Bochs/bochs/cpu/init.cc

1225 lines
39 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/////////////////////////////////////////////////////////////////////////
// $Id: init.cc,v 1.199 2009-02-17 19:20:47 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier merging cpu64 & cpu code.
#define RIP EIP
#endif
BX_CPU_C::BX_CPU_C(unsigned id): bx_cpuid(id)
#if BX_SUPPORT_APIC
,lapic (this)
#endif
{
// in case of SMF, you cannot reference any member data
// in the constructor because the only access to it is via
// global variables which aren't initialized quite yet.
put("CPU");
}
#if BX_WITH_WX
#define IF_SEG_REG_GET(x) \
if (!strcmp(param->get_name(), #x)) { \
return BX_CPU(cpu)->sregs[BX_SEG_REG_##x].selector.value; \
}
#define IF_SEG_REG_SET(reg, val) \
if (!strcmp(param->get_name(), #reg)) { \
BX_CPU(cpu)->load_seg_reg(&BX_CPU(cpu)->sregs[BX_SEG_REG_##reg],val); \
}
#define IF_LAZY_EFLAG_GET(flag) \
if (!strcmp(param->get_name(), #flag)) { \
return BX_CPU(cpu)->get_##flag(); \
}
#define IF_LAZY_EFLAG_SET(flag, val) \
if (!strcmp(param->get_name(), #flag)) { \
BX_CPU(cpu)->set_##flag(val); \
}
#define IF_EFLAG_GET(flag) \
if (!strcmp(param->get_name(), #flag)) { \
return BX_CPU(cpu)->get_##flag(); \
}
#define IF_EFLAG_SET(flag, val) \
if (!strcmp(param->get_name(), #flag)) { \
BX_CPU(cpu)->set_##flag(val); \
}
// implement get/set handler for parameters that need unusual set/get
static Bit64s cpu_param_handler(bx_param_c *param, int set, Bit64s val)
{
#if BX_SUPPORT_SMP
int cpu = atoi(param->get_parent()->get_name());
#endif
if (set) {
if (!strcmp(param->get_name(), "LDTR")) {
BX_CPU(cpu)->panic("setting LDTR not implemented");
}
if (!strcmp(param->get_name(), "TR")) {
BX_CPU(cpu)->panic("setting LDTR not implemented");
}
IF_SEG_REG_SET(CS, val);
IF_SEG_REG_SET(DS, val);
IF_SEG_REG_SET(SS, val);
IF_SEG_REG_SET(ES, val);
IF_SEG_REG_SET(FS, val);
IF_SEG_REG_SET(GS, val);
IF_LAZY_EFLAG_SET(OF, val);
IF_LAZY_EFLAG_SET(SF, val);
IF_LAZY_EFLAG_SET(ZF, val);
IF_LAZY_EFLAG_SET(AF, val);
IF_LAZY_EFLAG_SET(PF, val);
IF_LAZY_EFLAG_SET(CF, val);
IF_EFLAG_SET(ID, val);
IF_EFLAG_SET(VIP, val);
IF_EFLAG_SET(VIF, val);
IF_EFLAG_SET(AC, val);
IF_EFLAG_SET(VM, val);
IF_EFLAG_SET(RF, val);
IF_EFLAG_SET(NT, val);
IF_EFLAG_SET(IOPL, val);
IF_EFLAG_SET(DF, val);
IF_EFLAG_SET(IF, val);
IF_EFLAG_SET(TF, val);
} else {
if (!strcmp(param->get_name(), "LDTR")) {
return BX_CPU(cpu)->ldtr.selector.value;
}
if (!strcmp(param->get_name(), "TR")) {
return BX_CPU(cpu)->tr.selector.value;
}
IF_SEG_REG_GET (CS);
IF_SEG_REG_GET (DS);
IF_SEG_REG_GET (SS);
IF_SEG_REG_GET (ES);
IF_SEG_REG_GET (FS);
IF_SEG_REG_GET (GS);
IF_LAZY_EFLAG_GET(OF);
IF_LAZY_EFLAG_GET(SF);
IF_LAZY_EFLAG_GET(ZF);
IF_LAZY_EFLAG_GET(AF);
IF_LAZY_EFLAG_GET(PF);
IF_LAZY_EFLAG_GET(CF);
IF_EFLAG_GET(ID);
IF_EFLAG_GET(VIP);
IF_EFLAG_GET(VIF);
IF_EFLAG_GET(AC);
IF_EFLAG_GET(VM);
IF_EFLAG_GET(RF);
IF_EFLAG_GET(NT);
IF_EFLAG_GET(IOPL);
IF_EFLAG_GET(DF);
IF_EFLAG_GET(IF);
IF_EFLAG_GET(TF);
}
return val;
}
#undef IF_SEG_REG_GET
#undef IF_SEG_REG_SET
#endif
void BX_CPU_C::initialize(void)
{
// BX_CPU_C constructor
BX_CPU_THIS_PTR set_INTR (0);
#if BX_SUPPORT_APIC
BX_CPU_THIS_PTR lapic.set_id(BX_CPU_ID);
BX_CPU_THIS_PTR lapic.init();
#endif
// in SMP mode, the prefix of the CPU will be changed to [CPUn] in
// bx_local_apic_c::set_id as soon as the apic ID is assigned.
sprintf(name, "CPU %d", BX_CPU_ID);
#if BX_CONFIGURE_MSRS
for (unsigned n=0; n < BX_MSR_MAX_INDEX; n++) {
BX_CPU_THIS_PTR msrs[n] = 0;
}
const char *msrs_filename = SIM->get_param_string(BXPN_CONFIGURABLE_MSRS_PATH)->getptr();
load_MSRs(msrs_filename);
#endif
init_SMRAM();
#if BX_SUPPORT_VMX
init_VMCS();
#endif
#if BX_WITH_WX
register_wx_state();
#endif
}
#if BX_WITH_WX
void BX_CPU_C::register_wx_state(void)
{
if (SIM->get_param(BXPN_WX_CPU_STATE) != NULL) {
// Register some of the CPUs variables as shadow parameters so that
// they can be visible in the config interface.
// (Experimental, obviously not a complete list)
bx_param_num_c *param;
char cpu_name[10], cpu_title[10], cpu_pname[16];
const char *fmt16 = "%04X";
const char *fmt32 = "%08X";
Bit32u oldbase = bx_param_num_c::set_default_base(16);
const char *oldfmt = bx_param_num_c::set_default_format(fmt32);
sprintf(cpu_name, "%d", BX_CPU_ID);
sprintf(cpu_title, "CPU %d", BX_CPU_ID);
sprintf(cpu_pname, "%s.%d", BXPN_WX_CPU_STATE, BX_CPU_ID);
if (SIM->get_param(cpu_pname) == NULL) {
bx_list_c *list = new bx_list_c(SIM->get_param(BXPN_WX_CPU_STATE),
cpu_name, cpu_title, 60);
#define DEFPARAM_NORMAL(name,field) \
new bx_shadow_num_c(list, #name, &(field))
DEFPARAM_NORMAL(EAX, EAX);
DEFPARAM_NORMAL(EBX, EBX);
DEFPARAM_NORMAL(ECX, ECX);
DEFPARAM_NORMAL(EDX, EDX);
DEFPARAM_NORMAL(ESP, ESP);
DEFPARAM_NORMAL(EBP, EBP);
DEFPARAM_NORMAL(ESI, ESI);
DEFPARAM_NORMAL(EDI, EDI);
DEFPARAM_NORMAL(EIP, EIP);
DEFPARAM_NORMAL(DR0, dr[0]);
DEFPARAM_NORMAL(DR1, dr[1]);
DEFPARAM_NORMAL(DR2, dr[2]);
DEFPARAM_NORMAL(DR3, dr[3]);
DEFPARAM_NORMAL(DR6, dr6);
DEFPARAM_NORMAL(DR7, dr7);
DEFPARAM_NORMAL(CR0, cr0.val32);
DEFPARAM_NORMAL(CR1, cr1);
DEFPARAM_NORMAL(CR2, cr2);
DEFPARAM_NORMAL(CR3, cr3);
#if BX_CPU_LEVEL >= 4
DEFPARAM_NORMAL(CR4, cr4.val32);
#endif
// segment registers require a handler function because they have
// special get/set requirements.
#define DEFPARAM_SEG_REG(x) \
param = new bx_param_num_c(list, \
#x, #x, "", 0, 0xffff, 0); \
param->set_handler(cpu_param_handler); \
param->set_format(fmt16);
#define DEFPARAM_GLOBAL_SEG_REG(name,field) \
param = new bx_shadow_num_c(list, \
#name"_base", &(field.base)); \
param = new bx_shadow_num_c(list, \
#name"_limit", &(field.limit));
DEFPARAM_SEG_REG(CS);
DEFPARAM_SEG_REG(DS);
DEFPARAM_SEG_REG(SS);
DEFPARAM_SEG_REG(ES);
DEFPARAM_SEG_REG(FS);
DEFPARAM_SEG_REG(GS);
DEFPARAM_SEG_REG(LDTR);
DEFPARAM_SEG_REG(TR);
DEFPARAM_GLOBAL_SEG_REG(GDTR, BX_CPU_THIS_PTR gdtr);
DEFPARAM_GLOBAL_SEG_REG(IDTR, BX_CPU_THIS_PTR idtr);
#undef DEFPARAM_NORMAL
#undef DEFPARAM_SEG_REG
#undef DEFPARAM_GLOBAL_SEG_REG
param = new bx_shadow_num_c(list, "EFLAGS",
&BX_CPU_THIS_PTR eflags);
// flags implemented in lazy_flags.cc must be done with a handler
// that calls their get function, to force them to be computed.
#define DEFPARAM_EFLAG(name) \
param = new bx_param_bool_c(list, \
#name, #name, "", get_##name()); \
param->set_handler(cpu_param_handler);
#define DEFPARAM_LAZY_EFLAG(name) \
param = new bx_param_bool_c(list, \
#name, #name, "", get_##name()); \
param->set_handler(cpu_param_handler);
#if BX_CPU_LEVEL >= 4
DEFPARAM_EFLAG(ID);
DEFPARAM_EFLAG(VIP);
DEFPARAM_EFLAG(VIF);
DEFPARAM_EFLAG(AC);
#endif
#if BX_CPU_LEVEL >= 3
DEFPARAM_EFLAG(VM);
DEFPARAM_EFLAG(RF);
#endif
#if BX_CPU_LEVEL >= 2
DEFPARAM_EFLAG(NT);
// IOPL is a special case because it is 2 bits wide.
param = new bx_shadow_num_c(
list,
"IOPL",
&BX_CPU_THIS_PTR eflags, 10,
12, 13);
param->set_range(0, 3);
param->set_format("%d");
#endif
DEFPARAM_LAZY_EFLAG(OF);
DEFPARAM_EFLAG(DF);
DEFPARAM_EFLAG(IF);
DEFPARAM_EFLAG(TF);
DEFPARAM_LAZY_EFLAG(SF);
DEFPARAM_LAZY_EFLAG(ZF);
DEFPARAM_LAZY_EFLAG(AF);
DEFPARAM_LAZY_EFLAG(PF);
DEFPARAM_LAZY_EFLAG(CF);
// restore defaults
bx_param_num_c::set_default_base(oldbase);
bx_param_num_c::set_default_format(oldfmt);
}
}
}
#endif
// save/restore functionality
void BX_CPU_C::register_state(void)
{
unsigned n;
char name[10];
sprintf(name, "cpu%d", BX_CPU_ID);
bx_list_c *cpu = new bx_list_c(SIM->get_bochs_root(), name, name, 50 + BX_GENERAL_REGISTERS);
BXRS_PARAM_SPECIAL32(cpu, cpu_version, param_save_handler, param_restore_handler);
BXRS_PARAM_SPECIAL32(cpu, cpuid_std, param_save_handler, param_restore_handler);
BXRS_PARAM_SPECIAL32(cpu, cpuid_ext, param_save_handler, param_restore_handler);
BXRS_DEC_PARAM_SIMPLE(cpu, cpu_mode);
BXRS_HEX_PARAM_SIMPLE(cpu, activity_state);
BXRS_HEX_PARAM_SIMPLE(cpu, inhibit_mask);
BXRS_HEX_PARAM_SIMPLE(cpu, debug_trap);
#if BX_SUPPORT_X86_64
BXRS_HEX_PARAM_SIMPLE(cpu, RAX);
BXRS_HEX_PARAM_SIMPLE(cpu, RBX);
BXRS_HEX_PARAM_SIMPLE(cpu, RCX);
BXRS_HEX_PARAM_SIMPLE(cpu, RDX);
BXRS_HEX_PARAM_SIMPLE(cpu, RSP);
BXRS_HEX_PARAM_SIMPLE(cpu, RBP);
BXRS_HEX_PARAM_SIMPLE(cpu, RSI);
BXRS_HEX_PARAM_SIMPLE(cpu, RDI);
BXRS_HEX_PARAM_SIMPLE(cpu, R8);
BXRS_HEX_PARAM_SIMPLE(cpu, R9);
BXRS_HEX_PARAM_SIMPLE(cpu, R10);
BXRS_HEX_PARAM_SIMPLE(cpu, R11);
BXRS_HEX_PARAM_SIMPLE(cpu, R12);
BXRS_HEX_PARAM_SIMPLE(cpu, R13);
BXRS_HEX_PARAM_SIMPLE(cpu, R14);
BXRS_HEX_PARAM_SIMPLE(cpu, R15);
BXRS_HEX_PARAM_SIMPLE(cpu, RIP);
#else
BXRS_HEX_PARAM_SIMPLE(cpu, EAX);
BXRS_HEX_PARAM_SIMPLE(cpu, EBX);
BXRS_HEX_PARAM_SIMPLE(cpu, ECX);
BXRS_HEX_PARAM_SIMPLE(cpu, EDX);
BXRS_HEX_PARAM_SIMPLE(cpu, ESP);
BXRS_HEX_PARAM_SIMPLE(cpu, EBP);
BXRS_HEX_PARAM_SIMPLE(cpu, ESI);
BXRS_HEX_PARAM_SIMPLE(cpu, EDI);
BXRS_HEX_PARAM_SIMPLE(cpu, EIP);
#endif
BXRS_PARAM_SPECIAL32(cpu, EFLAGS,
param_save_handler, param_restore_handler);
#if BX_CPU_LEVEL >= 3
BXRS_HEX_PARAM_FIELD(cpu, DR0, dr[0]);
BXRS_HEX_PARAM_FIELD(cpu, DR1, dr[1]);
BXRS_HEX_PARAM_FIELD(cpu, DR2, dr[2]);
BXRS_HEX_PARAM_FIELD(cpu, DR3, dr[3]);
BXRS_HEX_PARAM_FIELD(cpu, DR6, dr6);
BXRS_HEX_PARAM_FIELD(cpu, DR7, dr7);
#endif
BXRS_HEX_PARAM_FIELD(cpu, CR0, cr0.val32);
BXRS_HEX_PARAM_FIELD(cpu, CR2, cr2);
BXRS_HEX_PARAM_FIELD(cpu, CR3, cr3);
#if BX_CPU_LEVEL >= 4
BXRS_HEX_PARAM_FIELD(cpu, CR4, cr4.val32);
#endif
#if BX_SUPPORT_XSAVE
BXRS_HEX_PARAM_FIELD(cpu, XCR0, xcr0.val32);
#endif
for(n=0; n<6; n++) {
bx_segment_reg_t *segment = &BX_CPU_THIS_PTR sregs[n];
bx_list_c *sreg = new bx_list_c(cpu, strseg(segment), 9);
BXRS_PARAM_SPECIAL16(sreg, selector,
param_save_handler, param_restore_handler);
BXRS_HEX_PARAM_FIELD(sreg, base, segment->cache.u.segment.base);
BXRS_HEX_PARAM_FIELD(sreg, limit, segment->cache.u.segment.limit);
BXRS_HEX_PARAM_FIELD(sreg, limit_scaled, segment->cache.u.segment.limit_scaled);
BXRS_PARAM_SPECIAL8 (sreg, ar_byte,
param_save_handler, param_restore_handler);
BXRS_PARAM_BOOL(sreg, granularity, segment->cache.u.segment.g);
BXRS_PARAM_BOOL(sreg, d_b, segment->cache.u.segment.d_b);
#if BX_SUPPORT_X86_64
BXRS_PARAM_BOOL(sreg, l, segment->cache.u.segment.l);
#endif
BXRS_PARAM_BOOL(sreg, avl, segment->cache.u.segment.avl);
}
bx_list_c *GDTR = new bx_list_c(cpu, "GDTR", 2);
BXRS_HEX_PARAM_FIELD(GDTR, base, gdtr.base);
BXRS_HEX_PARAM_FIELD(GDTR, limit, gdtr.limit);
bx_list_c *IDTR = new bx_list_c(cpu, "IDTR", 2);
BXRS_HEX_PARAM_FIELD(IDTR, base, idtr.base);
BXRS_HEX_PARAM_FIELD(IDTR, limit, idtr.limit);
bx_list_c *LDTR = new bx_list_c(cpu, "LDTR", 7);
BXRS_PARAM_SPECIAL16(LDTR, selector, param_save_handler, param_restore_handler);
BXRS_HEX_PARAM_FIELD(LDTR, base, ldtr.cache.u.system.base);
BXRS_HEX_PARAM_FIELD(LDTR, limit, ldtr.cache.u.system.limit);
BXRS_HEX_PARAM_FIELD(LDTR, limit_scaled, ldtr.cache.u.system.limit);
BXRS_PARAM_SPECIAL8 (LDTR, ar_byte, param_save_handler, param_restore_handler);
BXRS_PARAM_BOOL(LDTR, granularity, ldtr.cache.u.system.g);
BXRS_PARAM_BOOL(LDTR, avl, ldtr.cache.u.system.avl);
bx_list_c *TR = new bx_list_c(cpu, "TR", 7);
BXRS_PARAM_SPECIAL16(TR, selector, param_save_handler, param_restore_handler);
BXRS_HEX_PARAM_FIELD(TR, base, tr.cache.u.system.base);
BXRS_HEX_PARAM_FIELD(TR, limit, tr.cache.u.system.limit);
BXRS_HEX_PARAM_FIELD(TR, limit_scaled, tr.cache.u.system.limit_scaled);
BXRS_PARAM_SPECIAL8 (TR, ar_byte, param_save_handler, param_restore_handler);
BXRS_PARAM_BOOL(TR, granularity, tr.cache.u.system.g);
BXRS_PARAM_BOOL(TR, avl, tr.cache.u.system.avl);
BXRS_HEX_PARAM_SIMPLE(cpu, smbase);
#if BX_CPU_LEVEL >= 5
bx_list_c *MSR = new bx_list_c(cpu, "MSR", 45);
#if BX_SUPPORT_APIC
BXRS_HEX_PARAM_FIELD(MSR, apicbase, msr.apicbase);
#endif
#if BX_SUPPORT_X86_64
BXRS_HEX_PARAM_FIELD(MSR, EFER, efer.val32);
BXRS_HEX_PARAM_FIELD(MSR, star, msr.star);
BXRS_HEX_PARAM_FIELD(MSR, lstar, msr.lstar);
BXRS_HEX_PARAM_FIELD(MSR, cstar, msr.cstar);
BXRS_HEX_PARAM_FIELD(MSR, fmask, msr.fmask);
BXRS_HEX_PARAM_FIELD(MSR, kernelgsbase, msr.kernelgsbase);
BXRS_HEX_PARAM_FIELD(MSR, tsc_aux, msr.tsc_aux);
#endif
BXRS_HEX_PARAM_FIELD(MSR, tsc_last_reset, msr.tsc_last_reset);
#if BX_SUPPORT_SEP
BXRS_HEX_PARAM_FIELD(MSR, sysenter_cs_msr, msr.sysenter_cs_msr);
BXRS_HEX_PARAM_FIELD(MSR, sysenter_esp_msr, msr.sysenter_esp_msr);
BXRS_HEX_PARAM_FIELD(MSR, sysenter_eip_msr, msr.sysenter_eip_msr);
#endif
#if BX_SUPPORT_MTRR
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase0, msr.mtrrphys[0]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask0, msr.mtrrphys[1]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase1, msr.mtrrphys[2]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask1, msr.mtrrphys[3]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase2, msr.mtrrphys[4]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask2, msr.mtrrphys[5]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase3, msr.mtrrphys[6]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask3, msr.mtrrphys[7]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase4, msr.mtrrphys[8]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask4, msr.mtrrphys[9]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase5, msr.mtrrphys[10]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask5, msr.mtrrphys[11]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase6, msr.mtrrphys[12]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask6, msr.mtrrphys[13]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysbase7, msr.mtrrphys[14]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrphysmask7, msr.mtrrphys[15]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix64k_00000, msr.mtrrfix64k_00000);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix16k_80000, msr.mtrrfix16k_80000);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix16k_a0000, msr.mtrrfix16k_a0000);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_c0000, msr.mtrrfix4k[0]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_c8000, msr.mtrrfix4k[1]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_d0000, msr.mtrrfix4k[2]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_d8000, msr.mtrrfix4k[3]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_e0000, msr.mtrrfix4k[4]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_e8000, msr.mtrrfix4k[5]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_f0000, msr.mtrrfix4k[6]);
BXRS_HEX_PARAM_FIELD(MSR, mtrrfix4k_f8000, msr.mtrrfix4k[7]);
BXRS_HEX_PARAM_FIELD(MSR, pat, msr.pat);
BXRS_HEX_PARAM_FIELD(MSR, mtrr_deftype, msr.mtrr_deftype);
#endif
#if BX_CONFIGURE_MSRS
bx_list_c *MSRS = new bx_list_c(cpu, "MSRS", BX_MSR_MAX_INDEX);
for(n=0; n < BX_MSR_MAX_INDEX; n++) {
if (! msrs[n]) continue;
sprintf(name, "msr_0x%03x", n);
bx_list_c *m = new bx_list_c(MSRS, name, 6);
BXRS_HEX_PARAM_FIELD(m, index, msrs[n]->index);
BXRS_DEC_PARAM_FIELD(m, type, msrs[n]->type);
BXRS_HEX_PARAM_FIELD(m, val64, msrs[n]->val64);
BXRS_HEX_PARAM_FIELD(m, reset, msrs[n]->reset_value);
BXRS_HEX_PARAM_FIELD(m, reserved, msrs[n]->reserved);
BXRS_HEX_PARAM_FIELD(m, ignored, msrs[n]->ignored);
}
#endif
#endif
#if BX_SUPPORT_FPU || BX_SUPPORT_MMX
bx_list_c *fpu = new bx_list_c(cpu, "FPU", 17);
BXRS_HEX_PARAM_FIELD(fpu, cwd, the_i387.cwd);
BXRS_HEX_PARAM_FIELD(fpu, swd, the_i387.swd);
BXRS_HEX_PARAM_FIELD(fpu, twd, the_i387.twd);
BXRS_HEX_PARAM_FIELD(fpu, foo, the_i387.foo);
BXRS_HEX_PARAM_FIELD(fpu, fcs, the_i387.fcs);
BXRS_HEX_PARAM_FIELD(fpu, fip, the_i387.fip);
BXRS_HEX_PARAM_FIELD(fpu, fds, the_i387.fds);
BXRS_HEX_PARAM_FIELD(fpu, fdp, the_i387.fdp);
for (n=0; n<8; n++) {
sprintf(name, "st%d", n);
bx_list_c *STx = new bx_list_c(fpu, name, 8);
BXRS_HEX_PARAM_FIELD(STx, exp, the_i387.st_space[n].exp);
BXRS_HEX_PARAM_FIELD(STx, fraction, the_i387.st_space[n].fraction);
}
BXRS_DEC_PARAM_FIELD(fpu, tos, the_i387.tos);
#endif
#if BX_SUPPORT_SSE
bx_list_c *sse = new bx_list_c(cpu, "SSE", 2*BX_XMM_REGISTERS+1);
BXRS_HEX_PARAM_FIELD(sse, mxcsr, mxcsr.mxcsr);
for (n=0; n<BX_XMM_REGISTERS; n++) {
sprintf(name, "xmm%02d_hi", n);
new bx_shadow_num_c(sse, name, &xmm[n].xmm64u(1), BASE_HEX);
sprintf(name, "xmm%02d_lo", n);
new bx_shadow_num_c(sse, name, &xmm[n].xmm64u(0), BASE_HEX);
}
#endif
#if BX_SUPPORT_MONITOR_MWAIT
bx_list_c *monitor_list = new bx_list_c(cpu, "MONITOR", 2);
BXRS_HEX_PARAM_FIELD(monitor_list, begin_addr, monitor.monitor_begin);
BXRS_HEX_PARAM_FIELD(monitor_list, end_addr, monitor.monitor_end);
#endif
#if BX_SUPPORT_APIC
lapic.register_state(cpu);
#endif
#if BX_SUPPORT_VMX
register_vmx_state(cpu);
#endif
BXRS_HEX_PARAM_SIMPLE32(cpu, async_event);
BXRS_PARAM_BOOL(cpu, INTR, INTR);
BXRS_PARAM_BOOL(cpu, in_smm, in_smm);
BXRS_PARAM_BOOL(cpu, disable_SMI, disable_SMI);
BXRS_PARAM_BOOL(cpu, pending_SMI, pending_SMI);
BXRS_PARAM_BOOL(cpu, disable_NMI, disable_NMI);
BXRS_PARAM_BOOL(cpu, pending_NMI, pending_NMI);
BXRS_PARAM_BOOL(cpu, disable_INIT, disable_INIT);
BXRS_PARAM_BOOL(cpu, pending_INIT, pending_INIT);
BXRS_PARAM_BOOL(cpu, trace, trace);
}
Bit64s BX_CPU_C::param_save_handler(void *devptr, bx_param_c *param, Bit64s val)
{
#if !BX_USE_CPU_SMF
BX_CPU_C *class_ptr = (BX_CPU_C *) devptr;
return class_ptr->param_save(param, val);
}
Bit64s BX_CPU_C::param_save(bx_param_c *param, Bit64s val)
{
#else
UNUSED(devptr);
#endif // !BX_USE_CPU_SMF
const char *pname, *segname;
bx_segment_reg_t *segment = NULL;
pname = param->get_name();
if (!strcmp(pname, "cpu_version")) {
val = get_cpu_version_information();
} else if (!strcmp(pname, "cpuid_std")) {
val = get_std_cpuid_features();
} else if (!strcmp(pname, "cpuid_ext")) {
val = get_extended_cpuid_features();
} else if (!strcmp(pname, "EFLAGS")) {
val = BX_CPU_THIS_PTR read_eflags();
} else if (!strcmp(pname, "ar_byte") || !strcmp(pname, "selector")) {
segname = param->get_parent()->get_name();
if (!strcmp(segname, "CS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS];
} else if (!strcmp(segname, "DS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
} else if (!strcmp(segname, "SS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS];
} else if (!strcmp(segname, "ES")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
} else if (!strcmp(segname, "FS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS];
} else if (!strcmp(segname, "GS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS];
} else if (!strcmp(segname, "LDTR")) {
segment = &BX_CPU_THIS_PTR ldtr;
} else if (!strcmp(segname, "TR")) {
segment = &BX_CPU_THIS_PTR tr;
}
if (segment != NULL) {
if (!strcmp(pname, "ar_byte")) {
val = ar_byte(&(segment->cache));
}
else if (!strcmp(pname, "selector")) {
val = segment->selector.value;
}
}
}
else {
BX_PANIC(("Unknown param %s in param_save handler !", pname));
}
return val;
}
Bit64s BX_CPU_C::param_restore_handler(void *devptr, bx_param_c *param, Bit64s val)
{
#if !BX_USE_CPU_SMF
BX_CPU_C *class_ptr = (BX_CPU_C *) devptr;
return class_ptr->param_restore(param, val);
}
Bit64s BX_CPU_C::param_restore(bx_param_c *param, Bit64s val)
{
#else
UNUSED(devptr);
#endif // !BX_USE_CPU_SMF
const char *pname, *segname;
bx_segment_reg_t *segment = NULL;
pname = param->get_name();
if (!strcmp(pname, "cpu_version")) {
if (val != get_cpu_version_information()) {
BX_PANIC(("save/restore: CPU version mismatch"));
}
} else if (!strcmp(pname, "cpuid_std")) {
if (val != get_std_cpuid_features()) {
BX_PANIC(("save/restore: CPUID mismatch"));
}
} else if (!strcmp(pname, "cpuid_ext")) {
if (val != get_extended_cpuid_features()) {
BX_PANIC(("save/restore: CPUID mismatch"));
}
} else if (!strcmp(pname, "EFLAGS")) {
BX_CPU_THIS_PTR setEFlags((Bit32u)val);
} else if (!strcmp(pname, "ar_byte") || !strcmp(pname, "selector")) {
segname = param->get_parent()->get_name();
if (!strcmp(segname, "CS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS];
} else if (!strcmp(segname, "DS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
} else if (!strcmp(segname, "SS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS];
} else if (!strcmp(segname, "ES")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
} else if (!strcmp(segname, "FS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS];
} else if (!strcmp(segname, "GS")) {
segment = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS];
} else if (!strcmp(segname, "LDTR")) {
segment = &BX_CPU_THIS_PTR ldtr;
} else if (!strcmp(segname, "TR")) {
segment = &BX_CPU_THIS_PTR tr;
}
if (segment != NULL) {
bx_descriptor_t *d = &(segment->cache);
bx_selector_t *selector = &(segment->selector);
if (!strcmp(pname, "ar_byte")) {
set_ar_byte(d, (Bit8u)val);
}
else if (!strcmp(pname, "selector")) {
parse_selector((Bit16u)val, selector);
// validate the selector
if ((selector->value & 0xfffc) != 0) d->valid = 1;
else d->valid = 0;
}
}
}
else {
BX_PANIC(("Unknown param %s in param_restore handler !", pname));
}
return val;
}
void BX_CPU_C::after_restore_state(void)
{
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_IA32_V8086) CPL = 3;
if (!SetCR0(cr0.val32))
BX_PANIC(("Incorrect CR0 state !"));
SetCR3(cr3);
TLB_flush();
assert_checks();
invalidate_prefetch_q();
debug(RIP);
}
// end of save/restore functionality
BX_CPU_C::~BX_CPU_C()
{
BX_INSTR_EXIT(BX_CPU_ID);
BX_DEBUG(("Exit."));
}
void BX_CPU_C::reset(unsigned source)
{
unsigned n;
if (source == BX_RESET_HARDWARE)
BX_INFO(("cpu hardware reset"));
else if (source == BX_RESET_SOFTWARE)
BX_INFO(("cpu software reset"));
else
BX_INFO(("cpu reset"));
#if BX_SUPPORT_X86_64
RAX = 0; // processor passed test :-)
RBX = 0;
RCX = 0;
RDX = get_cpu_version_information();
RBP = 0;
RSI = 0;
RDI = 0;
RSP = 0;
R8 = 0;
R9 = 0;
R10 = 0;
R11 = 0;
R12 = 0;
R13 = 0;
R14 = 0;
R15 = 0;
#else
// general registers
EAX = 0; // processor passed test :-)
EBX = 0;
ECX = 0;
EDX = get_cpu_version_information();
EBP = 0;
ESI = 0;
EDI = 0;
ESP = 0;
#endif
// initialize NIL register
BX_WRITE_32BIT_REGZ(BX_NIL_REGISTER, 0);
// status and control flags register set
BX_CPU_THIS_PTR setEFlags(0x2); // Bit1 is always set
BX_CPU_THIS_PTR inhibit_mask = 0;
BX_CPU_THIS_PTR activity_state = BX_ACTIVITY_STATE_ACTIVE;
BX_CPU_THIS_PTR debug_trap = 0;
/* instruction pointer */
#if BX_CPU_LEVEL < 2
BX_CPU_THIS_PTR prev_rip = EIP = 0x00000000;
#else /* from 286 up */
BX_CPU_THIS_PTR prev_rip = RIP = 0x0000FFF0;
#endif
/* CS (Code Segment) and descriptor cache */
/* Note: on a real cpu, CS initially points to upper memory. After
* the 1st jump, the descriptor base is zero'd out. Since I'm just
* going to jump to my BIOS, I don't need to do this.
* For future reference:
* processor cs.selector cs.base cs.limit EIP
* 8086 FFFF FFFF0 FFFF 0000
* 286 F000 FF0000 FFFF FFF0
* 386+ F000 FFFF0000 FFFF FFF0
*/
parse_selector(0xf000,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = SegValidCache | SegAccessROK | SegAccessWOK;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type = BX_DATA_READ_WRITE_ACCESSED;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = 0xFFFF0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xFFFF;
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; /* 16bit default size */
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l = 0; /* 16bit default size */
#endif
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0;
#endif
updateFetchModeMask();
#if BX_SUPPORT_ICACHE
flushICaches();
#endif
/* DS (Data Segment) and descriptor cache */
parse_selector(0x0000,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = SegValidCache | SegAccessROK | SegAccessWOK;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type = BX_DATA_READ_WRITE_ACCESSED;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = 0x00000000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = 0xFFFF;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled = 0xFFFF;
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = 0; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = 0; /* 16bit default size */
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.l = 0; /* 16bit default size */
#endif
#endif
// use DS segment as template for the others
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
#endif
/* GDTR (Global Descriptor Table Register) */
BX_CPU_THIS_PTR gdtr.base = 0x00000000;
BX_CPU_THIS_PTR gdtr.limit = 0xFFFF;
/* IDTR (Interrupt Descriptor Table Register) */
BX_CPU_THIS_PTR idtr.base = 0x00000000;
BX_CPU_THIS_PTR idtr.limit = 0xFFFF; /* always byte granular */
/* LDTR (Local Descriptor Table Register) */
BX_CPU_THIS_PTR ldtr.selector.value = 0x0000;
BX_CPU_THIS_PTR ldtr.selector.index = 0x0000;
BX_CPU_THIS_PTR ldtr.selector.ti = 0;
BX_CPU_THIS_PTR ldtr.selector.rpl = 0;
BX_CPU_THIS_PTR ldtr.cache.valid = 1; /* valid */
BX_CPU_THIS_PTR ldtr.cache.p = 1; /* present */
BX_CPU_THIS_PTR ldtr.cache.dpl = 0; /* field not used */
BX_CPU_THIS_PTR ldtr.cache.segment = 0; /* system segment */
BX_CPU_THIS_PTR ldtr.cache.type = BX_SYS_SEGMENT_LDT;
BX_CPU_THIS_PTR ldtr.cache.u.system.base = 0x00000000;
BX_CPU_THIS_PTR ldtr.cache.u.system.limit = 0xFFFF;
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR ldtr.cache.u.system.limit_scaled = 0xFFFF;
BX_CPU_THIS_PTR ldtr.cache.u.system.avl = 0;
BX_CPU_THIS_PTR ldtr.cache.u.system.g = 0; /* byte granular */
#endif
/* TR (Task Register) */
BX_CPU_THIS_PTR tr.selector.value = 0x0000;
BX_CPU_THIS_PTR tr.selector.index = 0x0000; /* undefined */
BX_CPU_THIS_PTR tr.selector.ti = 0;
BX_CPU_THIS_PTR tr.selector.rpl = 0;
BX_CPU_THIS_PTR tr.cache.valid = 1; /* valid */
BX_CPU_THIS_PTR tr.cache.p = 1; /* present */
BX_CPU_THIS_PTR tr.cache.dpl = 0; /* field not used */
BX_CPU_THIS_PTR tr.cache.segment = 0; /* system segment */
BX_CPU_THIS_PTR tr.cache.type = BX_SYS_SEGMENT_BUSY_386_TSS;
BX_CPU_THIS_PTR tr.cache.u.system.base = 0x00000000;
BX_CPU_THIS_PTR tr.cache.u.system.limit = 0xFFFF;
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled = 0xFFFF;
BX_CPU_THIS_PTR tr.cache.u.system.avl = 0;
BX_CPU_THIS_PTR tr.cache.u.system.g = 0; /* byte granular */
#endif
// DR0 - DR7 (Debug Registers)
#if BX_CPU_LEVEL >= 3
for (n=0; n<4; n++)
BX_CPU_THIS_PTR dr[n] = 0; /* undefined */
#endif
BX_CPU_THIS_PTR dr7 = 0x00000400;
#if BX_CPU_LEVEL == 3
BX_CPU_THIS_PTR dr6 = 0xFFFF1FF0;
#elif BX_CPU_LEVEL == 4
BX_CPU_THIS_PTR dr6 = 0xFFFF1FF0;
#elif BX_CPU_LEVEL == 5
BX_CPU_THIS_PTR dr6 = 0xFFFF0FF0;
#elif BX_CPU_LEVEL == 6
BX_CPU_THIS_PTR dr6 = 0xFFFF0FF0;
#else
# error "DR6: CPU > 6"
#endif
BX_CPU_THIS_PTR in_smm = 0;
BX_CPU_THIS_PTR disable_SMI = 0;
BX_CPU_THIS_PTR pending_SMI = 0;
BX_CPU_THIS_PTR disable_NMI = 0;
BX_CPU_THIS_PTR pending_NMI = 0;
BX_CPU_THIS_PTR disable_INIT = 0;
BX_CPU_THIS_PTR pending_INIT = 0;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
BX_CPU_THIS_PTR alignment_check_mask = 0;
#endif
if (source == BX_RESET_HARDWARE) {
BX_CPU_THIS_PTR smbase = 0x30000; // do not change SMBASE on INIT
}
BX_CPU_THIS_PTR cr0.set32(0x60000010);
// handle reserved bits
#if BX_CPU_LEVEL == 3
// reserved bits all set to 1 on 386
BX_CPU_THIS_PTR cr0.val32 |= 0x7ffffff0;
#endif
#if BX_CPU_LEVEL >= 3
BX_CPU_THIS_PTR cr1 = 0;
BX_CPU_THIS_PTR cr2 = 0;
BX_CPU_THIS_PTR cr3 = 0;
BX_CPU_THIS_PTR cr3_masked = 0;
#endif
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR cr4.set32(0);
#endif
#if BX_SUPPORT_XSAVE
BX_CPU_THIS_PTR xcr0.set32(0x1);
#endif
/* initialise MSR registers to defaults */
#if BX_CPU_LEVEL >= 5
#if BX_SUPPORT_APIC
/* APIC Address, APIC enabled and BSP is default, we'll fill in the rest later */
BX_CPU_THIS_PTR msr.apicbase = BX_LAPIC_BASE_ADDR;
BX_CPU_THIS_PTR lapic.init();
BX_CPU_THIS_PTR msr.apicbase |= 0x900;
#endif
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR efer.set32(0);
BX_CPU_THIS_PTR msr.star = 0;
BX_CPU_THIS_PTR msr.lstar = 0;
BX_CPU_THIS_PTR msr.cstar = 0;
BX_CPU_THIS_PTR msr.fmask = 0x00020200;
BX_CPU_THIS_PTR msr.kernelgsbase = 0;
BX_CPU_THIS_PTR msr.tsc_aux = 0;
#endif
if (source == BX_RESET_HARDWARE) {
BX_CPU_THIS_PTR set_TSC(0); // do not change TSC on INIT
}
#endif
#if BX_SUPPORT_SEP
BX_CPU_THIS_PTR msr.sysenter_cs_msr = 0;
BX_CPU_THIS_PTR msr.sysenter_esp_msr = 0;
BX_CPU_THIS_PTR msr.sysenter_eip_msr = 0;
#endif
// Do not change MTRR on INIT
#if BX_SUPPORT_MTRR
if (source == BX_RESET_HARDWARE) {
for (n=0; n<16; n++)
BX_CPU_THIS_PTR msr.mtrrphys[n] = 0;
BX_CPU_THIS_PTR msr.mtrrfix64k_00000 = 0; // all fix range MTRRs undefined according to manual
BX_CPU_THIS_PTR msr.mtrrfix16k_80000 = 0;
BX_CPU_THIS_PTR msr.mtrrfix16k_a0000 = 0;
for (n=0; n<8; n++)
BX_CPU_THIS_PTR msr.mtrrfix4k[n] = 0;
BX_CPU_THIS_PTR msr.pat = BX_CONST64(0x0007040600070406);
BX_CPU_THIS_PTR msr.mtrr_deftype = 0;
}
#endif
// All configurable MSRs do not change on INIT
#if BX_CONFIGURE_MSRS
if (source == BX_RESET_HARDWARE) {
for (n=0; n < BX_MSR_MAX_INDEX; n++) {
if (BX_CPU_THIS_PTR msrs[n])
BX_CPU_THIS_PTR msrs[n]->reset();
}
}
#endif
BX_CPU_THIS_PTR EXT = 0;
TLB_init();
// invalidate the prefetch queue
BX_CPU_THIS_PTR eipPageBias = 0;
BX_CPU_THIS_PTR eipPageWindowSize = 0;
BX_CPU_THIS_PTR eipFetchPtr = NULL;
handleCpuModeChange();
#if BX_DEBUGGER
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
BX_CPU_THIS_PTR magic_break = 0;
BX_CPU_THIS_PTR trace_reg = 0;
BX_CPU_THIS_PTR trace_mem = 0;
#endif
BX_CPU_THIS_PTR trace = 0;
// Reset the Floating Point Unit
#if BX_SUPPORT_FPU
if (source == BX_RESET_HARDWARE) {
BX_CPU_THIS_PTR the_i387.reset();
}
#endif
// Reset XMM state
#if BX_SUPPORT_SSE >= 1 // unchanged on #INIT
if (source == BX_RESET_HARDWARE) {
for(n=0; n<BX_XMM_REGISTERS; n++)
{
BX_CPU_THIS_PTR xmm[n].xmm64u(0) = 0;
BX_CPU_THIS_PTR xmm[n].xmm64u(1) = 0;
}
BX_CPU_THIS_PTR mxcsr.mxcsr = MXCSR_RESET;
}
#endif
#if BX_SUPPORT_VMX
BX_CPU_THIS_PTR in_vmx = BX_CPU_THIS_PTR in_vmx_guest = 0;
BX_CPU_THIS_PTR in_event = 0;
BX_CPU_THIS_PTR vmx_interrupt_window = 0;
BX_CPU_THIS_PTR vmcsptr = BX_CONST64(0xFFFFFFFFFFFFFFFF);
#endif
#if BX_SUPPORT_SMP
// notice if I'm the bootstrap processor. If not, do the equivalent of
// a HALT instruction.
int apic_id = lapic.get_id();
if (BX_BOOTSTRAP_PROCESSOR == apic_id) {
// boot normally
BX_CPU_THIS_PTR msr.apicbase |= 0x0100; /* set bit 8 BSP */
BX_INFO(("CPU[%d] is the bootstrap processor", apic_id));
} else {
// it's an application processor, halt until IPI is heard.
BX_CPU_THIS_PTR msr.apicbase &= ~0x0100; /* clear bit 8 BSP */
BX_INFO(("CPU[%d] is an application processor. Halting until IPI.", apic_id));
activity_state = BX_ACTIVITY_STATE_WAIT_FOR_SIPI;
disable_INIT = 1; // INIT is disabled when CPU is waiting for SIPI
async_event = 1;
}
#endif
// initialize CPUID values - make sure apicbase already initialized
set_cpuid_defaults();
BX_INSTR_RESET(BX_CPU_ID, source);
}
void BX_CPU_C::sanity_checks(void)
{
Bit8u al, cl, dl, bl, ah, ch, dh, bh;
Bit16u ax, cx, dx, bx, sp, bp, si, di;
Bit32u eax, ecx, edx, ebx, esp, ebp, esi, edi;
EAX = 0xFFEEDDCC;
ECX = 0xBBAA9988;
EDX = 0x77665544;
EBX = 0x332211FF;
ESP = 0xEEDDCCBB;
EBP = 0xAA998877;
ESI = 0x66554433;
EDI = 0x2211FFEE;
al = AL;
cl = CL;
dl = DL;
bl = BL;
ah = AH;
ch = CH;
dh = DH;
bh = BH;
if ( al != (EAX & 0xFF) ||
cl != (ECX & 0xFF) ||
dl != (EDX & 0xFF) ||
bl != (EBX & 0xFF) ||
ah != ((EAX >> 8) & 0xFF) ||
ch != ((ECX >> 8) & 0xFF) ||
dh != ((EDX >> 8) & 0xFF) ||
bh != ((EBX >> 8) & 0xFF) )
{
BX_PANIC(("problems using BX_READ_8BIT_REGx()!"));
}
ax = AX;
cx = CX;
dx = DX;
bx = BX;
sp = SP;
bp = BP;
si = SI;
di = DI;
if ( ax != (EAX & 0xFFFF) ||
cx != (ECX & 0xFFFF) ||
dx != (EDX & 0xFFFF) ||
bx != (EBX & 0xFFFF) ||
sp != (ESP & 0xFFFF) ||
bp != (EBP & 0xFFFF) ||
si != (ESI & 0xFFFF) ||
di != (EDI & 0xFFFF) )
{
BX_PANIC(("problems using BX_READ_16BIT_REG()!"));
}
eax = EAX;
ecx = ECX;
edx = EDX;
ebx = EBX;
esp = ESP;
ebp = EBP;
esi = ESI;
edi = EDI;
if (sizeof(Bit8u) != 1 || sizeof(Bit8s) != 1)
BX_PANIC(("data type Bit8u or Bit8s is not of length 1 byte!"));
if (sizeof(Bit16u) != 2 || sizeof(Bit16s) != 2)
BX_PANIC(("data type Bit16u or Bit16s is not of length 2 bytes!"));
if (sizeof(Bit32u) != 4 || sizeof(Bit32s) != 4)
BX_PANIC(("data type Bit32u or Bit32s is not of length 4 bytes!"));
if (sizeof(Bit64u) != 8 || sizeof(Bit64s) != 8)
BX_PANIC(("data type Bit64u or Bit64u is not of length 8 bytes!"));
BX_DEBUG(("#(%u)all sanity checks passed!", BX_CPU_ID));
}
void BX_CPU_C::assert_checks(void)
{
// check CPU mode consistency
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR efer.get_LMA()) {
if (! BX_CPU_THIS_PTR cr0.get_PE()) {
BX_PANIC(("assert_checks: EFER.LMA is set when CR0.PE=0 !"));
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l) {
if (BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64)
BX_PANIC(("assert_checks: unconsistent cpu_mode BX_MODE_LONG_64 !"));
}
else {
if (BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_COMPAT)
BX_PANIC(("assert_checks: unconsistent cpu_mode BX_MODE_LONG_COMPAT !"));
}
}
else
#endif
{
if (BX_CPU_THIS_PTR cr0.get_PE()) {
if (BX_CPU_THIS_PTR get_VM()) {
if (BX_CPU_THIS_PTR cpu_mode != BX_MODE_IA32_V8086)
BX_PANIC(("assert_checks: unconsistent cpu_mode BX_MODE_IA32_V8086 !"));
}
else {
if (BX_CPU_THIS_PTR cpu_mode != BX_MODE_IA32_PROTECTED)
BX_PANIC(("assert_checks: unconsistent cpu_mode BX_MODE_IA32_PROTECTED !"));
}
}
else {
if (BX_CPU_THIS_PTR cpu_mode != BX_MODE_IA32_REAL)
BX_PANIC(("assert_checks: unconsistent cpu_mode BX_MODE_IA32_REAL !"));
}
}
// check CR0 consistency
if (BX_CPU_THIS_PTR cr0.get_PG() && ! BX_CPU_THIS_PTR cr0.get_PE())
BX_PANIC(("assert_checks: CR0.PG=1 with CR0.PE=0 !"));
#if BX_CPU_LEVEL >= 4
if (BX_CPU_THIS_PTR cr0.get_NW() && ! BX_CPU_THIS_PTR cr0.get_CD())
BX_PANIC(("assert_checks: CR0.NW=1 with CR0.CD=0 !"));
#endif
#if BX_SUPPORT_X86_64
// VM should be OFF in long mode
if (long_mode()) {
if (BX_CPU_THIS_PTR get_VM()) BX_PANIC(("assert_checks: VM is set in long mode !"));
}
// CS.L and CS.D_B are mutualy exclusive
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l &&
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b)
{
BX_PANIC(("assert_checks: CS.l and CS.d_b set together !"));
}
#endif
// check LDTR type
if (BX_CPU_THIS_PTR ldtr.cache.valid)
{
if (BX_CPU_THIS_PTR ldtr.cache.type != BX_SYS_SEGMENT_LDT)
{
BX_PANIC(("assert_checks: LDTR is not LDT type !"));
}
}
// check Task Register type
if(BX_CPU_THIS_PTR tr.cache.valid)
{
switch(BX_CPU_THIS_PTR tr.cache.type)
{
case BX_SYS_SEGMENT_BUSY_286_TSS:
case BX_SYS_SEGMENT_AVAIL_286_TSS:
#if BX_CPU_LEVEL >= 3
if (BX_CPU_THIS_PTR tr.cache.u.system.g != 0)
BX_PANIC(("assert_checks: tss286.g != 0 !"));
if (BX_CPU_THIS_PTR tr.cache.u.system.avl != 0)
BX_PANIC(("assert_checks: tss286.avl != 0 !"));
#endif
break;
case BX_SYS_SEGMENT_BUSY_386_TSS:
case BX_SYS_SEGMENT_AVAIL_386_TSS:
break;
default:
BX_PANIC(("assert_checks: TR is not TSS type !"));
}
}
#if BX_SUPPORT_MONITOR_MWAIT
if (BX_CPU_THIS_PTR monitor.monitor_end < BX_CPU_THIS_PTR monitor.monitor_begin)
BX_PANIC(("assert_checks: MONITOR range is not set correctly !"));
#endif
}