bdb89cd364
To see the commit logs for this use either cvsweb or cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files. In general this provides a generic interface for logging. logfunctions:: is a class that is inherited by some classes, and also . allocated as a standalone global called 'genlog'. All logging uses . one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this . class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros . respectively. . . An example usage: . BX_INFO(("Hello, World!\n")); iofunctions:: is a class that is allocated once by default, and assigned as the iofunction of each logfunctions instance. It is this class that maintains the file descriptor and other output related code, at this point using vfprintf(). At some future point, someone may choose to write a gui 'console' for bochs to which messages would be redirected simply by assigning a different iofunction class to the various logfunctions objects. More cleanup is coming, but this works for now. If you want to see alot of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1. Comments, bugs, flames, to me: todd@fries.net
547 lines
12 KiB
C++
547 lines
12 KiB
C++
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
#include "bochs.h"
|
|
#define LOG_THIS bx_pc_system.
|
|
|
|
#ifdef WIN32
|
|
#ifndef __MINGW32__
|
|
// #include <winsock2.h> // +++
|
|
#include <winsock.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if BX_SHOW_IPS
|
|
unsigned long ips_count=0;
|
|
#endif
|
|
|
|
#if defined(PROVIDE_M_IPS)
|
|
double m_ips; // Millions of Instructions Per Second
|
|
#endif
|
|
|
|
const Bit64u bx_pc_system_c::COUNTER_INTERVAL = 100000;
|
|
|
|
// constructor
|
|
bx_pc_system_c::bx_pc_system_c(void)
|
|
{
|
|
this->setprefix("[SYS ]");
|
|
|
|
num_timers = 0;
|
|
// set ticks period and remaining to max Bit32u value
|
|
num_cpu_ticks_in_period = num_cpu_ticks_left = (Bit32u) -1;
|
|
m_ips = 0.0L;
|
|
|
|
for (unsigned int i=0; i < 8; i++) {
|
|
DRQ[i] = 0;
|
|
DACK[i] = 0;
|
|
}
|
|
TC = 0;
|
|
HRQ = 0;
|
|
HLDA = 0;
|
|
|
|
enable_a20 = 1;
|
|
|
|
#if BX_CPU_LEVEL < 2
|
|
a20_mask = 0xfffff;
|
|
#elif BX_CPU_LEVEL == 2
|
|
a20_mask = 0xffffff;
|
|
#else /* 386+ */
|
|
a20_mask = 0xffffffff;
|
|
#endif
|
|
|
|
counter = 0;
|
|
counter_timer_index = register_timer_ticks(this, bx_pc_system_c::counter_timer_handler, COUNTER_INTERVAL, 1, 1);
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::init_ips(Bit32u ips)
|
|
{
|
|
// parameter 'ips' is the processor speed in Instructions-Per-Second
|
|
m_ips = double(ips) / 1000000.0L;
|
|
BX_INFO(("ips = %u\n", (unsigned) ips));
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::raise_HLDA(void)
|
|
{
|
|
HLDA = 1;
|
|
bx_devices.raise_hlda();
|
|
HLDA = 0;
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::set_DRQ(unsigned channel, Boolean val)
|
|
{
|
|
if (channel > 7)
|
|
BX_PANIC(("set_DRQ() channel > 7\n"));
|
|
DRQ[channel] = val;
|
|
bx_devices.drq(channel, val);
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::set_HRQ(Boolean val)
|
|
{
|
|
HRQ = val;
|
|
if (val)
|
|
BX_CPU.async_event = 1;
|
|
else
|
|
HLDA = 0; // ??? needed?
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::set_TC(Boolean val)
|
|
{
|
|
TC = val;
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::set_DACK(unsigned channel, Boolean val)
|
|
{
|
|
DACK[channel] = val;
|
|
}
|
|
|
|
|
|
void
|
|
bx_pc_system_c::dma_write8(Bit32u phy_addr, unsigned channel)
|
|
{
|
|
// DMA controlled xfer of byte from I/O to Memory
|
|
|
|
Bit8u data_byte;
|
|
|
|
UNUSED(channel);
|
|
bx_devices.dma_write8(channel, &data_byte);
|
|
BX_MEM.write_physical(phy_addr, 1, &data_byte);
|
|
|
|
BX_DBG_DMA_REPORT(phy_addr, 1, BX_WRITE, data_byte);
|
|
}
|
|
|
|
|
|
void
|
|
bx_pc_system_c::dma_read8(Bit32u phy_addr, unsigned channel)
|
|
{
|
|
// DMA controlled xfer of byte from Memory to I/O
|
|
|
|
Bit8u data_byte;
|
|
|
|
UNUSED(channel);
|
|
BX_MEM.read_physical(phy_addr, 1, &data_byte);
|
|
bx_devices.dma_read8(channel, &data_byte);
|
|
|
|
BX_DBG_DMA_REPORT(phy_addr, 1, BX_READ, data_byte);
|
|
}
|
|
|
|
|
|
#if (BX_NUM_SIMULATORS < 2)
|
|
void
|
|
bx_pc_system_c::set_INTR(Boolean value)
|
|
{
|
|
INTR = value;
|
|
BX_CPU.set_INTR(value);
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Read from the IO memory address space
|
|
//
|
|
|
|
Bit32u
|
|
bx_pc_system_c::inp(Bit16u addr, unsigned io_len)
|
|
{
|
|
Bit32u ret;
|
|
|
|
ret = bx_devices.inp(addr, io_len);
|
|
|
|
return( ret );
|
|
}
|
|
|
|
|
|
//
|
|
// Write to the IO memory address space.
|
|
//
|
|
|
|
void
|
|
bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
|
|
{
|
|
bx_devices.outp(addr, value, io_len);
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::set_enable_a20(Bit8u value)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("set_enable_a20() called: 8086 emulation\n"));
|
|
#else
|
|
|
|
#if BX_SUPPORT_A20
|
|
if (value) {
|
|
enable_a20 = 1;
|
|
#if BX_CPU_LEVEL == 2
|
|
a20_mask = 0xffffff; /* 286: enable all 24 address lines */
|
|
#else /* 386+ */
|
|
a20_mask = 0xffffffff; /* 386: enable all 32 address lines */
|
|
#endif
|
|
}
|
|
else {
|
|
enable_a20 = 0;
|
|
a20_mask = 0xffefffff; /* mask off A20 address line */
|
|
}
|
|
|
|
BX_DBG_A20_REPORT(value);
|
|
|
|
BX_DEBUG(("A20: set() = %u\n", (unsigned) enable_a20));
|
|
#else
|
|
BX_DEBUG(("set_enable_a20: ignoring: SUPPORT_A20 = 0\n"));
|
|
#endif // #if BX_SUPPORT_A20
|
|
|
|
#endif
|
|
}
|
|
|
|
Boolean
|
|
bx_pc_system_c::get_enable_a20(void)
|
|
{
|
|
#if BX_SUPPORT_A20
|
|
if (bx_dbg.a20)
|
|
BX_INFO(("A20: get() = %u\n", (unsigned) enable_a20));
|
|
|
|
if (enable_a20) return(1);
|
|
else return(0);
|
|
#else
|
|
BX_INFO(("get_enable_a20: ignoring: SUPPORT_A20 = 0\n"));
|
|
return(1);
|
|
#endif // #if BX_SUPPORT_A20
|
|
}
|
|
|
|
int
|
|
bx_pc_system_c::ResetSignal( PCS_OP operation )
|
|
{
|
|
UNUSED( operation );
|
|
// Reset the processor.
|
|
|
|
BX_ERROR(( "# bx_pc_system_c::ResetSignal() called\n" ));
|
|
BX_CPU.reset(BX_RESET_SOFTWARE);
|
|
return(0);
|
|
}
|
|
|
|
|
|
Bit8u
|
|
bx_pc_system_c::IAC(void)
|
|
{
|
|
return( bx_devices.pic->IAC() );
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::exit(void)
|
|
{
|
|
if (bx_devices.hard_drive)
|
|
bx_devices.hard_drive->close_harddrive();
|
|
BX_INFO(("Last time is %d\n", bx_cmos.s.timeval));
|
|
bx_gui.exit();
|
|
}
|
|
|
|
|
|
//
|
|
// bochs timer support
|
|
//
|
|
|
|
|
|
void
|
|
bx_pc_system_c::timer_handler(void)
|
|
{
|
|
Bit64u min;
|
|
unsigned i;
|
|
Bit64u delta;
|
|
|
|
// BX_ERROR(( "Time handler ptime = %d\n", bx_pc_system.time_ticks() ));
|
|
|
|
delta = num_cpu_ticks_in_period - num_cpu_ticks_left;
|
|
#if BX_TIMER_DEBUG
|
|
if (num_cpu_ticks_left != 0)
|
|
BX_PANIC(("timer_handler: ticks_left!=0\n"));
|
|
#endif
|
|
|
|
for (i=0; i < num_timers; i++) {
|
|
timer[i].triggered = 0;
|
|
if (timer[i].active) {
|
|
#if BX_TIMER_DEBUG
|
|
if (timer[i].remaining < delta) {
|
|
BX_PANIC(("timer_handler: remain < delta\n"));
|
|
}
|
|
#endif
|
|
timer[i].remaining -= delta;
|
|
if (timer[i].remaining == 0) {
|
|
timer[i].triggered = 1;
|
|
// reset remaining period for triggered timer
|
|
timer[i].remaining = timer[i].period;
|
|
|
|
// if triggered timer is one-shot, deactive
|
|
if (timer[i].continuous==0)
|
|
timer[i].active = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
min = (Bit64u) -1; // max number in Bit64u range
|
|
for (i=0; i < num_timers; i++) {
|
|
if (timer[i].active && (timer[i].remaining < min))
|
|
min = timer[i].remaining;
|
|
}
|
|
num_cpu_ticks_in_period = num_cpu_ticks_left = min;
|
|
|
|
for (i=0; i < num_timers; i++) {
|
|
// call requested timer function. It may request a different
|
|
// timer period or deactivate, all cases handled below
|
|
if (timer[i].triggered) {
|
|
timer[i].funct(timer[i].this_ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::expire_ticks(void)
|
|
{
|
|
unsigned i;
|
|
Bit64u ticks_delta;
|
|
|
|
ticks_delta = num_cpu_ticks_in_period - num_cpu_ticks_left;
|
|
if (ticks_delta == 0) return; // no ticks occurred since
|
|
for (i=0; i<num_timers; i++) {
|
|
if (timer[i].active) {
|
|
#if BX_TIMER_DEBUG
|
|
if (timer[i].remaining <= ticks_delta) {
|
|
for (unsigned j=0; j<num_timers; j++) {
|
|
BX_INFO(("^^^timer[%u]\n", j));
|
|
BX_INFO(("^^^remaining = %u, period = %u\n",
|
|
timer[j].remaining, timer[j].period));
|
|
}
|
|
BX_PANIC(("expire_ticks: i=%u, remain(%u) <= delta(%u)\n",
|
|
i, timer[i].remaining, (unsigned) ticks_delta));
|
|
}
|
|
#endif
|
|
timer[i].remaining -= ticks_delta; // must be >= 1 here
|
|
}
|
|
}
|
|
|
|
// set new period to number of ticks left
|
|
num_cpu_ticks_in_period = num_cpu_ticks_left;
|
|
}
|
|
|
|
int
|
|
bx_pc_system_c::register_timer( void *this_ptr, void (*funct)(void *),
|
|
Bit32u useconds, Boolean continuous, Boolean active)
|
|
{
|
|
Bit64u instructions;
|
|
|
|
if (num_timers >= BX_MAX_TIMERS) {
|
|
BX_PANIC(("register_timer: too many registered timers."));
|
|
}
|
|
|
|
if (this_ptr == NULL)
|
|
BX_PANIC(("register_timer: this_ptr is NULL\n"));
|
|
if (funct == NULL)
|
|
BX_PANIC(("register_timer: funct is NULL\n"));
|
|
|
|
// account for ticks up to now
|
|
expire_ticks();
|
|
|
|
// convert useconds to number of instructions
|
|
instructions = (Bit64u) (double(useconds) * m_ips);
|
|
|
|
return register_timer_ticks(this_ptr, funct, instructions, continuous, active);
|
|
}
|
|
|
|
int
|
|
bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct, Bit64u instructions, Boolean continuous, Boolean active)
|
|
{
|
|
unsigned i;
|
|
|
|
if (num_timers >= BX_MAX_TIMERS) {
|
|
BX_PANIC(("register_timer: too many registered timers."));
|
|
}
|
|
|
|
if (this_ptr == NULL)
|
|
BX_PANIC(("register_timer: this_ptr is NULL\n"));
|
|
if (funct == NULL)
|
|
BX_PANIC(("register_timer: funct is NULL\n"));
|
|
|
|
i = num_timers;
|
|
num_timers++;
|
|
timer[i].period = instructions;
|
|
timer[i].remaining = instructions;
|
|
timer[i].active = active;
|
|
timer[i].funct = funct;
|
|
timer[i].continuous = continuous;
|
|
timer[i].this_ptr = this_ptr;
|
|
|
|
if (active) {
|
|
if (num_cpu_ticks_in_period == 0) {
|
|
// no active timers
|
|
num_cpu_ticks_in_period = instructions;
|
|
num_cpu_ticks_left = instructions;
|
|
}
|
|
else {
|
|
if (instructions < num_cpu_ticks_left) {
|
|
num_cpu_ticks_in_period = instructions;
|
|
num_cpu_ticks_left = instructions;
|
|
}
|
|
}
|
|
}
|
|
|
|
// return timer id
|
|
return(i);
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::counter_timer_handler(void* this_ptr)
|
|
{
|
|
UNUSED(this_ptr);
|
|
|
|
bx_pc_system.counter++;
|
|
}
|
|
|
|
#if BX_DEBUGGER
|
|
void
|
|
bx_pc_system_c::timebp_handler(void* this_ptr)
|
|
{
|
|
BX_CPU_THIS_PTR break_point = BREAK_POINT_TIME;
|
|
BX_DEBUG(( "Time breakpoint triggered\n" ));
|
|
|
|
if (timebp_queue_size > 1) {
|
|
long long new_diff = timebp_queue[1] - bx_pc_system.time_ticks();
|
|
bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 1);
|
|
}
|
|
timebp_queue_size--;
|
|
for (int i = 0; i < timebp_queue_size; i++)
|
|
timebp_queue[i] = timebp_queue[i+1];
|
|
}
|
|
#endif // BX_DEBUGGER
|
|
|
|
|
|
// (mch) Wait for an event. This routine is broken, but the idea is nice...
|
|
void
|
|
bx_pc_system_c::wait_for_event()
|
|
{
|
|
Bit64u ticks_left = bx_pc_system.num_cpu_ticks_left;
|
|
// sec = instr / instr_per_sec
|
|
#ifdef PROVIDE_M_IPS
|
|
int usecs = (int)(double((Bit64s)ticks_left) / double(m_ips));
|
|
#else
|
|
int usecs = (int)(double((Bit64s)ticks_left) /
|
|
double(bx_pc_system.m_ips));
|
|
#endif
|
|
struct timeval tv;
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = usecs;
|
|
select(0, NULL, NULL, NULL, &tv);
|
|
bx_pc_system.num_cpu_ticks_left = 1;
|
|
BX_TICK1();
|
|
}
|
|
|
|
Bit64u
|
|
bx_pc_system_c::time_ticks()
|
|
{
|
|
return (counter + 1) * COUNTER_INTERVAL
|
|
- ticks_remaining(counter_timer_index)
|
|
+ ((Bit64u)num_cpu_ticks_in_period - (Bit64u)num_cpu_ticks_left);
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::start_timers(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::activate_timer_ticks (unsigned timer_index, Bit64u instructions, Boolean continuous)
|
|
{
|
|
if (timer_index >= num_timers)
|
|
BX_PANIC(("activate_timer(): bad timer index given\n"));
|
|
|
|
// set timer continuity to new value (1=continuous, 0=one-shot)
|
|
timer[timer_index].continuous = continuous;
|
|
|
|
timer[timer_index].active = 1;
|
|
timer[timer_index].remaining = instructions;
|
|
|
|
if (num_cpu_ticks_in_period == 0) {
|
|
// no active timers
|
|
num_cpu_ticks_in_period = instructions;
|
|
num_cpu_ticks_left = instructions;
|
|
}
|
|
else {
|
|
if (instructions < num_cpu_ticks_left) {
|
|
num_cpu_ticks_in_period = instructions;
|
|
num_cpu_ticks_left = instructions;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::activate_timer( unsigned timer_index,
|
|
Bit32u useconds, Boolean continuous )
|
|
{
|
|
Bit64u instructions;
|
|
|
|
if (timer_index >= num_timers)
|
|
BX_PANIC(("activate_timer(): bad timer index given\n"));
|
|
|
|
// account for ticks up to now
|
|
expire_ticks();
|
|
|
|
// set timer continuity to new value (1=continuous, 0=one-shot)
|
|
timer[timer_index].continuous = continuous;
|
|
|
|
// if useconds = 0, use default stored in period field
|
|
// else set new period from useconds
|
|
if (useconds==0)
|
|
instructions = timer[timer_index].period;
|
|
else {
|
|
// convert useconds to number of instructions
|
|
instructions = (Bit64u) (double(useconds) * m_ips);
|
|
timer[timer_index].period = instructions;
|
|
}
|
|
|
|
timer[timer_index].active = 1;
|
|
timer[timer_index].remaining = instructions;
|
|
|
|
if (num_cpu_ticks_in_period == 0) {
|
|
// no active timers
|
|
num_cpu_ticks_in_period = instructions;
|
|
num_cpu_ticks_left = instructions;
|
|
}
|
|
else {
|
|
if (instructions < num_cpu_ticks_left) {
|
|
num_cpu_ticks_in_period = instructions;
|
|
num_cpu_ticks_left = instructions;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
bx_pc_system_c::deactivate_timer( unsigned timer_index )
|
|
{
|
|
if (timer_index >= num_timers)
|
|
BX_PANIC(("deactivate_timer(): bad timer index given\n"));
|
|
|
|
timer[timer_index].active = 0;
|
|
}
|