01b0ed241b
and memcpy() - changes in getHostMemAddr() for the usage outside of the cpu
769 lines
22 KiB
C++
769 lines
22 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: misc_mem.cc,v 1.120 2008-12-13 11:03:36 vruppert Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2002 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// I/O memory handlers API Copyright (C) 2003 by Frank Cornelis
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "bochs.h"
|
|
#include "cpu/cpu.h"
|
|
#include "iodev/iodev.h"
|
|
#define LOG_THIS BX_MEM(0)->
|
|
|
|
#define BX_MEM_VECTOR_ALIGN 4096
|
|
#define BX_MEM_HANDLERS ((BX_CONST64(1) << BX_PHY_ADDRESS_WIDTH) >> 20) /* one per megabyte */
|
|
|
|
#if BX_PROVIDE_CPU_MEMORY
|
|
|
|
BX_MEM_C::BX_MEM_C()
|
|
{
|
|
char mem[6];
|
|
snprintf(mem, 6, "MEM0");
|
|
put(mem);
|
|
settype(MEMLOG);
|
|
|
|
vector = NULL;
|
|
actual_vector = NULL;
|
|
len = 0;
|
|
|
|
memory_handlers = NULL;
|
|
}
|
|
|
|
Bit8u* alloc_vector_aligned(Bit8u **actual_vector, Bit32u bytes, Bit32u alignment)
|
|
{
|
|
Bit64u test_mask = alignment - 1;
|
|
*actual_vector = new Bit8u [(Bit32u)(bytes + test_mask)];
|
|
// round address forward to nearest multiple of alignment. Alignment
|
|
// MUST BE a power of two for this to work.
|
|
Bit64u masked = ((Bit64u)(*actual_vector + test_mask)) & ~test_mask;
|
|
Bit8u *vector = (Bit8u *) masked;
|
|
// sanity check: no lost bits during pointer conversion
|
|
BX_ASSERT (sizeof(masked) >= sizeof(vector));
|
|
// sanity check: after realignment, everything fits in allocated space
|
|
BX_ASSERT (vector+bytes <= *actual_vector+bytes+test_mask);
|
|
return vector;
|
|
}
|
|
|
|
BX_MEM_C::~BX_MEM_C()
|
|
{
|
|
cleanup_memory();
|
|
}
|
|
|
|
void BX_MEM_C::init_memory(Bit32u memsize)
|
|
{
|
|
unsigned idx;
|
|
|
|
BX_DEBUG(("Init $Id: misc_mem.cc,v 1.120 2008-12-13 11:03:36 vruppert Exp $"));
|
|
|
|
if (BX_MEM_THIS actual_vector != NULL) {
|
|
BX_INFO (("freeing existing memory vector"));
|
|
delete [] BX_MEM_THIS actual_vector;
|
|
BX_MEM_THIS actual_vector = NULL;
|
|
BX_MEM_THIS vector = NULL;
|
|
}
|
|
BX_MEM_THIS vector = ::alloc_vector_aligned(&BX_MEM_THIS actual_vector, memsize + BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN);
|
|
BX_INFO (("allocated memory at %p. after alignment, vector=%p",
|
|
BX_MEM_THIS actual_vector, BX_MEM_THIS vector));
|
|
|
|
BX_MEM_THIS len = memsize;
|
|
BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[BX_MEM_HANDLERS];
|
|
BX_MEM_THIS rom = &BX_MEM_THIS vector[memsize];
|
|
BX_MEM_THIS bogus = &BX_MEM_THIS vector[memsize + BIOSROMSZ + EXROMSIZE];
|
|
#if BX_DEBUGGER
|
|
unsigned pages = get_num_allocated_pages();
|
|
BX_MEM_THIS dbg_dirty_pages = new Bit8u[pages];
|
|
memset(BX_MEM_THIS dbg_dirty_pages, 0, pages);
|
|
#endif
|
|
memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE + 4096);
|
|
for (idx = 0; idx < BX_MEM_HANDLERS; idx++)
|
|
BX_MEM_THIS memory_handlers[idx] = NULL;
|
|
for (idx = 0; idx < 65; idx++)
|
|
BX_MEM_THIS rom_present[idx] = 0;
|
|
BX_MEM_THIS pci_enabled = SIM->get_param_bool(BXPN_I440FX_SUPPORT)->get();
|
|
BX_MEM_THIS smram_available = 0;
|
|
BX_MEM_THIS smram_enable = 0;
|
|
BX_MEM_THIS smram_restricted = 0;
|
|
|
|
// accept only memory size which is multiply of 1M
|
|
BX_ASSERT((BX_MEM_THIS len & 0xfffff) == 0);
|
|
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS len / (1024.0*1024.0))));
|
|
|
|
#if BX_SUPPORT_MONITOR_MWAIT
|
|
BX_MEM_THIS monitor_active = new bx_bool[BX_SMP_PROCESSORS];
|
|
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
|
|
BX_MEM_THIS monitor_active[i] = 0;
|
|
}
|
|
BX_MEM_THIS n_monitors = 0;
|
|
#endif
|
|
|
|
register_state();
|
|
}
|
|
|
|
void BX_MEM_C::register_state()
|
|
{
|
|
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "memory", "Memory State", 3);
|
|
new bx_shadow_data_c(list, "ram", BX_MEM_THIS vector, BX_MEM_THIS len);
|
|
BXRS_DEC_PARAM_FIELD(list, len, BX_MEM_THIS len);
|
|
#if BX_SUPPORT_MONITOR_MWAIT
|
|
bx_list_c *monitors = new bx_list_c(list, "monitors", BX_SMP_PROCESSORS+1);
|
|
BXRS_PARAM_BOOL(monitors, n_monitors, BX_MEM_THIS n_monitors);
|
|
for (int i=0;i<BX_SMP_PROCESSORS;i++) {
|
|
char param_name[15];
|
|
sprintf(param_name, "cpu%d_monitor", i);
|
|
new bx_shadow_bool_c(monitors, param_name, &BX_MEM_THIS monitor_active[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void BX_MEM_C::cleanup_memory()
|
|
{
|
|
unsigned idx;
|
|
|
|
if (BX_MEM_THIS vector != NULL) {
|
|
delete [] BX_MEM_THIS actual_vector;
|
|
BX_MEM_THIS actual_vector = NULL;
|
|
BX_MEM_THIS vector = NULL;
|
|
if (BX_MEM_THIS memory_handlers != NULL) {
|
|
for (idx = 0; idx < BX_MEM_HANDLERS; idx++) {
|
|
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[idx];
|
|
struct memory_handler_struct *prev = NULL;
|
|
while (memory_handler) {
|
|
prev = memory_handler;
|
|
memory_handler = memory_handler->next;
|
|
delete prev;
|
|
}
|
|
}
|
|
delete [] BX_MEM_THIS memory_handlers;
|
|
BX_MEM_THIS memory_handlers = NULL;
|
|
}
|
|
#if BX_DEBUGGER
|
|
delete [] BX_MEM_THIS dbg_dirty_pages;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
//
|
|
// Values for type:
|
|
// 0 : System Bios
|
|
// 1 : VGA Bios
|
|
// 2 : Optional ROM Bios
|
|
//
|
|
void BX_MEM_C::load_ROM(const char *path, bx_phy_address romaddress, Bit8u type)
|
|
{
|
|
struct stat stat_buf;
|
|
int fd, ret, i, start_idx, end_idx;
|
|
unsigned long size, max_size, offset;
|
|
bx_bool is_bochs_bios = 0;
|
|
|
|
if (*path == '\0') {
|
|
if (type == 2) {
|
|
BX_PANIC(("ROM: Optional ROM image undefined"));
|
|
}
|
|
else if (type == 1) {
|
|
BX_PANIC(("ROM: VGA BIOS image undefined"));
|
|
}
|
|
else {
|
|
BX_PANIC(("ROM: System BIOS image undefined"));
|
|
}
|
|
return;
|
|
}
|
|
// read in ROM BIOS image file
|
|
fd = open(path, O_RDONLY
|
|
#ifdef O_BINARY
|
|
| O_BINARY
|
|
#endif
|
|
);
|
|
if (fd < 0) {
|
|
if (type < 2) {
|
|
BX_PANIC(("ROM: couldn't open ROM image file '%s'.", path));
|
|
}
|
|
else {
|
|
BX_ERROR(("ROM: couldn't open ROM image file '%s'.", path));
|
|
}
|
|
return;
|
|
}
|
|
ret = fstat(fd, &stat_buf);
|
|
if (ret) {
|
|
if (type < 2) {
|
|
BX_PANIC(("ROM: couldn't stat ROM image file '%s'.", path));
|
|
}
|
|
else {
|
|
BX_ERROR(("ROM: couldn't stat ROM image file '%s'.", path));
|
|
}
|
|
return;
|
|
}
|
|
|
|
size = (unsigned long)stat_buf.st_size;
|
|
|
|
if (type > 0) {
|
|
max_size = 0x10000;
|
|
} else {
|
|
max_size = BIOSROMSZ;
|
|
}
|
|
if (size > max_size) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM image too large"));
|
|
return;
|
|
}
|
|
if (type == 0) {
|
|
if (romaddress > 0) {
|
|
if ((romaddress + size) != 0x100000 && (romaddress + size)) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: System BIOS must end at 0xfffff"));
|
|
return;
|
|
}
|
|
} else {
|
|
romaddress = -size;
|
|
}
|
|
offset = romaddress & BIOS_MASK;
|
|
if ((romaddress & 0xf0000) < 0xf0000) {
|
|
BX_MEM_THIS rom_present[64] = 1;
|
|
}
|
|
is_bochs_bios = (strstr(path, "BIOS-bochs-latest") != NULL);
|
|
} else {
|
|
if ((size % 512) != 0) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM image size must be multiple of 512 (size = %ld)", size));
|
|
return;
|
|
}
|
|
if ((romaddress % 2048) != 0) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM image must start at a 2k boundary"));
|
|
return;
|
|
}
|
|
if ((romaddress < 0xc0000) ||
|
|
(((romaddress + size - 1) > 0xdffff) && (romaddress < 0xe0000))) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM address space out of range"));
|
|
return;
|
|
}
|
|
if (romaddress < 0xe0000) {
|
|
offset = (romaddress & EXROM_MASK) + BIOSROMSZ;
|
|
start_idx = ((romaddress - 0xc0000) >> 11);
|
|
end_idx = start_idx + (size >> 11) + (((size % 2048) > 0) ? 1 : 0);
|
|
} else {
|
|
offset = romaddress & BIOS_MASK;
|
|
start_idx = 64;
|
|
end_idx = 64;
|
|
}
|
|
for (i = start_idx; i < end_idx; i++) {
|
|
if (BX_MEM_THIS rom_present[i]) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: address space 0x%x already in use", (i * 2048) + 0xc0000));
|
|
return;
|
|
} else {
|
|
BX_MEM_THIS rom_present[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
while (size > 0) {
|
|
ret = read(fd, (bx_ptr_t) &BX_MEM_THIS rom[offset], size);
|
|
if (ret <= 0) {
|
|
BX_PANIC(("ROM: read failed on BIOS image: '%s'",path));
|
|
}
|
|
size -= ret;
|
|
offset += ret;
|
|
}
|
|
close(fd);
|
|
offset -= (unsigned long)stat_buf.st_size;
|
|
if (((romaddress & 0xfffff) != 0xe0000) ||
|
|
((BX_MEM_THIS rom[offset] == 0x55) && (BX_MEM_THIS rom[offset+1] == 0xaa))) {
|
|
Bit8u checksum = 0;
|
|
for (i = 0; i < stat_buf.st_size; i++) {
|
|
checksum += BX_MEM_THIS rom[offset + i];
|
|
}
|
|
if (checksum != 0) {
|
|
if (type == 1) {
|
|
BX_PANIC(("ROM: checksum error in VGABIOS image: '%s'", path));
|
|
} else if (is_bochs_bios) {
|
|
BX_ERROR(("ROM: checksum error in BIOS image: '%s'", path));
|
|
}
|
|
}
|
|
}
|
|
BX_INFO(("rom at 0x%05x/%u ('%s')",
|
|
(unsigned) romaddress,
|
|
(unsigned) stat_buf.st_size,
|
|
path));
|
|
}
|
|
|
|
void BX_MEM_C::load_RAM(const char *path, bx_phy_address ramaddress, Bit8u type)
|
|
{
|
|
struct stat stat_buf;
|
|
int fd, ret;
|
|
unsigned long size, offset;
|
|
|
|
if (*path == '\0') {
|
|
BX_PANIC(("RAM: Optional RAM image undefined"));
|
|
return;
|
|
}
|
|
// read in RAM BIOS image file
|
|
fd = open(path, O_RDONLY
|
|
#ifdef O_BINARY
|
|
| O_BINARY
|
|
#endif
|
|
);
|
|
if (fd < 0) {
|
|
BX_PANIC(("RAM: couldn't open RAM image file '%s'.", path));
|
|
return;
|
|
}
|
|
ret = fstat(fd, &stat_buf);
|
|
if (ret) {
|
|
BX_PANIC(("RAM: couldn't stat RAM image file '%s'.", path));
|
|
return;
|
|
}
|
|
|
|
size = (unsigned long)stat_buf.st_size;
|
|
|
|
offset = ramaddress;
|
|
while (size > 0) {
|
|
ret = read(fd, (bx_ptr_t) BX_MEM_THIS get_vector(offset), size);
|
|
if (ret <= 0) {
|
|
BX_PANIC(("RAM: read failed on RAM image: '%s'",path));
|
|
}
|
|
size -= ret;
|
|
offset += ret;
|
|
}
|
|
close(fd);
|
|
BX_INFO(("ram at 0x%05x/%u ('%s')",
|
|
(unsigned) ramaddress,
|
|
(unsigned) stat_buf.st_size,
|
|
path));
|
|
}
|
|
#endif // #if BX_PROVIDE_CPU_MEMORY
|
|
|
|
|
|
#if (BX_DEBUGGER || BX_DISASM || BX_GDBSTUB)
|
|
bx_bool BX_MEM_C::dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf)
|
|
{
|
|
bx_bool ret = 1;
|
|
|
|
for (; len>0; len--) {
|
|
// Reading standard PCI/ISA Video Mem / SMMRAM
|
|
if ((addr & 0xfffe0000) == 0x000a0000) {
|
|
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
|
|
*buf = *(BX_MEM_THIS get_vector(addr));
|
|
else
|
|
*buf = DEV_vga_mem_read(addr);
|
|
}
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && ((addr & 0xfffc0000) == 0x000c0000))
|
|
{
|
|
switch (DEV_pci_rd_memtype (addr)) {
|
|
case 0x0: // Read from ROM
|
|
if ((addr & 0xfffe0000) == 0x000e0000)
|
|
{
|
|
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
|
|
}
|
|
else
|
|
{
|
|
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
|
|
}
|
|
break;
|
|
case 0x1: // Read from ShadowRAM
|
|
*buf = *(BX_MEM_THIS get_vector(addr));
|
|
break;
|
|
default:
|
|
BX_PANIC(("dbg_fetch_mem: default case"));
|
|
}
|
|
}
|
|
#endif // #if BX_SUPPORT_PCI
|
|
else if (addr < BX_MEM_THIS len)
|
|
{
|
|
if ((addr & 0xfffc0000) != 0x000c0000) {
|
|
*buf = *(BX_MEM_THIS get_vector(addr));
|
|
}
|
|
else if ((addr & 0xfffe0000) == 0x000e0000)
|
|
{
|
|
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
|
|
}
|
|
else
|
|
{
|
|
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
|
|
}
|
|
}
|
|
#if BX_PHY_ADDRESS_LONG
|
|
else if (addr >= BX_CONST64(0xFFFFFFFF)) {
|
|
*buf = 0xff;
|
|
ret = 0; // error, beyond limits of memory
|
|
}
|
|
#endif
|
|
else if (addr >= (bx_phy_address)~BIOS_MASK)
|
|
{
|
|
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
|
|
}
|
|
else
|
|
{
|
|
*buf = 0xff;
|
|
ret = 0; // error, beyond limits of memory
|
|
}
|
|
buf++;
|
|
addr++;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#if BX_DEBUGGER || BX_GDBSTUB
|
|
bx_bool BX_MEM_C::dbg_set_mem(bx_phy_address addr, unsigned len, Bit8u *buf)
|
|
{
|
|
if ((addr + len - 1) > BX_MEM_THIS len) {
|
|
return(0); // error, beyond limits of memory
|
|
}
|
|
for (; len>0; len--) {
|
|
// Write to standard PCI/ISA Video Mem / SMMRAM
|
|
if ((addr & 0xfffe0000) == 0x000a0000) {
|
|
if (BX_MEM_THIS smram_enable)
|
|
*(BX_MEM_THIS get_vector(addr)) = *buf;
|
|
else
|
|
DEV_vga_mem_write(addr, *buf);
|
|
}
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && ((addr & 0xfffc0000) == 0x000c0000))
|
|
{
|
|
switch (DEV_pci_wr_memtype (addr)) {
|
|
case 0x0: // Ignore write to ROM
|
|
break;
|
|
case 0x1: // Write to ShadowRAM
|
|
*(BX_MEM_THIS get_vector(addr)) = *buf;
|
|
break;
|
|
default:
|
|
BX_PANIC(("dbg_fetch_mem: default case"));
|
|
}
|
|
}
|
|
#endif // #if BX_SUPPORT_PCI
|
|
else if ((addr & 0xfffc0000) != 0x000c0000 && (addr < (bx_phy_address)(~BIOS_MASK)))
|
|
{
|
|
*(BX_MEM_THIS get_vector(addr)) = *buf;
|
|
}
|
|
buf++;
|
|
addr++;
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
bx_bool BX_MEM_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc)
|
|
{
|
|
*crc = 0;
|
|
if (addr1 > addr2)
|
|
return(0);
|
|
|
|
if (addr2 >= BX_MEM_THIS len)
|
|
return(0); // error, specified address past last phy mem addr
|
|
|
|
unsigned len = 1 + addr2 - addr1;
|
|
|
|
// do not cross 4K boundary
|
|
while(1) {
|
|
unsigned remainsInPage = 0x1000 - (addr1 & 0xfff);
|
|
unsigned access_length = (len < remainsInPage) ? len : remainsInPage;
|
|
*crc = crc32(BX_MEM_THIS get_vector(addr1), access_length);
|
|
addr1 += access_length;
|
|
len -= access_length;
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Return a host address corresponding to the guest physical memory
|
|
// address (with A20 already applied), given that the calling
|
|
// code will perform an 'op' operation. This address will be
|
|
// used for direct access to guest memory as an acceleration by
|
|
// a few instructions, like REP {MOV, INS, OUTS, etc}.
|
|
// Values of 'op' are { BX_READ, BX_WRITE, BX_EXECUTE, BX_RW }.
|
|
//
|
|
// The other assumption is that the calling code _only_ accesses memory
|
|
// directly within the page that encompasses the address requested.
|
|
//
|
|
|
|
//
|
|
// Memory map inside the 1st megabyte:
|
|
//
|
|
// 0x00000 - 0x7ffff DOS area (512K)
|
|
// 0x80000 - 0x9ffff Optional fixed memory hole (128K)
|
|
// 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K)
|
|
// 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K)
|
|
// 0xe0000 - 0xeffff Lower BIOS Area (64K)
|
|
// 0xf0000 - 0xfffff Upper BIOS Area (64K)
|
|
//
|
|
|
|
Bit8u *BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address a20Addr, unsigned rw)
|
|
{
|
|
#if BX_SUPPORT_APIC
|
|
if (cpu != NULL) {
|
|
bx_generic_apic_c *local_apic = &cpu->local_apic;
|
|
if (local_apic->get_base() == (a20Addr & ~0xfff))
|
|
return(NULL); // Vetoed! APIC address space
|
|
}
|
|
#endif
|
|
|
|
bx_bool write = rw & 1;
|
|
|
|
// allow direct access to SMRAM memory space for code and veto data
|
|
if ((cpu != NULL) && (rw == BX_EXECUTE)) {
|
|
// reading from SMRAM memory space
|
|
if ((a20Addr & 0xfffe0000) == 0x000a0000 && (BX_MEM_THIS smram_available))
|
|
{
|
|
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
|
|
return BX_MEM_THIS get_vector(a20Addr);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_MONITOR_MWAIT
|
|
if (BX_MEM_THIS is_monitor(a20Addr & ~0xfff, 0x1000)) {
|
|
// Vetoed! Write monitored page !
|
|
if (write) return(NULL);
|
|
}
|
|
#endif
|
|
|
|
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[a20Addr >> 20];
|
|
while (memory_handler) {
|
|
if (memory_handler->begin <= a20Addr &&
|
|
memory_handler->end >= a20Addr) {
|
|
return(NULL); // Vetoed! memory handler for i/o apic, vram, mmio and PCI PnP
|
|
}
|
|
memory_handler = memory_handler->next;
|
|
}
|
|
|
|
if (! write) {
|
|
if ((a20Addr & 0xfffe0000) == 0x000a0000)
|
|
return(NULL); // Vetoed! Mem mapped IO (VGA)
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && ((a20Addr & 0xfffc0000) == 0x000c0000))
|
|
{
|
|
switch (DEV_pci_rd_memtype (a20Addr)) {
|
|
case 0x0: // Read from ROM
|
|
if ((a20Addr & 0xfffe0000) == 0x000e0000)
|
|
{
|
|
return (Bit8u *) &BX_MEM_THIS rom[a20Addr & BIOS_MASK];
|
|
}
|
|
else {
|
|
return (Bit8u *) &BX_MEM_THIS rom[(a20Addr & EXROM_MASK) + BIOSROMSZ];
|
|
}
|
|
break;
|
|
case 0x1: // Read from ShadowRAM
|
|
return BX_MEM_THIS get_vector(a20Addr);
|
|
default:
|
|
BX_PANIC(("getHostMemAddr(): default case"));
|
|
return(NULL);
|
|
}
|
|
}
|
|
#endif
|
|
else if(a20Addr < BX_MEM_THIS len)
|
|
{
|
|
if ((a20Addr & 0xfffc0000) != 0x000c0000) {
|
|
return BX_MEM_THIS get_vector(a20Addr);
|
|
}
|
|
else if ((a20Addr & 0xfffe0000) == 0x000e0000)
|
|
{
|
|
return (Bit8u *) &BX_MEM_THIS rom[a20Addr & BIOS_MASK];
|
|
}
|
|
else {
|
|
return((Bit8u *) &BX_MEM_THIS rom[(a20Addr & EXROM_MASK) + BIOSROMSZ]);
|
|
}
|
|
}
|
|
#if BX_PHY_ADDRESS_LONG
|
|
else if (a20Addr >= BX_CONST64(0xFFFFFFFF)) {
|
|
// Error, requested addr is out of bounds.
|
|
return (Bit8u *) &BX_MEM_THIS bogus[a20Addr & 0xfff];
|
|
}
|
|
#endif
|
|
else if (a20Addr >= (bx_phy_address)~BIOS_MASK)
|
|
{
|
|
return (Bit8u *) &BX_MEM_THIS rom[a20Addr & BIOS_MASK];
|
|
}
|
|
else
|
|
{
|
|
// Error, requested addr is out of bounds.
|
|
return (Bit8u *) &BX_MEM_THIS bogus[a20Addr & 0xfff];
|
|
}
|
|
}
|
|
else
|
|
{ // op == {BX_WRITE, BX_RW}
|
|
Bit8u *retAddr;
|
|
if (a20Addr >= BX_MEM_THIS len)
|
|
return(NULL); // Error, requested addr is out of bounds.
|
|
else if ((a20Addr & 0xfffe0000) == 0x000a0000)
|
|
return(NULL); // Vetoed! Mem mapped IO (VGA)
|
|
else if (a20Addr >= (bx_phy_address)~BIOS_MASK)
|
|
return(NULL); // Vetoed! ROMs
|
|
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && ((a20Addr & 0xfffc0000) == 0x000c0000))
|
|
{
|
|
// Veto direct writes to this area. Otherwise, there is a chance
|
|
// for Guest2HostTLB and memory consistency problems, for example
|
|
// when some 16K block marked as write-only using PAM registers.
|
|
return(NULL);
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
if ((a20Addr & 0xfffc0000) != 0x000c0000) {
|
|
retAddr = BX_MEM_THIS get_vector(a20Addr);
|
|
}
|
|
else {
|
|
return(NULL); // Vetoed! ROMs
|
|
}
|
|
}
|
|
|
|
return retAddr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* One needs to provide both a read_handler and a write_handler.
|
|
* XXX: maybe we should check for overlapping memory handlers
|
|
*/
|
|
bx_bool
|
|
BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler,
|
|
memory_handler_t write_handler, bx_phy_address begin_addr, bx_phy_address end_addr)
|
|
{
|
|
if (end_addr < begin_addr)
|
|
return 0;
|
|
if (!read_handler || !write_handler)
|
|
return 0;
|
|
BX_INFO(("Register memory access handlers: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
|
|
for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) {
|
|
struct memory_handler_struct *memory_handler = new struct memory_handler_struct;
|
|
memory_handler->next = BX_MEM_THIS memory_handlers[page_idx];
|
|
BX_MEM_THIS memory_handlers[page_idx] = memory_handler;
|
|
memory_handler->read_handler = read_handler;
|
|
memory_handler->write_handler = write_handler;
|
|
memory_handler->param = param;
|
|
memory_handler->begin = begin_addr;
|
|
memory_handler->end = end_addr;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
bx_bool
|
|
BX_MEM_C::unregisterMemoryHandlers(memory_handler_t read_handler, memory_handler_t write_handler,
|
|
bx_phy_address begin_addr, bx_phy_address end_addr)
|
|
{
|
|
bx_bool ret = 1;
|
|
BX_INFO(("Memory access handlers unregistered: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
|
|
for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) {
|
|
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[page_idx];
|
|
struct memory_handler_struct *prev = NULL;
|
|
while (memory_handler &&
|
|
memory_handler->read_handler != read_handler &&
|
|
memory_handler->write_handler != write_handler &&
|
|
memory_handler->begin != begin_addr &&
|
|
memory_handler->end != end_addr)
|
|
{
|
|
prev = memory_handler;
|
|
memory_handler = memory_handler->next;
|
|
}
|
|
if (!memory_handler) {
|
|
ret = 0; // we should have found it
|
|
continue; // anyway, try the other pages
|
|
}
|
|
if (prev)
|
|
prev->next = memory_handler->next;
|
|
else
|
|
BX_MEM_THIS memory_handlers[page_idx] = memory_handler->next;
|
|
delete memory_handler;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void BX_MEM_C::enable_smram(bx_bool enable, bx_bool restricted)
|
|
{
|
|
BX_MEM_THIS smram_available = 1;
|
|
BX_MEM_THIS smram_enable = (enable > 0);
|
|
BX_MEM_THIS smram_restricted = (restricted > 0);
|
|
}
|
|
|
|
void BX_MEM_C::disable_smram(void)
|
|
{
|
|
BX_MEM_THIS smram_available = 0;
|
|
BX_MEM_THIS smram_enable = 0;
|
|
BX_MEM_THIS smram_restricted = 0;
|
|
}
|
|
|
|
// check if SMRAM is aavailable for CPU data accesses
|
|
bx_bool BX_MEM_C::is_smram_accessible(void)
|
|
{
|
|
return(BX_MEM_THIS smram_available) &&
|
|
(BX_MEM_THIS smram_enable || !BX_MEM_THIS smram_restricted);
|
|
}
|
|
|
|
#if BX_SUPPORT_MONITOR_MWAIT
|
|
|
|
//
|
|
// MONITOR/MWAIT - x86arch way to optimize idle loops in CPU
|
|
//
|
|
|
|
void BX_MEM_C::set_monitor(unsigned cpu)
|
|
{
|
|
BX_ASSERT(cpu < BX_SMP_PROCESSORS);
|
|
if (! BX_MEM_THIS monitor_active[cpu]) {
|
|
BX_MEM_THIS monitor_active[cpu] = 1;
|
|
BX_MEM_THIS n_monitors++;
|
|
BX_DEBUG(("activate monitor for cpu=%d", cpu));
|
|
}
|
|
else {
|
|
BX_DEBUG(("monitor for cpu=%d already active !", cpu));
|
|
}
|
|
}
|
|
|
|
void BX_MEM_C::clear_monitor(unsigned cpu)
|
|
{
|
|
BX_ASSERT(cpu < BX_SMP_PROCESSORS);
|
|
BX_MEM_THIS monitor_active[cpu] = 0;
|
|
BX_MEM_THIS n_monitors--;
|
|
BX_DEBUG(("deactivate monitor for cpu=%d", cpu));
|
|
}
|
|
|
|
bx_bool BX_MEM_C::is_monitor(bx_phy_address begin_addr, unsigned len)
|
|
{
|
|
if (BX_MEM_THIS n_monitors == 0) return 0;
|
|
|
|
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
|
|
if (BX_MEM_THIS monitor_active[i]) {
|
|
if (BX_CPU(i)->is_monitor(begin_addr, len))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0; // // this is NOT monitored page
|
|
}
|
|
|
|
void BX_MEM_C::check_monitor(bx_phy_address begin_addr, unsigned len)
|
|
{
|
|
if (BX_MEM_THIS n_monitors == 0) return;
|
|
|
|
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
|
|
if (BX_MEM_THIS monitor_active[i]) {
|
|
BX_CPU(i)->check_monitor(begin_addr, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|