPU.reset;
callback->init_mem = BX_MEM.init_memory;
callback->load_ROM = BX_MEM.load_ROM;
callback->set_A20 = NULL;
callback->set_NMI = BX_DBG_NULL_CALLBACK;
callback->set_RESET = BX_DBG_NULL_CALLBACK;
callback->set_INTR = BX_CPU.set_INTR;
callback->force_interrupt = BX_CPU.dbg_force_interrupt;
#if BX_INSTRUMENTATION
callback->instr_start = bx_instr_start;
callback->instr_stop = bx_instr_stop;
callback->instr_reset = bx_instr_reset;
callback->instr_print = bx_instr_print;
#endif
#if BX_USE_LOADER
callback->loader = bx_dbg_loader;
#endif
callback->crc32 = BX_MEM.dbg_crc32;
}
#endif // #if BX_DEBUGGER
void
BX_CPU_C::atexit(void)
{
if (BX_CPU.protected_mode()) BX_INFO(("protected mode\n" ));
else if (BX_CPU.v8086_mode()) BX_INFO(("v8086 mode\n" ));
else BX_INFO(("real mode\n"));
BX_INFO(("CS.d_b = %u bit\n",
BX_CPU.sregs[BX_SREG_CS].cache.u.segment.d_b ? 32 : 16 ));
if (BX_CPU.protected_mode()) BX_INFO(("protected mode\n"));
else if (BX_CPU.v8086_mode()) BX_INFO(("v8086 mode\n"));
else BX_INFO(("real mode\n"));
BX_INFO(("CS.d_b = %u bit\n",
BX_CPU.sregs[BX_SREG_CS].cache.u.segment.d_b ? 32 : 16));
BX_INFO(("SS.d_b = %u bit\n",
BX_CPU.sregs[BX_SREG_SS].cache.u.segment.d_b ? 32 : 16));
BX_CPU.debug(BX_CPU.prev_eip);
}