7e04c23d2f
November 17.
1383 lines
41 KiB
C++
1383 lines
41 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: proc_ctrl.cc,v 1.22 2002-06-19 15:49:07 bdenney Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
#if BX_USE_CPU_SMF
|
|
#define this (BX_CPU(0))
|
|
#endif
|
|
|
|
void
|
|
BX_CPU_C::UndefinedOpcode(BxInstruction_t *i)
|
|
{
|
|
BX_DEBUG(("UndefinedOpcode: %02x causes exception 6",
|
|
(unsigned) i->b1));
|
|
exception(BX_UD_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::NOP(BxInstruction_t *i)
|
|
{
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::HLT(BxInstruction_t *i)
|
|
{
|
|
// hack to panic if HLT comes from BIOS
|
|
if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value == 0xf000 )
|
|
BX_PANIC(("HALT instruction encountered in the BIOS ROM"));
|
|
|
|
if (CPL!=0) {
|
|
BX_INFO(("HLT(): CPL!=0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if ( ! BX_CPU_THIS_PTR eflags.if_ ) {
|
|
BX_INFO(("WARNING: HLT instruction with IF=0!"));
|
|
}
|
|
|
|
// stops instruction execution and places the processor in a
|
|
// HALT state. An enabled interrupt, NMI, or reset will resume
|
|
// execution. If interrupt (including NMI) is used to resume
|
|
// execution after HLT, the saved CS:eIP points to instruction
|
|
// following HLT.
|
|
|
|
// artificial trap bit, why use another variable.
|
|
BX_CPU_THIS_PTR debug_trap |= 0x80000000; // artificial trap
|
|
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
|
|
// Execution of this instruction completes. The processor
|
|
// will remain in a halt state until one of the above conditions
|
|
// is met.
|
|
|
|
#if BX_USE_IDLE_HACK
|
|
bx_gui.sim_is_idle ();
|
|
#endif /* BX_USE_IDLE_HACK */
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::CLTS(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("CLTS: not implemented for < 286"));
|
|
#else
|
|
|
|
if (v8086_mode()) BX_PANIC(("clts: v8086 mode unsupported"));
|
|
|
|
/* read errata file */
|
|
// does CLTS also clear NT flag???
|
|
|
|
// #GP(0) if CPL is not 0
|
|
if (CPL!=0) {
|
|
BX_INFO(("CLTS(): CPL!=0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
BX_CPU_THIS_PTR cr0.ts = 0;
|
|
BX_CPU_THIS_PTR cr0.val32 &= ~0x08;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::INVD(BxInstruction_t *i)
|
|
{
|
|
BX_INFO(("---------------"));
|
|
BX_INFO(("- INVD called -"));
|
|
BX_INFO(("---------------"));
|
|
|
|
#if BX_CPU_LEVEL >= 4
|
|
invalidate_prefetch_q();
|
|
|
|
if (BX_CPU_THIS_PTR cr0.pe) {
|
|
if (CPL!=0) {
|
|
BX_INFO(("INVD: CPL!=0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
}
|
|
BX_INSTR_CACHE_CNTRL(BX_INSTR_INVD);
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::WBINVD(BxInstruction_t *i)
|
|
{
|
|
BX_INFO(("WBINVD: (ignoring)"));
|
|
|
|
#if BX_CPU_LEVEL >= 4
|
|
invalidate_prefetch_q();
|
|
|
|
if (BX_CPU_THIS_PTR cr0.pe) {
|
|
if (CPL!=0) {
|
|
BX_INFO(("WBINVD: CPL!=0"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
}
|
|
BX_INSTR_CACHE_CNTRL(BX_INSTR_WBINVD);
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOV_DdRd(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_DdRd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
if (v8086_mode()) BX_PANIC(("MOV_DdRd: v8086 mode unsupported"));
|
|
|
|
/* NOTES:
|
|
* 32bit operands always used
|
|
* r/m field specifies general register
|
|
* mod field should always be 11 binary
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
if (i->mod != 0xc0) {
|
|
BX_PANIC(("MOV_DdRd(): rm field not a register!"));
|
|
}
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_PANIC(("MOV_DdRd: CPL!=0"));
|
|
/* #GP(0) if CPL is not 0 */
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
val_32 = BX_READ_32BIT_REG(i->rm);
|
|
if (bx_dbg.dreg)
|
|
BX_INFO(("MOV_DdRd: DR[%u]=%08xh unhandled",
|
|
(unsigned) i->nnn, (unsigned) val_32));
|
|
|
|
switch (i->nnn) {
|
|
case 0: // DR0
|
|
BX_CPU_THIS_PTR dr0 = val_32;
|
|
break;
|
|
case 1: // DR1
|
|
BX_CPU_THIS_PTR dr1 = val_32;
|
|
break;
|
|
case 2: // DR2
|
|
BX_CPU_THIS_PTR dr2 = val_32;
|
|
break;
|
|
case 3: // DR3
|
|
BX_CPU_THIS_PTR dr3 = val_32;
|
|
break;
|
|
|
|
case 4: // DR4
|
|
case 6: // DR6
|
|
// DR4 aliased to DR6 by default. With Debug Extensions on,
|
|
// access to DR4 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_DdRd: access to DR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
#if BX_CPU_LEVEL <= 4
|
|
// On 386/486 bit12 is settable
|
|
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
|
|
(val_32 & 0x0000f00f);
|
|
#else
|
|
// On Pentium+, bit12 is always zero
|
|
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
|
|
(val_32 & 0x0000e00f);
|
|
#endif
|
|
break;
|
|
|
|
case 5: // DR5
|
|
case 7: // DR7
|
|
// Note: 486+ ignore GE and LE flags. On the 386, exact
|
|
// data breakpoint matching does not occur unless it is enabled
|
|
// by setting the LE and/or GE flags.
|
|
|
|
// DR5 aliased to DR7 by default. With Debug Extensions on,
|
|
// access to DR5 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
|
|
// Debug extensions (CR4.DE) on
|
|
BX_INFO(("MOV_DdRd: access to DR5 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
// Some sanity checks...
|
|
if ( val_32 & 0x00002000 ) {
|
|
BX_PANIC(("MOV_DdRd: GD bit not supported yet"));
|
|
// Note: processor clears GD upon entering debug exception
|
|
// handler, to allow access to the debug registers
|
|
}
|
|
if ( (((val_32>>16) & 3)==2) ||
|
|
(((val_32>>20) & 3)==2) ||
|
|
(((val_32>>24) & 3)==2) ||
|
|
(((val_32>>28) & 3)==2) ) {
|
|
// IO breakpoints (10b) are not yet supported.
|
|
BX_PANIC(("MOV_DdRd: write of %08x contains IO breakpoint",
|
|
val_32));
|
|
}
|
|
if ( (((val_32>>18) & 3)==2) ||
|
|
(((val_32>>22) & 3)==2) ||
|
|
(((val_32>>26) & 3)==2) ||
|
|
(((val_32>>30) & 3)==2) ) {
|
|
// LEN0..3 contains undefined length specifier (10b)
|
|
BX_PANIC(("MOV_DdRd: write of %08x contains undefined LENx",
|
|
val_32));
|
|
}
|
|
if ( ((((val_32>>16) & 3)==0) && (((val_32>>18) & 3)!=0)) ||
|
|
((((val_32>>20) & 3)==0) && (((val_32>>22) & 3)!=0)) ||
|
|
((((val_32>>24) & 3)==0) && (((val_32>>26) & 3)!=0)) ||
|
|
((((val_32>>28) & 3)==0) && (((val_32>>30) & 3)!=0)) ) {
|
|
// Instruction breakpoint with LENx not 00b (1-byte length)
|
|
BX_PANIC(("MOV_DdRd: write of %08x, R/W=00b LEN!=00b",
|
|
val_32));
|
|
}
|
|
#if BX_CPU_LEVEL <= 4
|
|
// 386/486: you can play with all the bits except b10 is always 1
|
|
BX_CPU_THIS_PTR dr7 = val_32 | 0x00000400;
|
|
#else
|
|
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
|
|
// Even bits 11,10 are changeable though reserved.
|
|
BX_CPU_THIS_PTR dr7 = (val_32 & 0xffff2fff) | 0x00000400;
|
|
#endif
|
|
break;
|
|
default:
|
|
BX_PANIC(("MOV_DdRd: control register index out of range"));
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOV_RdDd(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_RdDd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("MOV_RdDd: v8086 mode causes #GP"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
if (i->mod != 0xc0) {
|
|
BX_PANIC(("MOV_RdDd(): rm field not a register!"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
|
|
if (protected_mode() && (CPL!=0)) {
|
|
BX_INFO(("MOV_RdDd: CPL!=0 causes #GP"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (bx_dbg.dreg)
|
|
BX_INFO(("MOV_RdDd: DR%u not implemented yet", i->nnn));
|
|
|
|
switch (i->nnn) {
|
|
case 0: // DR0
|
|
val_32 = BX_CPU_THIS_PTR dr0;
|
|
break;
|
|
case 1: // DR1
|
|
val_32 = BX_CPU_THIS_PTR dr1;
|
|
break;
|
|
case 2: // DR2
|
|
val_32 = BX_CPU_THIS_PTR dr2;
|
|
break;
|
|
case 3: // DR3
|
|
val_32 = BX_CPU_THIS_PTR dr3;
|
|
break;
|
|
|
|
case 4: // DR4
|
|
case 6: // DR6
|
|
// DR4 aliased to DR6 by default. With Debug Extensions on,
|
|
// access to DR4 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_RdDd: access to DR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
val_32 = BX_CPU_THIS_PTR dr6;
|
|
break;
|
|
|
|
case 5: // DR5
|
|
case 7: // DR7
|
|
// DR5 aliased to DR7 by default. With Debug Extensions on,
|
|
// access to DR5 causes #UD
|
|
#if BX_CPU_LEVEL >= 4
|
|
if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
|
|
// Debug extensions on
|
|
BX_INFO(("MOV_RdDd: access to DR5 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
}
|
|
#endif
|
|
val_32 = BX_CPU_THIS_PTR dr7;
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("MOV_RdDd: control register index out of range"));
|
|
val_32 = 0;
|
|
}
|
|
BX_WRITE_32BIT_REG(i->rm, val_32);
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::LMSW_Ew(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("LMSW_Ew(): not supported on 8086!"));
|
|
#else
|
|
Bit16u msw;
|
|
Bit32u cr0;
|
|
|
|
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
|
|
|
|
if ( protected_mode() ) {
|
|
if ( CPL != 0 ) {
|
|
BX_INFO(("LMSW: CPL != 0, CPL=%u", (unsigned) CPL));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (i->mod == 0xc0) {
|
|
msw = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
read_virtual_word(i->seg, i->rm_addr, &msw);
|
|
}
|
|
|
|
// LMSW does not affect PG,CD,NW,AM,WP,NE,ET bits, and cannot clear PE
|
|
|
|
// LMSW cannot clear PE
|
|
if ( ((msw & 0x0001)==0) && BX_CPU_THIS_PTR cr0.pe ) {
|
|
msw |= 0x0001; // adjust PE bit to current value of 1
|
|
}
|
|
|
|
msw &= 0x000f; // LMSW only affects last 4 flags
|
|
cr0 = (BX_CPU_THIS_PTR cr0.val32 & 0xfffffff0) | msw;
|
|
SetCR0(cr0);
|
|
#endif /* BX_CPU_LEVEL < 2 */
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SMSW_Ew(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("SMSW_Ew: not supported yet!"));
|
|
#else
|
|
Bit16u msw;
|
|
|
|
|
|
#if BX_CPU_LEVEL == 2
|
|
msw = 0xfff0; /* 80286 init value */
|
|
msw |= (BX_CPU_THIS_PTR cr0.ts << 3) |
|
|
(BX_CPU_THIS_PTR cr0.em << 2) |
|
|
(BX_CPU_THIS_PTR cr0.mp << 1) |
|
|
BX_CPU_THIS_PTR cr0.pe;
|
|
#else /* 386+ */
|
|
/* reserved bits 0 ??? */
|
|
/* should NE bit be included here ??? */
|
|
// should ET bit be included here (AW)
|
|
msw = (BX_CPU_THIS_PTR cr0.ts << 3) |
|
|
(BX_CPU_THIS_PTR cr0.em << 2) |
|
|
(BX_CPU_THIS_PTR cr0.mp << 1) |
|
|
BX_CPU_THIS_PTR cr0.pe;
|
|
#endif
|
|
|
|
|
|
if (i->mod == 0xc0) {
|
|
if (i->os_32) {
|
|
BX_WRITE_32BIT_REG(i->rm, msw); // zeros out high 16bits
|
|
}
|
|
else {
|
|
BX_WRITE_16BIT_REG(i->rm, msw);
|
|
}
|
|
}
|
|
else {
|
|
write_virtual_word(i->seg, i->rm_addr, &msw);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::MOV_CdRd(BxInstruction_t *i)
|
|
{
|
|
// mov general register data to control register
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_CdRd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
|
|
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
|
|
|
|
/* NOTES:
|
|
* 32bit operands always used
|
|
* r/m field specifies general register
|
|
* mod field should always be 11 binary
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
if (i->mod != 0xc0) {
|
|
BX_PANIC(("MOV_CdRd(): rm field not a register!"));
|
|
}
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
if (protected_mode() && CPL!=0) {
|
|
BX_PANIC(("MOV_CdRd: CPL!=0"));
|
|
/* #GP(0) if CPL is not 0 */
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
val_32 = BX_READ_32BIT_REG(i->rm);
|
|
|
|
switch (i->nnn) {
|
|
case 0: // CR0 (MSW)
|
|
// BX_INFO(("MOV_CdRd:CR0: R32 = %08x\n @CS:EIP %04x:%04x ",
|
|
// (unsigned) val_32,
|
|
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
// (unsigned) BX_CPU_THIS_PTR eip));
|
|
SetCR0(val_32);
|
|
break;
|
|
|
|
case 1: /* CR1 */
|
|
BX_PANIC(("MOV_CdRd: CR1 not implemented yet"));
|
|
break;
|
|
case 2: /* CR2 */
|
|
BX_DEBUG(("MOV_CdRd: CR2 not implemented yet"));
|
|
BX_DEBUG(("MOV_CdRd: CR2 = reg"));
|
|
BX_CPU_THIS_PTR cr2 = val_32;
|
|
break;
|
|
case 3: // CR3
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_CdRd:CR3 = %08x", (unsigned) val_32));
|
|
// Reserved bits take on value of MOV instruction
|
|
CR3_change(val_32);
|
|
BX_INSTR_TLB_CNTRL(BX_INSTR_MOV_CR3, val_32);
|
|
break;
|
|
case 4: // CR4
|
|
#if BX_CPU_LEVEL == 3
|
|
BX_PANIC(("MOV_CdRd: write to CR4 of 0x%08x on 386",
|
|
val_32));
|
|
UndefinedOpcode(i);
|
|
#else
|
|
// Protected mode: #GP(0) if attempt to write a 1 to
|
|
// any reserved bit of CR4
|
|
|
|
if (val_32 & ~ 0x10) { // support CR4<PSE> (to allow 4M pages)
|
|
BX_INFO(("MOV_CdRd: (CR4) write of 0x%08x not supported!",
|
|
val_32));
|
|
}
|
|
// Only allow writes of 0 to CR4 for now.
|
|
// Writes to bits in CR4 should not be 1s as CPUID
|
|
// returns not-supported for all of these features.
|
|
BX_CPU_THIS_PTR cr4 = val_32 & 0x10;
|
|
#endif
|
|
break;
|
|
default:
|
|
BX_PANIC(("MOV_CdRd: control register index out of range"));
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOV_RdCd(BxInstruction_t *i)
|
|
{
|
|
// mov control register data to register
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_RdCd: not supported on < 386"));
|
|
#else
|
|
Bit32u val_32;
|
|
|
|
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
|
|
|
|
/* NOTES:
|
|
* 32bit operands always used
|
|
* r/m field specifies general register
|
|
* mod field should always be 11 binary
|
|
* reg field specifies which special register
|
|
*/
|
|
|
|
if (i->mod != 0xc0) {
|
|
BX_PANIC(("MOV_RdCd(): rm field not a register!"));
|
|
}
|
|
|
|
if (protected_mode() && CPL!=0) {
|
|
// BX_PANIC(("MOV_RdCd: CPL!=0"));
|
|
/* #GP(0) if CPL is not 0 */
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
switch (i->nnn) {
|
|
case 0: // CR0 (MSW)
|
|
val_32 = BX_CPU_THIS_PTR cr0.val32;
|
|
#if 0
|
|
BX_INFO(("MOV_RdCd:CR0: R32 = %08x\n @CS:EIP %04x:%04x",
|
|
(unsigned) val_32,
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
(unsigned) BX_CPU_THIS_PTR eip));
|
|
#endif
|
|
break;
|
|
case 1: /* CR1 */
|
|
BX_PANIC(("MOV_RdCd: CR1 not implemented yet"));
|
|
val_32 = 0;
|
|
break;
|
|
case 2: /* CR2 */
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_RdCd: CR2"));
|
|
val_32 = BX_CPU_THIS_PTR cr2;
|
|
break;
|
|
case 3: // CR3
|
|
if (bx_dbg.creg)
|
|
BX_INFO(("MOV_RdCd: reading CR3"));
|
|
val_32 = BX_CPU_THIS_PTR cr3;
|
|
break;
|
|
case 4: // CR4
|
|
#if BX_CPU_LEVEL == 3
|
|
val_32 = 0;
|
|
BX_INFO(("MOV_RdCd: read of CR4 causes #UD"));
|
|
UndefinedOpcode(i);
|
|
#else
|
|
BX_INFO(("MOV_RdCd: read of CR4"));
|
|
val_32 = BX_CPU_THIS_PTR cr4;
|
|
#endif
|
|
break;
|
|
default:
|
|
BX_PANIC(("MOV_RdCd: control register index out of range"));
|
|
val_32 = 0;
|
|
}
|
|
BX_WRITE_32BIT_REG(i->rm, val_32);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOV_TdRd(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_TdRd:"));
|
|
#elif BX_CPU_LEVEL <= 4
|
|
BX_PANIC(("MOV_TdRd:"));
|
|
#else
|
|
// Pentium+ does not have TRx. They were redesigned using the MSRs.
|
|
BX_INFO(("MOV_TdRd: causes #UD"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::MOV_RdTd(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("MOV_RdTd:"));
|
|
#elif BX_CPU_LEVEL <= 4
|
|
BX_PANIC(("MOV_RdTd:"));
|
|
#else
|
|
// Pentium+ does not have TRx. They were redesigned using the MSRs.
|
|
BX_INFO(("MOV_RdTd: causes #UD"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::LOADALL(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("undocumented LOADALL instruction not supported on 8086"));
|
|
#else
|
|
Bit16u msw, tr, flags, ip, ldtr;
|
|
Bit16u ds_raw, ss_raw, cs_raw, es_raw;
|
|
Bit16u di, si, bp, sp, bx, dx, cx, ax;
|
|
Bit16u base_15_0, limit;
|
|
Bit8u base_23_16, access;
|
|
|
|
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
|
|
|
|
#if BX_CPU_LEVEL > 2
|
|
BX_PANIC(("loadall: not implemented for 386"));
|
|
/* ??? need to set G and other bits, and compute .limit_scaled also */
|
|
/* for all segments CS,DS,SS,... */
|
|
#endif
|
|
|
|
if (BX_CPU_THIS_PTR cr0.pe) {
|
|
BX_PANIC((
|
|
"LOADALL not yet supported for protected mode"));
|
|
}
|
|
|
|
BX_PANIC(("LOADALL: handle CR0.val32"));
|
|
/* MSW */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x806, 2, &msw);
|
|
BX_CPU_THIS_PTR cr0.pe = (msw & 0x01); msw >>= 1;
|
|
BX_CPU_THIS_PTR cr0.mp = (msw & 0x01); msw >>= 1;
|
|
BX_CPU_THIS_PTR cr0.em = (msw & 0x01); msw >>= 1;
|
|
BX_CPU_THIS_PTR cr0.ts = (msw & 0x01);
|
|
|
|
//BX_INFO(("LOADALL: pe=%u, mp=%u, em=%u, ts=%u",
|
|
// (unsigned) BX_CPU_THIS_PTR cr0.pe, (unsigned) BX_CPU_THIS_PTR cr0.mp,
|
|
// (unsigned) BX_CPU_THIS_PTR cr0.em, (unsigned) BX_CPU_THIS_PTR cr0.ts));
|
|
|
|
if (BX_CPU_THIS_PTR cr0.pe || BX_CPU_THIS_PTR cr0.mp || BX_CPU_THIS_PTR cr0.em || BX_CPU_THIS_PTR cr0.ts)
|
|
BX_PANIC(("LOADALL set PE, MP, EM or TS bits in MSW!"));
|
|
|
|
/* TR */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x816, 2, &tr);
|
|
BX_CPU_THIS_PTR tr.selector.value = tr;
|
|
BX_CPU_THIS_PTR tr.selector.rpl = (tr & 0x03); tr >>= 2;
|
|
BX_CPU_THIS_PTR tr.selector.ti = (tr & 0x01); tr >>= 1;
|
|
BX_CPU_THIS_PTR tr.selector.index = tr;
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x860, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x862, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x863, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x864, 2, &limit);
|
|
|
|
|
|
BX_CPU_THIS_PTR tr.cache.valid =
|
|
BX_CPU_THIS_PTR tr.cache.p = (access & 0x80) >> 7;
|
|
BX_CPU_THIS_PTR tr.cache.dpl = (access & 0x60) >> 5;
|
|
BX_CPU_THIS_PTR tr.cache.segment = (access & 0x10) >> 4;
|
|
// don't allow busy bit in tr.cache.type, so bit 2 is masked away too.
|
|
BX_CPU_THIS_PTR tr.cache.type = (access & 0x0d);
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = limit;
|
|
|
|
if ( (BX_CPU_THIS_PTR tr.selector.value & 0xfffc) == 0 ) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if ( BX_CPU_THIS_PTR tr.cache.valid == 0 ) {
|
|
}
|
|
if ( BX_CPU_THIS_PTR tr.cache.u.tss286.limit < 43 ) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if ( BX_CPU_THIS_PTR tr.cache.type != 1 ) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if ( BX_CPU_THIS_PTR tr.cache.segment ) {
|
|
BX_CPU_THIS_PTR tr.cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR tr.cache.valid==0) {
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.base = 0;
|
|
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = 0;
|
|
BX_CPU_THIS_PTR tr.cache.p = 0;
|
|
BX_CPU_THIS_PTR tr.selector.value = 0;
|
|
BX_CPU_THIS_PTR tr.selector.index = 0;
|
|
BX_CPU_THIS_PTR tr.selector.ti = 0;
|
|
BX_CPU_THIS_PTR tr.selector.rpl = 0;
|
|
}
|
|
|
|
|
|
/* FLAGS */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x818, 2, &flags);
|
|
write_flags(flags, 1, 1);
|
|
|
|
/* IP */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x81a, 2, &ip);
|
|
IP = ip;
|
|
|
|
/* LDTR */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x81c, 2, &ldtr);
|
|
BX_CPU_THIS_PTR ldtr.selector.value = ldtr;
|
|
BX_CPU_THIS_PTR ldtr.selector.rpl = (ldtr & 0x03); ldtr >>= 2;
|
|
BX_CPU_THIS_PTR ldtr.selector.ti = (ldtr & 0x01); ldtr >>= 1;
|
|
BX_CPU_THIS_PTR ldtr.selector.index = ldtr;
|
|
if ( (BX_CPU_THIS_PTR ldtr.selector.value & 0xfffc) == 0 ) {
|
|
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.p = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.segment = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.type = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = 0;
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
|
|
BX_CPU_THIS_PTR ldtr.selector.value = 0;
|
|
BX_CPU_THIS_PTR ldtr.selector.index = 0;
|
|
BX_CPU_THIS_PTR ldtr.selector.ti = 0;
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x854, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x856, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x857, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x858, 2, &limit);
|
|
BX_CPU_THIS_PTR ldtr.cache.valid =
|
|
BX_CPU_THIS_PTR ldtr.cache.p = access >> 7;
|
|
BX_CPU_THIS_PTR ldtr.cache.dpl = (access >> 5) & 0x03;
|
|
BX_CPU_THIS_PTR ldtr.cache.segment = (access >> 4) & 0x01;
|
|
BX_CPU_THIS_PTR ldtr.cache.type = (access & 0x0f);
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = limit;
|
|
|
|
if (access == 0) {
|
|
BX_PANIC(("loadall: LDTR case access byte=0."));
|
|
}
|
|
if ( BX_CPU_THIS_PTR ldtr.cache.valid==0 ) {
|
|
BX_PANIC(("loadall: ldtr.valid=0"));
|
|
}
|
|
if (BX_CPU_THIS_PTR ldtr.cache.segment) { /* not a system segment */
|
|
BX_INFO((" AR byte = %02x", (unsigned) access));
|
|
BX_PANIC(("loadall: LDTR descriptor cache loaded with non system segment"));
|
|
}
|
|
if ( BX_CPU_THIS_PTR ldtr.cache.type != 2 ) {
|
|
BX_PANIC(("loadall: LDTR.type(%u) != 2", (unsigned) (access & 0x0f)));
|
|
}
|
|
}
|
|
|
|
/* DS */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x81e, 2, &ds_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = ds_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = (ds_raw & 0x03); ds_raw >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (ds_raw & 0x01); ds_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = ds_raw;
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x848, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x84a, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x84b, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x84c, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid =
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (access & 0x01);
|
|
|
|
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value & 0xfffc) == 0 ) {
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment==0) {
|
|
BX_PANIC(("loadall: DS invalid"));
|
|
}
|
|
|
|
/* SS */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x820, 2, &ss_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = ss_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = (ss_raw & 0x03); ss_raw >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (ss_raw & 0x01); ss_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = ss_raw;
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x842, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x844, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x845, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x846, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (access & 0x01);
|
|
|
|
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 ) {
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment==0) {
|
|
BX_PANIC(("loadall: SS invalid"));
|
|
}
|
|
|
|
|
|
/* CS */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x822, 2, &cs_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cs_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = (cs_raw & 0x03); cs_raw >>= 2;
|
|
|
|
//BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
|
|
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
|
|
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cs_raw & 0x01); cs_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cs_raw;
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x83c, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x83e, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x83f, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x840, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (access & 0x01);
|
|
|
|
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value & 0xfffc) == 0 ) {
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment==0) {
|
|
BX_PANIC(("loadall: CS invalid"));
|
|
}
|
|
|
|
/* ES */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x824, 2, &es_raw);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = es_raw;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = (es_raw & 0x03); es_raw >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (es_raw & 0x01); es_raw >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = es_raw;
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x836, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x838, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x839, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x83a, 2, &limit);
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = limit;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (access & 0x01); access >>= 1;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (access & 0x03); access >>= 2;
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (access & 0x01);
|
|
|
|
#if 0
|
|
BX_INFO(("cs.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl));
|
|
BX_INFO(("ss.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl));
|
|
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].dpl = %02x", (unsigned) BX_CPU_THIS_PTR ds.cache.dpl));
|
|
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].dpl = %02x", (unsigned) BX_CPU_THIS_PTR es.cache.dpl));
|
|
BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
|
|
BX_INFO(("LOADALL: setting ss.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl));
|
|
BX_INFO(("LOADALL: setting ds.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl));
|
|
BX_INFO(("LOADALL: setting es.selector.rpl to %u",
|
|
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl));
|
|
#endif
|
|
|
|
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value & 0xfffc) == 0 ) {
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid==0 ||
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment==0) {
|
|
BX_PANIC(("loadall: ES invalid"));
|
|
}
|
|
|
|
/* DI */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x826, 2, &di);
|
|
DI = di;
|
|
|
|
/* SI */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x828, 2, &si);
|
|
SI = si;
|
|
|
|
/* BP */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x82a, 2, &bp);
|
|
BP = bp;
|
|
|
|
/* SP */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x82c, 2, &sp);
|
|
SP = sp;
|
|
|
|
/* BX */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x82e, 2, &bx);
|
|
BX = bx;
|
|
|
|
/* DX */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x830, 2, &dx);
|
|
DX = dx;
|
|
|
|
/* CX */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x832, 2, &cx);
|
|
CX = cx;
|
|
|
|
/* AX */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x834, 2, &ax);
|
|
AX = ax;
|
|
|
|
/* GDTR */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x84e, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x850, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x851, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x852, 2, &limit);
|
|
BX_CPU_THIS_PTR gdtr.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR gdtr.limit = limit;
|
|
|
|
#if 0
|
|
if (access)
|
|
BX_INFO(("LOADALL: GDTR access bits not 0 (%02x).",
|
|
(unsigned) access));
|
|
#endif
|
|
|
|
/* IDTR */
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x85a, 2, &base_15_0);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x85c, 1, &base_23_16);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x85d, 1, &access);
|
|
BX_CPU_THIS_PTR mem->read_physical(this, 0x85e, 2, &limit);
|
|
BX_CPU_THIS_PTR idtr.base = (base_23_16 << 16) | base_15_0;
|
|
BX_CPU_THIS_PTR idtr.limit = limit;
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::CPUID(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 4
|
|
unsigned type, family, model, stepping, features;
|
|
#endif
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
#if BX_CPU_LEVEL >= 4
|
|
switch (EAX) {
|
|
case 0:
|
|
// EAX: highest input value understood by CPUID
|
|
// EBX: vendor ID string
|
|
// EDX: vendor ID string
|
|
// ECX: vendor ID string
|
|
EAX = 1; // 486 or pentium
|
|
EBX = 0x756e6547; // "Genu"
|
|
EDX = 0x49656e69; // "ineI"
|
|
ECX = 0x6c65746e; // "ntel"
|
|
break;
|
|
|
|
case 1:
|
|
// EAX[3:0] Stepping ID
|
|
// EAX[7:4] Model: starts at 1
|
|
// EAX[11:8] Family: 4=486, 5=Pentium, 6=PPro
|
|
// EAX[13:12] Type: 0=OEM,1=overdrive,2=dual cpu,3=reserved
|
|
// EAX[31:14] Reserved
|
|
// EBX: Reserved (0)
|
|
// ECX: Reserved (0)
|
|
// EDX: Feature Flags
|
|
// [0:0] FPU on chip
|
|
// [1:1] VME: Virtual-8086 Mode enhancements
|
|
// [2:2] DE: Debug Extensions (I/O breakpoints)
|
|
// [3:3] PSE: Page Size Extensions
|
|
// [4:4] TSC: Time Stamp Counter
|
|
// [5:5] MSR: RDMSR and WRMSR support
|
|
// [6:6] PAE: Physical Address Extensions
|
|
// [7:7] MCE: Machine Check Exception
|
|
// [8:8] CXS: CMPXCHG8B instruction
|
|
// [9:9] APIC: APIC on Chip
|
|
// [11:10] Reserved
|
|
// [12:12] MTRR: Memory Type Range Reg
|
|
// [13:13] PGE/PTE Global Bit
|
|
// [14:14] MCA: Machine Check Architecture
|
|
// [15:15] CMOV: Cond Mov/Cmp Instructions
|
|
// [22:16] Reserved
|
|
// [23:23] MMX Technology
|
|
// [31:24] Reserved
|
|
|
|
features = 0; // start with none
|
|
type = 0; // OEM
|
|
|
|
#if BX_CPU_LEVEL == 4
|
|
family = 4;
|
|
# if BX_SUPPORT_FPU
|
|
// 486dx
|
|
model = 1;
|
|
stepping = 3;
|
|
features |= 0x01;
|
|
# else
|
|
// 486sx
|
|
model = 2;
|
|
stepping = 3;
|
|
# endif
|
|
|
|
#elif BX_CPU_LEVEL == 5
|
|
family = 5;
|
|
model = 1; // Pentium (60,66)
|
|
stepping = 3; // ???
|
|
features |= (1<<4); // implement TSC
|
|
# if BX_SUPPORT_FPU
|
|
features |= 0x01;
|
|
# endif
|
|
|
|
#elif BX_CPU_LEVEL == 6
|
|
family = 6;
|
|
model = 1; // Pentium Pro
|
|
stepping = 3; // ???
|
|
features |= (1<<4); // implement TSC
|
|
# if BX_SUPPORT_APIC
|
|
features |= (1<<9); // APIC on chip
|
|
# endif
|
|
# if BX_SUPPORT_FPU
|
|
features |= 0x01; // has FPU
|
|
# endif
|
|
#else
|
|
BX_PANIC(("CPUID: not implemented for > 6"));
|
|
#endif
|
|
features |= 8; // support page-size extension (4m pages)
|
|
|
|
EAX = (family <<8) | (model<<4) | stepping;
|
|
EBX = ECX = 0; // reserved
|
|
EDX = features;
|
|
break;
|
|
|
|
default:
|
|
EAX = EBX = ECX = EDX = 0; // Reserved, undefined
|
|
break;
|
|
}
|
|
#else
|
|
BX_PANIC(("CPUID: not available on < late 486"));
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SetCR0(Bit32u val_32)
|
|
{
|
|
// from either MOV_CdRd() or debug functions
|
|
// protection checks made already or forcing from debug
|
|
Boolean prev_pe, prev_pg;
|
|
|
|
prev_pe = BX_CPU_THIS_PTR cr0.pe;
|
|
prev_pg = BX_CPU_THIS_PTR cr0.pg;
|
|
|
|
BX_CPU_THIS_PTR cr0.pe = val_32 & 0x01;
|
|
BX_CPU_THIS_PTR cr0.mp = (val_32 >> 1) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.em = (val_32 >> 2) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.ts = (val_32 >> 3) & 0x01;
|
|
// cr0.et is hardwired to 1
|
|
#if BX_CPU_LEVEL >= 4
|
|
BX_CPU_THIS_PTR cr0.ne = (val_32 >> 5) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.wp = (val_32 >> 16) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.am = (val_32 >> 18) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.nw = (val_32 >> 29) & 0x01;
|
|
BX_CPU_THIS_PTR cr0.cd = (val_32 >> 30) & 0x01;
|
|
#endif
|
|
BX_CPU_THIS_PTR cr0.pg = (val_32 >> 31) & 0x01;
|
|
|
|
// handle reserved bits behaviour
|
|
#if BX_CPU_LEVEL == 3
|
|
BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x7ffffff0;
|
|
#elif BX_CPU_LEVEL == 4
|
|
BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f;
|
|
#elif BX_CPU_LEVEL == 5
|
|
BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x00000010;
|
|
#elif BX_CPU_LEVEL == 6
|
|
BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f;
|
|
#else
|
|
#error "MOV_CdRd: implement reserved bits behaviour for this CPU_LEVEL"
|
|
#endif
|
|
|
|
//if (BX_CPU_THIS_PTR cr0.ts)
|
|
// BX_INFO(("MOV_CdRd:CR0.TS set 0x%x", (unsigned) val_32));
|
|
|
|
if (prev_pe==0 && BX_CPU_THIS_PTR cr0.pe) {
|
|
enter_protected_mode();
|
|
}
|
|
else if (prev_pe==1 && BX_CPU_THIS_PTR cr0.pe==0) {
|
|
enter_real_mode();
|
|
}
|
|
|
|
if (prev_pg==0 && BX_CPU_THIS_PTR cr0.pg)
|
|
enable_paging();
|
|
else if (prev_pg==1 && BX_CPU_THIS_PTR cr0.pg==0)
|
|
disable_paging();
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::RSM(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 4
|
|
invalidate_prefetch_q();
|
|
|
|
BX_PANIC(("RSM: System Management Mode not implemented yet"));
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::RDTSC(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 5
|
|
Boolean tsd = (BX_CPU_THIS_PTR cr4 & 4)? 1 : 0;
|
|
Boolean cpl = CPL;
|
|
if ((tsd==0) || (tsd==1 && cpl==0)) {
|
|
// return ticks
|
|
Bit64u ticks = bx_pc_system.time_ticks ();
|
|
EAX = (Bit32u) (ticks & 0xffffffff);
|
|
EDX = (Bit32u) ((ticks >> 32) & 0xffffffff);
|
|
//BX_INFO(("RDTSC: returning EDX:EAX = %08x:%08x", EDX, EAX));
|
|
} else {
|
|
// not allowed to use RDTSC!
|
|
exception (BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
#else
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::RDMSR(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 5
|
|
invalidate_prefetch_q();
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("RDMSR: Invalid whilst in virtual 8086 mode"));
|
|
goto do_exception;
|
|
}
|
|
|
|
if (CPL!= 0) {
|
|
BX_INFO(("RDMSR: CPL!= 0"));
|
|
goto do_exception;
|
|
}
|
|
|
|
/* We have the requested MSR register in ECX */
|
|
switch(ECX) {
|
|
#if BX_CPU_LEVEL == 5
|
|
/* The following registers are defined for Pentium only */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
/* TODO */
|
|
return;
|
|
|
|
case BX_MSR_TSC:
|
|
RDTSC(i);
|
|
return;
|
|
|
|
case BX_MSR_CESR:
|
|
/* TODO */
|
|
return;
|
|
#else
|
|
/* These are noops on i686... */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
/* do nothing */
|
|
return;
|
|
|
|
case BX_MSR_TSC:
|
|
RDTSC(i);
|
|
return;
|
|
|
|
/* ... And these cause an exception on i686 */
|
|
case BX_MSR_CESR:
|
|
case BX_MSR_CTR0:
|
|
case BX_MSR_CTR1:
|
|
goto do_exception;
|
|
#endif /* BX_CPU_LEVEL == 5 */
|
|
|
|
/* MSR_APICBASE
|
|
0:7 Reserved
|
|
8 This is set if its the BSP
|
|
9:10 Reserved
|
|
11 APIC Global Enable bit (1=enabled 0=disabled)
|
|
12:35 APIC Base Address
|
|
36:63 Reserved
|
|
*/
|
|
case BX_MSR_APICBASE:
|
|
/* we return low 32 bits in EAX, and high in EDX */
|
|
EAX = BX_CPU_THIS_PTR msr.apicbase & 0xff;
|
|
EDX = BX_CPU_THIS_PTR msr.apicbase >> 32;
|
|
BX_INFO(("RDMSR: Read %08x:%08x from MSR_APICBASE", EDX, EAX));
|
|
return;
|
|
|
|
default:
|
|
BX_INFO(("RDMSR: Unknown register!"));
|
|
goto do_exception;
|
|
|
|
}
|
|
#endif /* BX_CPU_LEVEL >= 5 */
|
|
|
|
do_exception:
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::WRMSR(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL >= 5
|
|
invalidate_prefetch_q();
|
|
|
|
if (v8086_mode()) {
|
|
BX_INFO(("WRMSR: Invalid whilst in virtual 8086 mode"));
|
|
goto do_exception;
|
|
}
|
|
|
|
if (CPL!= 0) {
|
|
BX_INFO(("WDMSR: CPL!= 0"));
|
|
goto do_exception;
|
|
}
|
|
|
|
/* ECX has the MSR to write to */
|
|
switch(ECX) {
|
|
#if BX_CPU_LEVEL == 5
|
|
/* The following registers are defined for Pentium only */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
case BX_MSR_TSC:
|
|
case BX_MSR_CESR:
|
|
/* TODO */
|
|
return;
|
|
#else
|
|
/* These are noops on i686... */
|
|
case BX_MSR_P5_MC_ADDR:
|
|
case BX_MSR_MC_TYPE:
|
|
case BX_MSR_TSC:
|
|
/* do nothing */
|
|
return;
|
|
|
|
/* ... And these cause an exception on i686 */
|
|
case BX_MSR_CESR:
|
|
case BX_MSR_CTR0:
|
|
case BX_MSR_CTR1:
|
|
goto do_exception;
|
|
#endif /* BX_CPU_LEVEL == 5 */
|
|
|
|
/* MSR_APICBASE
|
|
0:7 Reserved
|
|
8 This is set if its the BSP
|
|
9:10 Reserved
|
|
11 APIC Global Enable bit (1=enabled 0=disabled)
|
|
12:35 APIC Base Address
|
|
36:63 Reserved
|
|
*/
|
|
|
|
case BX_MSR_APICBASE:
|
|
BX_CPU_THIS_PTR msr.apicbase = ((Bit64u)EDX << 32) + EAX;
|
|
BX_INFO(("WRMSR: wrote %08x:%08x to MSR_APICBASE", EDX, EAX));
|
|
return;
|
|
|
|
default:
|
|
BX_INFO(("WRMSR: Unknown register!"));
|
|
goto do_exception;
|
|
|
|
}
|
|
#endif /* BX_CPU_LEVEL >= 5 */
|
|
|
|
do_exception:
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
|
|
}
|
|
|
|
#if BX_X86_DEBUGGER
|
|
Bit32u
|
|
BX_CPU_C::hwdebug_compare(Bit32u laddr_0, unsigned size,
|
|
unsigned opa, unsigned opb)
|
|
{
|
|
// Support x86 hardware debug facilities (DR0..DR7)
|
|
Bit32u dr7 = BX_CPU_THIS_PTR dr7;
|
|
|
|
Boolean ibpoint_found = 0;
|
|
Bit32u laddr_n = laddr_0 + (size - 1);
|
|
Bit32u dr0, dr1, dr2, dr3;
|
|
Bit32u dr0_n, dr1_n, dr2_n, dr3_n;
|
|
Bit32u len0, len1, len2, len3;
|
|
static unsigned alignment_mask[4] =
|
|
// 00b=1 01b=2 10b=undef 11b=4
|
|
{ 0xffffffff, 0xfffffffe, 0xffffffff, 0xfffffffc };
|
|
Bit32u dr0_op, dr1_op, dr2_op, dr3_op;
|
|
|
|
len0 = (dr7>>18) & 3;
|
|
len1 = (dr7>>22) & 3;
|
|
len2 = (dr7>>26) & 3;
|
|
len3 = (dr7>>30) & 3;
|
|
|
|
dr0 = BX_CPU_THIS_PTR dr0 & alignment_mask[len0];
|
|
dr1 = BX_CPU_THIS_PTR dr1 & alignment_mask[len1];
|
|
dr2 = BX_CPU_THIS_PTR dr2 & alignment_mask[len2];
|
|
dr3 = BX_CPU_THIS_PTR dr3 & alignment_mask[len3];
|
|
|
|
dr0_n = dr0 + len0;
|
|
dr1_n = dr1 + len1;
|
|
dr2_n = dr2 + len2;
|
|
dr3_n = dr3 + len3;
|
|
|
|
dr0_op = (dr7>>16) & 3;
|
|
dr1_op = (dr7>>20) & 3;
|
|
dr2_op = (dr7>>24) & 3;
|
|
dr3_op = (dr7>>28) & 3;
|
|
|
|
// See if this instruction address matches any breakpoints
|
|
if ( (dr7 & 0x00000003) ) {
|
|
if ( (dr0_op==opa || dr0_op==opb) &&
|
|
(laddr_0 <= dr0_n) &&
|
|
(laddr_n >= dr0) )
|
|
ibpoint_found = 1;
|
|
}
|
|
if ( (dr7 & 0x0000000c) ) {
|
|
if ( (dr1_op==opa || dr1_op==opb) &&
|
|
(laddr_0 <= dr1_n) &&
|
|
(laddr_n >= dr1) )
|
|
ibpoint_found = 1;
|
|
}
|
|
if ( (dr7 & 0x00000030) ) {
|
|
if ( (dr2_op==opa || dr2_op==opb) &&
|
|
(laddr_0 <= dr2_n) &&
|
|
(laddr_n >= dr2) )
|
|
ibpoint_found = 1;
|
|
}
|
|
if ( (dr7 & 0x000000c0) ) {
|
|
if ( (dr3_op==opa || dr3_op==opb) &&
|
|
(laddr_0 <= dr3_n) &&
|
|
(laddr_n >= dr3) )
|
|
ibpoint_found = 1;
|
|
}
|
|
|
|
// If *any* enabled breakpoints matched, then we need to
|
|
// set status bits for *all* breakpoints, even disabled ones,
|
|
// as long as they meet the other breakpoint criteria.
|
|
// This code is similar to that above, only without the
|
|
// breakpoint enabled check. Seems weird to duplicate effort,
|
|
// but its more efficient to do it this way.
|
|
if (ibpoint_found) {
|
|
// dr6_mask is the return value. These bits represent the bits to
|
|
// be OR'd into DR6 as a result of the debug event.
|
|
Bit32u dr6_mask=0;
|
|
if ( (dr0_op==opa || dr0_op==opb) &&
|
|
(laddr_0 <= dr0_n) &&
|
|
(laddr_n >= dr0) )
|
|
dr6_mask |= 0x01;
|
|
if ( (dr1_op==opa || dr1_op==opb) &&
|
|
(laddr_0 <= dr1_n) &&
|
|
(laddr_n >= dr1) )
|
|
dr6_mask |= 0x02;
|
|
if ( (dr2_op==opa || dr2_op==opb) &&
|
|
(laddr_0 <= dr2_n) &&
|
|
(laddr_n >= dr2) )
|
|
dr6_mask |= 0x04;
|
|
if ( (dr3_op==opa || dr3_op==opb) &&
|
|
(laddr_0 <= dr3_n) &&
|
|
(laddr_n >= dr3) )
|
|
dr6_mask |= 0x08;
|
|
return(dr6_mask);
|
|
}
|
|
return(0);
|
|
}
|
|
#endif
|