Bochs/bochs/memory/misc_mem.cc
Volker Ruppert 01b0ed241b - fixed endianness problems at PCI DMA block transfers using getHostMemAddr()
and memcpy()
- changes in getHostMemAddr() for the usage outside of the cpu
2008-12-13 11:03:36 +00:00

769 lines
22 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: misc_mem.cc,v 1.120 2008-12-13 11:03:36 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// I/O memory handlers API Copyright (C) 2003 by Frank Cornelis
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "cpu/cpu.h"
#include "iodev/iodev.h"
#define LOG_THIS BX_MEM(0)->
#define BX_MEM_VECTOR_ALIGN 4096
#define BX_MEM_HANDLERS ((BX_CONST64(1) << BX_PHY_ADDRESS_WIDTH) >> 20) /* one per megabyte */
#if BX_PROVIDE_CPU_MEMORY
BX_MEM_C::BX_MEM_C()
{
char mem[6];
snprintf(mem, 6, "MEM0");
put(mem);
settype(MEMLOG);
vector = NULL;
actual_vector = NULL;
len = 0;
memory_handlers = NULL;
}
Bit8u* alloc_vector_aligned(Bit8u **actual_vector, Bit32u bytes, Bit32u alignment)
{
Bit64u test_mask = alignment - 1;
*actual_vector = new Bit8u [(Bit32u)(bytes + test_mask)];
// round address forward to nearest multiple of alignment. Alignment
// MUST BE a power of two for this to work.
Bit64u masked = ((Bit64u)(*actual_vector + test_mask)) & ~test_mask;
Bit8u *vector = (Bit8u *) masked;
// sanity check: no lost bits during pointer conversion
BX_ASSERT (sizeof(masked) >= sizeof(vector));
// sanity check: after realignment, everything fits in allocated space
BX_ASSERT (vector+bytes <= *actual_vector+bytes+test_mask);
return vector;
}
BX_MEM_C::~BX_MEM_C()
{
cleanup_memory();
}
void BX_MEM_C::init_memory(Bit32u memsize)
{
unsigned idx;
BX_DEBUG(("Init $Id: misc_mem.cc,v 1.120 2008-12-13 11:03:36 vruppert Exp $"));
if (BX_MEM_THIS actual_vector != NULL) {
BX_INFO (("freeing existing memory vector"));
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
}
BX_MEM_THIS vector = ::alloc_vector_aligned(&BX_MEM_THIS actual_vector, memsize + BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN);
BX_INFO (("allocated memory at %p. after alignment, vector=%p",
BX_MEM_THIS actual_vector, BX_MEM_THIS vector));
BX_MEM_THIS len = memsize;
BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[BX_MEM_HANDLERS];
BX_MEM_THIS rom = &BX_MEM_THIS vector[memsize];
BX_MEM_THIS bogus = &BX_MEM_THIS vector[memsize + BIOSROMSZ + EXROMSIZE];
#if BX_DEBUGGER
unsigned pages = get_num_allocated_pages();
BX_MEM_THIS dbg_dirty_pages = new Bit8u[pages];
memset(BX_MEM_THIS dbg_dirty_pages, 0, pages);
#endif
memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE + 4096);
for (idx = 0; idx < BX_MEM_HANDLERS; idx++)
BX_MEM_THIS memory_handlers[idx] = NULL;
for (idx = 0; idx < 65; idx++)
BX_MEM_THIS rom_present[idx] = 0;
BX_MEM_THIS pci_enabled = SIM->get_param_bool(BXPN_I440FX_SUPPORT)->get();
BX_MEM_THIS smram_available = 0;
BX_MEM_THIS smram_enable = 0;
BX_MEM_THIS smram_restricted = 0;
// accept only memory size which is multiply of 1M
BX_ASSERT((BX_MEM_THIS len & 0xfffff) == 0);
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS len / (1024.0*1024.0))));
#if BX_SUPPORT_MONITOR_MWAIT
BX_MEM_THIS monitor_active = new bx_bool[BX_SMP_PROCESSORS];
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
BX_MEM_THIS monitor_active[i] = 0;
}
BX_MEM_THIS n_monitors = 0;
#endif
register_state();
}
void BX_MEM_C::register_state()
{
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "memory", "Memory State", 3);
new bx_shadow_data_c(list, "ram", BX_MEM_THIS vector, BX_MEM_THIS len);
BXRS_DEC_PARAM_FIELD(list, len, BX_MEM_THIS len);
#if BX_SUPPORT_MONITOR_MWAIT
bx_list_c *monitors = new bx_list_c(list, "monitors", BX_SMP_PROCESSORS+1);
BXRS_PARAM_BOOL(monitors, n_monitors, BX_MEM_THIS n_monitors);
for (int i=0;i<BX_SMP_PROCESSORS;i++) {
char param_name[15];
sprintf(param_name, "cpu%d_monitor", i);
new bx_shadow_bool_c(monitors, param_name, &BX_MEM_THIS monitor_active[i]);
}
#endif
}
void BX_MEM_C::cleanup_memory()
{
unsigned idx;
if (BX_MEM_THIS vector != NULL) {
delete [] BX_MEM_THIS actual_vector;
BX_MEM_THIS actual_vector = NULL;
BX_MEM_THIS vector = NULL;
if (BX_MEM_THIS memory_handlers != NULL) {
for (idx = 0; idx < BX_MEM_HANDLERS; idx++) {
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[idx];
struct memory_handler_struct *prev = NULL;
while (memory_handler) {
prev = memory_handler;
memory_handler = memory_handler->next;
delete prev;
}
}
delete [] BX_MEM_THIS memory_handlers;
BX_MEM_THIS memory_handlers = NULL;
}
#if BX_DEBUGGER
delete [] BX_MEM_THIS dbg_dirty_pages;
#endif
}
}
//
// Values for type:
// 0 : System Bios
// 1 : VGA Bios
// 2 : Optional ROM Bios
//
void BX_MEM_C::load_ROM(const char *path, bx_phy_address romaddress, Bit8u type)
{
struct stat stat_buf;
int fd, ret, i, start_idx, end_idx;
unsigned long size, max_size, offset;
bx_bool is_bochs_bios = 0;
if (*path == '\0') {
if (type == 2) {
BX_PANIC(("ROM: Optional ROM image undefined"));
}
else if (type == 1) {
BX_PANIC(("ROM: VGA BIOS image undefined"));
}
else {
BX_PANIC(("ROM: System BIOS image undefined"));
}
return;
}
// read in ROM BIOS image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
if (type < 2) {
BX_PANIC(("ROM: couldn't open ROM image file '%s'.", path));
}
else {
BX_ERROR(("ROM: couldn't open ROM image file '%s'.", path));
}
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
if (type < 2) {
BX_PANIC(("ROM: couldn't stat ROM image file '%s'.", path));
}
else {
BX_ERROR(("ROM: couldn't stat ROM image file '%s'.", path));
}
return;
}
size = (unsigned long)stat_buf.st_size;
if (type > 0) {
max_size = 0x10000;
} else {
max_size = BIOSROMSZ;
}
if (size > max_size) {
close(fd);
BX_PANIC(("ROM: ROM image too large"));
return;
}
if (type == 0) {
if (romaddress > 0) {
if ((romaddress + size) != 0x100000 && (romaddress + size)) {
close(fd);
BX_PANIC(("ROM: System BIOS must end at 0xfffff"));
return;
}
} else {
romaddress = -size;
}
offset = romaddress & BIOS_MASK;
if ((romaddress & 0xf0000) < 0xf0000) {
BX_MEM_THIS rom_present[64] = 1;
}
is_bochs_bios = (strstr(path, "BIOS-bochs-latest") != NULL);
} else {
if ((size % 512) != 0) {
close(fd);
BX_PANIC(("ROM: ROM image size must be multiple of 512 (size = %ld)", size));
return;
}
if ((romaddress % 2048) != 0) {
close(fd);
BX_PANIC(("ROM: ROM image must start at a 2k boundary"));
return;
}
if ((romaddress < 0xc0000) ||
(((romaddress + size - 1) > 0xdffff) && (romaddress < 0xe0000))) {
close(fd);
BX_PANIC(("ROM: ROM address space out of range"));
return;
}
if (romaddress < 0xe0000) {
offset = (romaddress & EXROM_MASK) + BIOSROMSZ;
start_idx = ((romaddress - 0xc0000) >> 11);
end_idx = start_idx + (size >> 11) + (((size % 2048) > 0) ? 1 : 0);
} else {
offset = romaddress & BIOS_MASK;
start_idx = 64;
end_idx = 64;
}
for (i = start_idx; i < end_idx; i++) {
if (BX_MEM_THIS rom_present[i]) {
close(fd);
BX_PANIC(("ROM: address space 0x%x already in use", (i * 2048) + 0xc0000));
return;
} else {
BX_MEM_THIS rom_present[i] = 1;
}
}
}
while (size > 0) {
ret = read(fd, (bx_ptr_t) &BX_MEM_THIS rom[offset], size);
if (ret <= 0) {
BX_PANIC(("ROM: read failed on BIOS image: '%s'",path));
}
size -= ret;
offset += ret;
}
close(fd);
offset -= (unsigned long)stat_buf.st_size;
if (((romaddress & 0xfffff) != 0xe0000) ||
((BX_MEM_THIS rom[offset] == 0x55) && (BX_MEM_THIS rom[offset+1] == 0xaa))) {
Bit8u checksum = 0;
for (i = 0; i < stat_buf.st_size; i++) {
checksum += BX_MEM_THIS rom[offset + i];
}
if (checksum != 0) {
if (type == 1) {
BX_PANIC(("ROM: checksum error in VGABIOS image: '%s'", path));
} else if (is_bochs_bios) {
BX_ERROR(("ROM: checksum error in BIOS image: '%s'", path));
}
}
}
BX_INFO(("rom at 0x%05x/%u ('%s')",
(unsigned) romaddress,
(unsigned) stat_buf.st_size,
path));
}
void BX_MEM_C::load_RAM(const char *path, bx_phy_address ramaddress, Bit8u type)
{
struct stat stat_buf;
int fd, ret;
unsigned long size, offset;
if (*path == '\0') {
BX_PANIC(("RAM: Optional RAM image undefined"));
return;
}
// read in RAM BIOS image file
fd = open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
BX_PANIC(("RAM: couldn't open RAM image file '%s'.", path));
return;
}
ret = fstat(fd, &stat_buf);
if (ret) {
BX_PANIC(("RAM: couldn't stat RAM image file '%s'.", path));
return;
}
size = (unsigned long)stat_buf.st_size;
offset = ramaddress;
while (size > 0) {
ret = read(fd, (bx_ptr_t) BX_MEM_THIS get_vector(offset), size);
if (ret <= 0) {
BX_PANIC(("RAM: read failed on RAM image: '%s'",path));
}
size -= ret;
offset += ret;
}
close(fd);
BX_INFO(("ram at 0x%05x/%u ('%s')",
(unsigned) ramaddress,
(unsigned) stat_buf.st_size,
path));
}
#endif // #if BX_PROVIDE_CPU_MEMORY
#if (BX_DEBUGGER || BX_DISASM || BX_GDBSTUB)
bx_bool BX_MEM_C::dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf)
{
bx_bool ret = 1;
for (; len>0; len--) {
// Reading standard PCI/ISA Video Mem / SMMRAM
if ((addr & 0xfffe0000) == 0x000a0000) {
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
*buf = *(BX_MEM_THIS get_vector(addr));
else
*buf = DEV_vga_mem_read(addr);
}
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && ((addr & 0xfffc0000) == 0x000c0000))
{
switch (DEV_pci_rd_memtype (addr)) {
case 0x0: // Read from ROM
if ((addr & 0xfffe0000) == 0x000e0000)
{
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
}
else
{
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
}
break;
case 0x1: // Read from ShadowRAM
*buf = *(BX_MEM_THIS get_vector(addr));
break;
default:
BX_PANIC(("dbg_fetch_mem: default case"));
}
}
#endif // #if BX_SUPPORT_PCI
else if (addr < BX_MEM_THIS len)
{
if ((addr & 0xfffc0000) != 0x000c0000) {
*buf = *(BX_MEM_THIS get_vector(addr));
}
else if ((addr & 0xfffe0000) == 0x000e0000)
{
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
}
else
{
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
}
}
#if BX_PHY_ADDRESS_LONG
else if (addr >= BX_CONST64(0xFFFFFFFF)) {
*buf = 0xff;
ret = 0; // error, beyond limits of memory
}
#endif
else if (addr >= (bx_phy_address)~BIOS_MASK)
{
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
}
else
{
*buf = 0xff;
ret = 0; // error, beyond limits of memory
}
buf++;
addr++;
}
return ret;
}
#endif
#if BX_DEBUGGER || BX_GDBSTUB
bx_bool BX_MEM_C::dbg_set_mem(bx_phy_address addr, unsigned len, Bit8u *buf)
{
if ((addr + len - 1) > BX_MEM_THIS len) {
return(0); // error, beyond limits of memory
}
for (; len>0; len--) {
// Write to standard PCI/ISA Video Mem / SMMRAM
if ((addr & 0xfffe0000) == 0x000a0000) {
if (BX_MEM_THIS smram_enable)
*(BX_MEM_THIS get_vector(addr)) = *buf;
else
DEV_vga_mem_write(addr, *buf);
}
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && ((addr & 0xfffc0000) == 0x000c0000))
{
switch (DEV_pci_wr_memtype (addr)) {
case 0x0: // Ignore write to ROM
break;
case 0x1: // Write to ShadowRAM
*(BX_MEM_THIS get_vector(addr)) = *buf;
break;
default:
BX_PANIC(("dbg_fetch_mem: default case"));
}
}
#endif // #if BX_SUPPORT_PCI
else if ((addr & 0xfffc0000) != 0x000c0000 && (addr < (bx_phy_address)(~BIOS_MASK)))
{
*(BX_MEM_THIS get_vector(addr)) = *buf;
}
buf++;
addr++;
}
return(1);
}
bx_bool BX_MEM_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc)
{
*crc = 0;
if (addr1 > addr2)
return(0);
if (addr2 >= BX_MEM_THIS len)
return(0); // error, specified address past last phy mem addr
unsigned len = 1 + addr2 - addr1;
// do not cross 4K boundary
while(1) {
unsigned remainsInPage = 0x1000 - (addr1 & 0xfff);
unsigned access_length = (len < remainsInPage) ? len : remainsInPage;
*crc = crc32(BX_MEM_THIS get_vector(addr1), access_length);
addr1 += access_length;
len -= access_length;
}
return(1);
}
#endif
//
// Return a host address corresponding to the guest physical memory
// address (with A20 already applied), given that the calling
// code will perform an 'op' operation. This address will be
// used for direct access to guest memory as an acceleration by
// a few instructions, like REP {MOV, INS, OUTS, etc}.
// Values of 'op' are { BX_READ, BX_WRITE, BX_EXECUTE, BX_RW }.
//
// The other assumption is that the calling code _only_ accesses memory
// directly within the page that encompasses the address requested.
//
//
// Memory map inside the 1st megabyte:
//
// 0x00000 - 0x7ffff DOS area (512K)
// 0x80000 - 0x9ffff Optional fixed memory hole (128K)
// 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K)
// 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K)
// 0xe0000 - 0xeffff Lower BIOS Area (64K)
// 0xf0000 - 0xfffff Upper BIOS Area (64K)
//
Bit8u *BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address a20Addr, unsigned rw)
{
#if BX_SUPPORT_APIC
if (cpu != NULL) {
bx_generic_apic_c *local_apic = &cpu->local_apic;
if (local_apic->get_base() == (a20Addr & ~0xfff))
return(NULL); // Vetoed! APIC address space
}
#endif
bx_bool write = rw & 1;
// allow direct access to SMRAM memory space for code and veto data
if ((cpu != NULL) && (rw == BX_EXECUTE)) {
// reading from SMRAM memory space
if ((a20Addr & 0xfffe0000) == 0x000a0000 && (BX_MEM_THIS smram_available))
{
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
return BX_MEM_THIS get_vector(a20Addr);
}
}
#if BX_SUPPORT_MONITOR_MWAIT
if (BX_MEM_THIS is_monitor(a20Addr & ~0xfff, 0x1000)) {
// Vetoed! Write monitored page !
if (write) return(NULL);
}
#endif
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[a20Addr >> 20];
while (memory_handler) {
if (memory_handler->begin <= a20Addr &&
memory_handler->end >= a20Addr) {
return(NULL); // Vetoed! memory handler for i/o apic, vram, mmio and PCI PnP
}
memory_handler = memory_handler->next;
}
if (! write) {
if ((a20Addr & 0xfffe0000) == 0x000a0000)
return(NULL); // Vetoed! Mem mapped IO (VGA)
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && ((a20Addr & 0xfffc0000) == 0x000c0000))
{
switch (DEV_pci_rd_memtype (a20Addr)) {
case 0x0: // Read from ROM
if ((a20Addr & 0xfffe0000) == 0x000e0000)
{
return (Bit8u *) &BX_MEM_THIS rom[a20Addr & BIOS_MASK];
}
else {
return (Bit8u *) &BX_MEM_THIS rom[(a20Addr & EXROM_MASK) + BIOSROMSZ];
}
break;
case 0x1: // Read from ShadowRAM
return BX_MEM_THIS get_vector(a20Addr);
default:
BX_PANIC(("getHostMemAddr(): default case"));
return(NULL);
}
}
#endif
else if(a20Addr < BX_MEM_THIS len)
{
if ((a20Addr & 0xfffc0000) != 0x000c0000) {
return BX_MEM_THIS get_vector(a20Addr);
}
else if ((a20Addr & 0xfffe0000) == 0x000e0000)
{
return (Bit8u *) &BX_MEM_THIS rom[a20Addr & BIOS_MASK];
}
else {
return((Bit8u *) &BX_MEM_THIS rom[(a20Addr & EXROM_MASK) + BIOSROMSZ]);
}
}
#if BX_PHY_ADDRESS_LONG
else if (a20Addr >= BX_CONST64(0xFFFFFFFF)) {
// Error, requested addr is out of bounds.
return (Bit8u *) &BX_MEM_THIS bogus[a20Addr & 0xfff];
}
#endif
else if (a20Addr >= (bx_phy_address)~BIOS_MASK)
{
return (Bit8u *) &BX_MEM_THIS rom[a20Addr & BIOS_MASK];
}
else
{
// Error, requested addr is out of bounds.
return (Bit8u *) &BX_MEM_THIS bogus[a20Addr & 0xfff];
}
}
else
{ // op == {BX_WRITE, BX_RW}
Bit8u *retAddr;
if (a20Addr >= BX_MEM_THIS len)
return(NULL); // Error, requested addr is out of bounds.
else if ((a20Addr & 0xfffe0000) == 0x000a0000)
return(NULL); // Vetoed! Mem mapped IO (VGA)
else if (a20Addr >= (bx_phy_address)~BIOS_MASK)
return(NULL); // Vetoed! ROMs
#if BX_SUPPORT_PCI
else if (BX_MEM_THIS pci_enabled && ((a20Addr & 0xfffc0000) == 0x000c0000))
{
// Veto direct writes to this area. Otherwise, there is a chance
// for Guest2HostTLB and memory consistency problems, for example
// when some 16K block marked as write-only using PAM registers.
return(NULL);
}
#endif
else
{
if ((a20Addr & 0xfffc0000) != 0x000c0000) {
retAddr = BX_MEM_THIS get_vector(a20Addr);
}
else {
return(NULL); // Vetoed! ROMs
}
}
return retAddr;
}
}
/*
* One needs to provide both a read_handler and a write_handler.
* XXX: maybe we should check for overlapping memory handlers
*/
bx_bool
BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler,
memory_handler_t write_handler, bx_phy_address begin_addr, bx_phy_address end_addr)
{
if (end_addr < begin_addr)
return 0;
if (!read_handler || !write_handler)
return 0;
BX_INFO(("Register memory access handlers: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) {
struct memory_handler_struct *memory_handler = new struct memory_handler_struct;
memory_handler->next = BX_MEM_THIS memory_handlers[page_idx];
BX_MEM_THIS memory_handlers[page_idx] = memory_handler;
memory_handler->read_handler = read_handler;
memory_handler->write_handler = write_handler;
memory_handler->param = param;
memory_handler->begin = begin_addr;
memory_handler->end = end_addr;
}
return 1;
}
bx_bool
BX_MEM_C::unregisterMemoryHandlers(memory_handler_t read_handler, memory_handler_t write_handler,
bx_phy_address begin_addr, bx_phy_address end_addr)
{
bx_bool ret = 1;
BX_INFO(("Memory access handlers unregistered: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) {
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[page_idx];
struct memory_handler_struct *prev = NULL;
while (memory_handler &&
memory_handler->read_handler != read_handler &&
memory_handler->write_handler != write_handler &&
memory_handler->begin != begin_addr &&
memory_handler->end != end_addr)
{
prev = memory_handler;
memory_handler = memory_handler->next;
}
if (!memory_handler) {
ret = 0; // we should have found it
continue; // anyway, try the other pages
}
if (prev)
prev->next = memory_handler->next;
else
BX_MEM_THIS memory_handlers[page_idx] = memory_handler->next;
delete memory_handler;
}
return ret;
}
void BX_MEM_C::enable_smram(bx_bool enable, bx_bool restricted)
{
BX_MEM_THIS smram_available = 1;
BX_MEM_THIS smram_enable = (enable > 0);
BX_MEM_THIS smram_restricted = (restricted > 0);
}
void BX_MEM_C::disable_smram(void)
{
BX_MEM_THIS smram_available = 0;
BX_MEM_THIS smram_enable = 0;
BX_MEM_THIS smram_restricted = 0;
}
// check if SMRAM is aavailable for CPU data accesses
bx_bool BX_MEM_C::is_smram_accessible(void)
{
return(BX_MEM_THIS smram_available) &&
(BX_MEM_THIS smram_enable || !BX_MEM_THIS smram_restricted);
}
#if BX_SUPPORT_MONITOR_MWAIT
//
// MONITOR/MWAIT - x86arch way to optimize idle loops in CPU
//
void BX_MEM_C::set_monitor(unsigned cpu)
{
BX_ASSERT(cpu < BX_SMP_PROCESSORS);
if (! BX_MEM_THIS monitor_active[cpu]) {
BX_MEM_THIS monitor_active[cpu] = 1;
BX_MEM_THIS n_monitors++;
BX_DEBUG(("activate monitor for cpu=%d", cpu));
}
else {
BX_DEBUG(("monitor for cpu=%d already active !", cpu));
}
}
void BX_MEM_C::clear_monitor(unsigned cpu)
{
BX_ASSERT(cpu < BX_SMP_PROCESSORS);
BX_MEM_THIS monitor_active[cpu] = 0;
BX_MEM_THIS n_monitors--;
BX_DEBUG(("deactivate monitor for cpu=%d", cpu));
}
bx_bool BX_MEM_C::is_monitor(bx_phy_address begin_addr, unsigned len)
{
if (BX_MEM_THIS n_monitors == 0) return 0;
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
if (BX_MEM_THIS monitor_active[i]) {
if (BX_CPU(i)->is_monitor(begin_addr, len))
return 1;
}
}
return 0; // // this is NOT monitored page
}
void BX_MEM_C::check_monitor(bx_phy_address begin_addr, unsigned len)
{
if (BX_MEM_THIS n_monitors == 0) return;
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
if (BX_MEM_THIS monitor_active[i]) {
BX_CPU(i)->check_monitor(begin_addr, len);
}
}
}
#endif