Bochs/bochs/pc_system.cc
Todd T.Fries bdb89cd364 merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.

In general this provides a generic interface for logging.

logfunctions:: is a class that is inherited by some classes, and also
.   allocated as a standalone global called 'genlog'.  All logging uses
.   one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
.   class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
.   respectively.
.
.   An example usage:
.     BX_INFO(("Hello, World!\n"));

iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance.  It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf().  At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.

More cleanup is coming, but this works for now.  If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.

Comments, bugs, flames, to me: todd@fries.net
2001-05-15 14:49:57 +00:00

547 lines
12 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS bx_pc_system.
#ifdef WIN32
#ifndef __MINGW32__
// #include <winsock2.h> // +++
#include <winsock.h>
#endif
#endif
#if BX_SHOW_IPS
unsigned long ips_count=0;
#endif
#if defined(PROVIDE_M_IPS)
double m_ips; // Millions of Instructions Per Second
#endif
const Bit64u bx_pc_system_c::COUNTER_INTERVAL = 100000;
// constructor
bx_pc_system_c::bx_pc_system_c(void)
{
this->setprefix("[SYS ]");
num_timers = 0;
// set ticks period and remaining to max Bit32u value
num_cpu_ticks_in_period = num_cpu_ticks_left = (Bit32u) -1;
m_ips = 0.0L;
for (unsigned int i=0; i < 8; i++) {
DRQ[i] = 0;
DACK[i] = 0;
}
TC = 0;
HRQ = 0;
HLDA = 0;
enable_a20 = 1;
#if BX_CPU_LEVEL < 2
a20_mask = 0xfffff;
#elif BX_CPU_LEVEL == 2
a20_mask = 0xffffff;
#else /* 386+ */
a20_mask = 0xffffffff;
#endif
counter = 0;
counter_timer_index = register_timer_ticks(this, bx_pc_system_c::counter_timer_handler, COUNTER_INTERVAL, 1, 1);
}
void
bx_pc_system_c::init_ips(Bit32u ips)
{
// parameter 'ips' is the processor speed in Instructions-Per-Second
m_ips = double(ips) / 1000000.0L;
BX_INFO(("ips = %u\n", (unsigned) ips));
}
void
bx_pc_system_c::raise_HLDA(void)
{
HLDA = 1;
bx_devices.raise_hlda();
HLDA = 0;
}
void
bx_pc_system_c::set_DRQ(unsigned channel, Boolean val)
{
if (channel > 7)
BX_PANIC(("set_DRQ() channel > 7\n"));
DRQ[channel] = val;
bx_devices.drq(channel, val);
}
void
bx_pc_system_c::set_HRQ(Boolean val)
{
HRQ = val;
if (val)
BX_CPU.async_event = 1;
else
HLDA = 0; // ??? needed?
}
void
bx_pc_system_c::set_TC(Boolean val)
{
TC = val;
}
void
bx_pc_system_c::set_DACK(unsigned channel, Boolean val)
{
DACK[channel] = val;
}
void
bx_pc_system_c::dma_write8(Bit32u phy_addr, unsigned channel)
{
// DMA controlled xfer of byte from I/O to Memory
Bit8u data_byte;
UNUSED(channel);
bx_devices.dma_write8(channel, &data_byte);
BX_MEM.write_physical(phy_addr, 1, &data_byte);
BX_DBG_DMA_REPORT(phy_addr, 1, BX_WRITE, data_byte);
}
void
bx_pc_system_c::dma_read8(Bit32u phy_addr, unsigned channel)
{
// DMA controlled xfer of byte from Memory to I/O
Bit8u data_byte;
UNUSED(channel);
BX_MEM.read_physical(phy_addr, 1, &data_byte);
bx_devices.dma_read8(channel, &data_byte);
BX_DBG_DMA_REPORT(phy_addr, 1, BX_READ, data_byte);
}
#if (BX_NUM_SIMULATORS < 2)
void
bx_pc_system_c::set_INTR(Boolean value)
{
INTR = value;
BX_CPU.set_INTR(value);
}
#endif
//
// Read from the IO memory address space
//
Bit32u
bx_pc_system_c::inp(Bit16u addr, unsigned io_len)
{
Bit32u ret;
ret = bx_devices.inp(addr, io_len);
return( ret );
}
//
// Write to the IO memory address space.
//
void
bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
{
bx_devices.outp(addr, value, io_len);
}
void
bx_pc_system_c::set_enable_a20(Bit8u value)
{
#if BX_CPU_LEVEL < 2
BX_PANIC(("set_enable_a20() called: 8086 emulation\n"));
#else
#if BX_SUPPORT_A20
if (value) {
enable_a20 = 1;
#if BX_CPU_LEVEL == 2
a20_mask = 0xffffff; /* 286: enable all 24 address lines */
#else /* 386+ */
a20_mask = 0xffffffff; /* 386: enable all 32 address lines */
#endif
}
else {
enable_a20 = 0;
a20_mask = 0xffefffff; /* mask off A20 address line */
}
BX_DBG_A20_REPORT(value);
BX_DEBUG(("A20: set() = %u\n", (unsigned) enable_a20));
#else
BX_DEBUG(("set_enable_a20: ignoring: SUPPORT_A20 = 0\n"));
#endif // #if BX_SUPPORT_A20
#endif
}
Boolean
bx_pc_system_c::get_enable_a20(void)
{
#if BX_SUPPORT_A20
if (bx_dbg.a20)
BX_INFO(("A20: get() = %u\n", (unsigned) enable_a20));
if (enable_a20) return(1);
else return(0);
#else
BX_INFO(("get_enable_a20: ignoring: SUPPORT_A20 = 0\n"));
return(1);
#endif // #if BX_SUPPORT_A20
}
int
bx_pc_system_c::ResetSignal( PCS_OP operation )
{
UNUSED( operation );
// Reset the processor.
BX_ERROR(( "# bx_pc_system_c::ResetSignal() called\n" ));
BX_CPU.reset(BX_RESET_SOFTWARE);
return(0);
}
Bit8u
bx_pc_system_c::IAC(void)
{
return( bx_devices.pic->IAC() );
}
void
bx_pc_system_c::exit(void)
{
if (bx_devices.hard_drive)
bx_devices.hard_drive->close_harddrive();
BX_INFO(("Last time is %d\n", bx_cmos.s.timeval));
bx_gui.exit();
}
//
// bochs timer support
//
void
bx_pc_system_c::timer_handler(void)
{
Bit64u min;
unsigned i;
Bit64u delta;
// BX_ERROR(( "Time handler ptime = %d\n", bx_pc_system.time_ticks() ));
delta = num_cpu_ticks_in_period - num_cpu_ticks_left;
#if BX_TIMER_DEBUG
if (num_cpu_ticks_left != 0)
BX_PANIC(("timer_handler: ticks_left!=0\n"));
#endif
for (i=0; i < num_timers; i++) {
timer[i].triggered = 0;
if (timer[i].active) {
#if BX_TIMER_DEBUG
if (timer[i].remaining < delta) {
BX_PANIC(("timer_handler: remain < delta\n"));
}
#endif
timer[i].remaining -= delta;
if (timer[i].remaining == 0) {
timer[i].triggered = 1;
// reset remaining period for triggered timer
timer[i].remaining = timer[i].period;
// if triggered timer is one-shot, deactive
if (timer[i].continuous==0)
timer[i].active = 0;
}
}
}
min = (Bit64u) -1; // max number in Bit64u range
for (i=0; i < num_timers; i++) {
if (timer[i].active && (timer[i].remaining < min))
min = timer[i].remaining;
}
num_cpu_ticks_in_period = num_cpu_ticks_left = min;
for (i=0; i < num_timers; i++) {
// call requested timer function. It may request a different
// timer period or deactivate, all cases handled below
if (timer[i].triggered) {
timer[i].funct(timer[i].this_ptr);
}
}
}
void
bx_pc_system_c::expire_ticks(void)
{
unsigned i;
Bit64u ticks_delta;
ticks_delta = num_cpu_ticks_in_period - num_cpu_ticks_left;
if (ticks_delta == 0) return; // no ticks occurred since
for (i=0; i<num_timers; i++) {
if (timer[i].active) {
#if BX_TIMER_DEBUG
if (timer[i].remaining <= ticks_delta) {
for (unsigned j=0; j<num_timers; j++) {
BX_INFO(("^^^timer[%u]\n", j));
BX_INFO(("^^^remaining = %u, period = %u\n",
timer[j].remaining, timer[j].period));
}
BX_PANIC(("expire_ticks: i=%u, remain(%u) <= delta(%u)\n",
i, timer[i].remaining, (unsigned) ticks_delta));
}
#endif
timer[i].remaining -= ticks_delta; // must be >= 1 here
}
}
// set new period to number of ticks left
num_cpu_ticks_in_period = num_cpu_ticks_left;
}
int
bx_pc_system_c::register_timer( void *this_ptr, void (*funct)(void *),
Bit32u useconds, Boolean continuous, Boolean active)
{
Bit64u instructions;
if (num_timers >= BX_MAX_TIMERS) {
BX_PANIC(("register_timer: too many registered timers."));
}
if (this_ptr == NULL)
BX_PANIC(("register_timer: this_ptr is NULL\n"));
if (funct == NULL)
BX_PANIC(("register_timer: funct is NULL\n"));
// account for ticks up to now
expire_ticks();
// convert useconds to number of instructions
instructions = (Bit64u) (double(useconds) * m_ips);
return register_timer_ticks(this_ptr, funct, instructions, continuous, active);
}
int
bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct, Bit64u instructions, Boolean continuous, Boolean active)
{
unsigned i;
if (num_timers >= BX_MAX_TIMERS) {
BX_PANIC(("register_timer: too many registered timers."));
}
if (this_ptr == NULL)
BX_PANIC(("register_timer: this_ptr is NULL\n"));
if (funct == NULL)
BX_PANIC(("register_timer: funct is NULL\n"));
i = num_timers;
num_timers++;
timer[i].period = instructions;
timer[i].remaining = instructions;
timer[i].active = active;
timer[i].funct = funct;
timer[i].continuous = continuous;
timer[i].this_ptr = this_ptr;
if (active) {
if (num_cpu_ticks_in_period == 0) {
// no active timers
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
else {
if (instructions < num_cpu_ticks_left) {
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
}
}
// return timer id
return(i);
}
void
bx_pc_system_c::counter_timer_handler(void* this_ptr)
{
UNUSED(this_ptr);
bx_pc_system.counter++;
}
#if BX_DEBUGGER
void
bx_pc_system_c::timebp_handler(void* this_ptr)
{
BX_CPU_THIS_PTR break_point = BREAK_POINT_TIME;
BX_DEBUG(( "Time breakpoint triggered\n" ));
if (timebp_queue_size > 1) {
long long new_diff = timebp_queue[1] - bx_pc_system.time_ticks();
bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 1);
}
timebp_queue_size--;
for (int i = 0; i < timebp_queue_size; i++)
timebp_queue[i] = timebp_queue[i+1];
}
#endif // BX_DEBUGGER
// (mch) Wait for an event. This routine is broken, but the idea is nice...
void
bx_pc_system_c::wait_for_event()
{
Bit64u ticks_left = bx_pc_system.num_cpu_ticks_left;
// sec = instr / instr_per_sec
#ifdef PROVIDE_M_IPS
int usecs = (int)(double((Bit64s)ticks_left) / double(m_ips));
#else
int usecs = (int)(double((Bit64s)ticks_left) /
double(bx_pc_system.m_ips));
#endif
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = usecs;
select(0, NULL, NULL, NULL, &tv);
bx_pc_system.num_cpu_ticks_left = 1;
BX_TICK1();
}
Bit64u
bx_pc_system_c::time_ticks()
{
return (counter + 1) * COUNTER_INTERVAL
- ticks_remaining(counter_timer_index)
+ ((Bit64u)num_cpu_ticks_in_period - (Bit64u)num_cpu_ticks_left);
}
void
bx_pc_system_c::start_timers(void)
{
}
void
bx_pc_system_c::activate_timer_ticks (unsigned timer_index, Bit64u instructions, Boolean continuous)
{
if (timer_index >= num_timers)
BX_PANIC(("activate_timer(): bad timer index given\n"));
// set timer continuity to new value (1=continuous, 0=one-shot)
timer[timer_index].continuous = continuous;
timer[timer_index].active = 1;
timer[timer_index].remaining = instructions;
if (num_cpu_ticks_in_period == 0) {
// no active timers
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
else {
if (instructions < num_cpu_ticks_left) {
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
}
}
void
bx_pc_system_c::activate_timer( unsigned timer_index,
Bit32u useconds, Boolean continuous )
{
Bit64u instructions;
if (timer_index >= num_timers)
BX_PANIC(("activate_timer(): bad timer index given\n"));
// account for ticks up to now
expire_ticks();
// set timer continuity to new value (1=continuous, 0=one-shot)
timer[timer_index].continuous = continuous;
// if useconds = 0, use default stored in period field
// else set new period from useconds
if (useconds==0)
instructions = timer[timer_index].period;
else {
// convert useconds to number of instructions
instructions = (Bit64u) (double(useconds) * m_ips);
timer[timer_index].period = instructions;
}
timer[timer_index].active = 1;
timer[timer_index].remaining = instructions;
if (num_cpu_ticks_in_period == 0) {
// no active timers
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
else {
if (instructions < num_cpu_ticks_left) {
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
}
}
void
bx_pc_system_c::deactivate_timer( unsigned timer_index )
{
if (timer_index >= num_timers)
BX_PANIC(("deactivate_timer(): bad timer index given\n"));
timer[timer_index].active = 0;
}