Bochs/bochs/instrument/example0/instrument.cc
2005-11-14 18:25:41 +00:00

264 lines
6.5 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: instrument.cc,v 1.13 2005-11-14 18:25:41 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
// maximum size of an instruction
#define MAX_OPCODE_SIZE 16
// maximum physical addresses an instruction can generate
#define MAX_DATA_ACCESSES 1024
// Use this variable to turn on/off collection of instrumentation data
// If you are not using the debugger to turn this on/off, then possibly
// start this at 1 instead of 0.
static bx_bool active = 1;
static disassembler bx_disassembler;
static struct instruction_t {
bx_bool valid; // is current instruction valid
unsigned opcode_size;
unsigned nprefixes;
Bit8u opcode[MAX_OPCODE_SIZE];
bx_bool is32, is64;
unsigned num_data_accesses;
struct {
bx_address laddr; // linear address
bx_address paddr; // physical address
unsigned op; // BX_READ, BX_WRITE or BX_RW
unsigned size; // 1 .. 8
} data_access[MAX_DATA_ACCESSES];
bx_bool is_branch;
bx_bool is_taken;
bx_address target_linear;
} instruction[BX_SMP_PROCESSORS];
static logfunctions *instrument_log = new logfunctions ();
#define LOG_THIS instrument_log->
void bx_instr_reset(unsigned cpu)
{
instruction[cpu].valid = 0;
instruction[cpu].nprefixes = 0;
instruction[cpu].num_data_accesses = 0;
instruction[cpu].is_branch = 0;
}
void bx_instr_new_instruction(unsigned cpu)
{
if (!active)
{
return;
}
instruction_t *i = &instruction[cpu];
if (i->valid)
{
char disasm_tbuf[512]; // buffer for instruction disassembly
unsigned length = i->opcode_size, n;
bx_disassembler.disasm(i->is32, i->is64, 0, 0, i->opcode, disasm_tbuf);
if(length != 0)
{
fprintf(stderr, "----------------------------------------------------------\n");
fprintf(stderr, "CPU: %d: %s\n", cpu, disasm_tbuf);
fprintf(stderr, "LEN: %d\tPREFIX: %d\tBYTES: ", length, i->nprefixes);
for(n=0;n<length;n++) fprintf(stderr, "%02x", i->opcode[n]);
if(i->is_branch)
{
fprintf(stderr, "\tBRANCH ");
if(i->is_taken)
fprintf(stderr, "TARGET %08x (TAKEN)", i->target_linear);
else
fprintf(stderr, "(NOT TAKEN)");
}
fprintf(stderr, "\n");
for(n=0;n<i->num_data_accesses;n++)
{
fprintf(stderr, "MEM ACCESS: %08x (linear) %08x (physical) %s SIZE: %d\n",
i->data_access[n].laddr,
i->data_access[n].paddr,
i->data_access[n].op == BX_READ ? "RD":"WR",
i->data_access[n].size);
}
fprintf(stderr, "\n");
}
}
instruction[cpu].valid = 0;
instruction[cpu].nprefixes = 0;
instruction[cpu].num_data_accesses = 0;
instruction[cpu].is_branch = 0;
}
static void branch_taken(unsigned cpu, bx_address new_eip)
{
Bit32u laddr;
if (!active)
{
return;
}
if (!instruction[cpu].valid)
{
return;
}
// find linear address
laddr = BX_CPU(cpu)->get_segment_base(BX_SEG_REG_CS) + new_eip;
instruction[cpu].is_branch = 1;
instruction[cpu].is_taken = 1;
instruction[cpu].target_linear = laddr;
}
void bx_instr_cnear_branch_taken(unsigned cpu, bx_address new_eip)
{
branch_taken(cpu, new_eip);
}
void bx_instr_cnear_branch_not_taken(unsigned cpu)
{
if (!active)
{
return;
}
if (!instruction[cpu].valid)
{
return;
}
instruction[cpu].is_branch = 1;
instruction[cpu].is_taken = 0;
}
void bx_instr_ucnear_branch(unsigned cpu, unsigned what, bx_address new_eip) {
branch_taken(cpu, new_eip);
}
void bx_instr_far_branch(unsigned cpu, unsigned what, Bit16u new_cs, bx_address new_eip) {
branch_taken(cpu, new_eip);
}
void bx_instr_opcode(unsigned cpu, Bit8u *opcode, unsigned len, bx_bool is32, bx_bool is64)
{
if (!active)
{
return;
}
for(int i=0;i<len;i++)
{
instruction[cpu].opcode[i] = opcode[i];
}
instruction[cpu].is32 = is32;
instruction[cpu].is64 = is64;
instruction[cpu].opcode_size = len;
}
void bx_instr_fetch_decode_completed(unsigned cpu, const bxInstruction_c *i)
{
if(active)
{
instruction[cpu].valid = 1;
}
}
void bx_instr_prefix(unsigned cpu, Bit8u prefix)
{
if(active) instruction[cpu].nprefixes++;
}
void bx_instr_interrupt(unsigned cpu, unsigned vector)
{
if(active)
{
fprintf(stderr, "CPU %u: interrupt %02xh\n", cpu, vector);
}
}
void bx_instr_exception(unsigned cpu, unsigned vector)
{
if(active)
{
fprintf(stderr, "CPU %u: exception %02xh\n", cpu, vector);
}
}
void bx_instr_hwinterrupt(unsigned cpu, unsigned vector, Bit16u cs, bx_address eip)
{
if(active)
{
fprintf(stderr, "CPU %u: hardware interrupt %02xh\n", cpu, vector);
}
}
void bx_instr_mem_data(unsigned cpu, bx_address lin, unsigned size, unsigned rw)
{
unsigned index;
bx_address phy;
bx_bool page_valid;
if(!active)
{
return;
}
if (!instruction[cpu].valid)
{
return;
}
if (instruction[cpu].num_data_accesses >= MAX_DATA_ACCESSES)
{
return;
}
BX_CPU(cpu)->dbg_xlate_linear2phy(lin, &phy, &page_valid);
phy = A20ADDR(phy);
// If linear translation doesn't exist, a paging exception will occur.
// Invalidate physical address data for now.
if (!page_valid)
{
phy = 0;
}
index = instruction[cpu].num_data_accesses;
instruction[cpu].data_access[index].laddr = lin;
instruction[cpu].data_access[index].paddr = phy;
instruction[cpu].data_access[index].op = rw;
instruction[cpu].data_access[index].size = size;
instruction[cpu].num_data_accesses++;
}