525e5a46f7
This is required for the "second run" feature of the wx port. The simulation thread can be run multiple times without restarting the application.
788 lines
24 KiB
C++
788 lines
24 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: misc_mem.cc,v 1.152 2011-02-11 15:33:08 vruppert Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001-2009 The Bochs Project
|
|
//
|
|
// I/O memory handlers API Copyright (C) 2003 by Frank Cornelis
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "bochs.h"
|
|
#include "param_names.h"
|
|
#include "cpu/cpu.h"
|
|
#include "iodev/iodev.h"
|
|
#define LOG_THIS BX_MEM(0)->
|
|
|
|
// alignment of memory vector, must be a power of 2
|
|
#define BX_MEM_VECTOR_ALIGN 4096
|
|
#define BX_MEM_HANDLERS ((BX_CONST64(1) << BX_PHY_ADDRESS_WIDTH) >> 20) /* one per megabyte */
|
|
|
|
BX_MEM_C::BX_MEM_C()
|
|
{
|
|
put("MEM0");
|
|
|
|
vector = NULL;
|
|
actual_vector = NULL;
|
|
blocks = NULL;
|
|
len = 0;
|
|
used_blocks = 0;
|
|
for (int i = 0; i < 65; i++)
|
|
rom_present[i] = 0;
|
|
|
|
memory_handlers = NULL;
|
|
}
|
|
|
|
Bit8u* BX_MEM_C::alloc_vector_aligned(Bit32u bytes, Bit32u alignment)
|
|
{
|
|
Bit64u test_mask = alignment - 1;
|
|
BX_MEM_THIS actual_vector = new Bit8u [(Bit32u)(bytes + test_mask)];
|
|
if (BX_MEM_THIS actual_vector == 0) {
|
|
BX_PANIC(("alloc_vector_aligned: unable to allocate host RAM !"));
|
|
return 0;
|
|
}
|
|
// round address forward to nearest multiple of alignment. Alignment
|
|
// MUST BE a power of two for this to work.
|
|
Bit64u masked = ((Bit64u)(BX_MEM_THIS actual_vector + test_mask)) & ~test_mask;
|
|
Bit8u *vector = (Bit8u *) masked;
|
|
// sanity check: no lost bits during pointer conversion
|
|
assert(sizeof(masked) >= sizeof(vector));
|
|
// sanity check: after realignment, everything fits in allocated space
|
|
assert(vector+bytes <= BX_MEM_THIS actual_vector+bytes+test_mask);
|
|
return vector;
|
|
}
|
|
|
|
BX_MEM_C::~BX_MEM_C()
|
|
{
|
|
cleanup_memory();
|
|
}
|
|
|
|
void BX_MEM_C::init_memory(Bit64u guest, Bit64u host)
|
|
{
|
|
unsigned idx;
|
|
|
|
BX_DEBUG(("Init $Id: misc_mem.cc,v 1.152 2011-02-11 15:33:08 vruppert Exp $"));
|
|
|
|
// accept only memory size which is multiply of 1M
|
|
BX_ASSERT((host & 0xfffff) == 0);
|
|
BX_ASSERT((guest & 0xfffff) == 0);
|
|
|
|
if (BX_MEM_THIS actual_vector != NULL) {
|
|
BX_INFO(("freeing existing memory vector"));
|
|
delete [] BX_MEM_THIS actual_vector;
|
|
BX_MEM_THIS actual_vector = NULL;
|
|
BX_MEM_THIS vector = NULL;
|
|
BX_MEM_THIS blocks = NULL;
|
|
}
|
|
BX_MEM_THIS vector = alloc_vector_aligned(host + BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN);
|
|
BX_INFO(("allocated memory at %p. after alignment, vector=%p",
|
|
BX_MEM_THIS actual_vector, BX_MEM_THIS vector));
|
|
|
|
BX_MEM_THIS len = guest;
|
|
BX_MEM_THIS allocated = host;
|
|
BX_MEM_THIS rom = &BX_MEM_THIS vector[host];
|
|
BX_MEM_THIS bogus = &BX_MEM_THIS vector[host + BIOSROMSZ + EXROMSIZE];
|
|
memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE + 4096);
|
|
|
|
// block must be large enough to fit num_blocks in 32-bit
|
|
BX_ASSERT((BX_MEM_THIS len / BX_MEM_BLOCK_LEN) <= 0xffffffff);
|
|
|
|
Bit32u num_blocks = (Bit32u)(BX_MEM_THIS len / BX_MEM_BLOCK_LEN);
|
|
BX_INFO(("%.2fMB", (float)(BX_MEM_THIS len / (1024.0*1024.0))));
|
|
BX_INFO(("mem block size = 0x%08x, blocks=%u", BX_MEM_BLOCK_LEN, num_blocks));
|
|
BX_MEM_THIS blocks = new Bit8u* [num_blocks];
|
|
if (0) {
|
|
// all guest memory is allocated, just map it
|
|
for (idx = 0; idx < num_blocks; idx++) {
|
|
BX_MEM_THIS blocks[idx] = BX_MEM_THIS vector + (idx * BX_MEM_BLOCK_LEN);
|
|
}
|
|
BX_MEM_THIS used_blocks = num_blocks;
|
|
}
|
|
else {
|
|
// host cannot allocate all requested guest memory
|
|
for (idx = 0; idx < num_blocks; idx++) {
|
|
BX_MEM_THIS blocks[idx] = NULL;
|
|
}
|
|
BX_MEM_THIS used_blocks = 0;
|
|
}
|
|
|
|
BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[BX_MEM_HANDLERS];
|
|
for (idx = 0; idx < BX_MEM_HANDLERS; idx++)
|
|
BX_MEM_THIS memory_handlers[idx] = NULL;
|
|
|
|
BX_MEM_THIS pci_enabled = SIM->get_param_bool(BXPN_I440FX_SUPPORT)->get();
|
|
BX_MEM_THIS smram_available = 0;
|
|
BX_MEM_THIS smram_enable = 0;
|
|
BX_MEM_THIS smram_restricted = 0;
|
|
|
|
BX_MEM_THIS register_state();
|
|
}
|
|
|
|
void BX_MEM_C::allocate_block(Bit32u block)
|
|
{
|
|
Bit32u max_blocks = BX_MEM_THIS allocated / BX_MEM_BLOCK_LEN;
|
|
if (BX_MEM_THIS used_blocks >= max_blocks) {
|
|
BX_PANIC(("FATAL ERROR: all available memory is already allocated !"));
|
|
}
|
|
else {
|
|
BX_MEM_THIS blocks[block] = BX_MEM_THIS vector + (BX_MEM_THIS used_blocks * BX_MEM_BLOCK_LEN);
|
|
BX_MEM_THIS used_blocks++;
|
|
}
|
|
BX_DEBUG(("allocate_block: used_blocks=%d of %d", BX_MEM_THIS used_blocks, max_blocks));
|
|
}
|
|
|
|
Bit64s memory_param_save_handler(void *devptr, bx_param_c *param)
|
|
{
|
|
const char *pname = param->get_name();
|
|
if (! strncmp(pname, "blk", 3)) {
|
|
Bit32u blk_index = atoi(pname + 3);
|
|
if (! BX_MEM(0)->blocks[blk_index]) {
|
|
return -1;
|
|
}
|
|
else {
|
|
Bit32u val = (Bit32u) (BX_MEM(0)->blocks[blk_index] - BX_MEM(0)->vector);
|
|
if ((val & (BX_MEM_BLOCK_LEN-1)) == 0)
|
|
return val / BX_MEM_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void memory_param_restore_handler(void *devptr, bx_param_c *param, Bit64s val)
|
|
{
|
|
const char *pname = param->get_name();
|
|
if (! strncmp(pname, "blk", 3)) {
|
|
Bit32u blk_index = atoi(pname + 3);
|
|
if((Bit32s) val < 0)
|
|
BX_MEM(0)->blocks[blk_index] = NULL;
|
|
else
|
|
BX_MEM(0)->blocks[blk_index] = BX_MEM(0)->vector + val * BX_MEM_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
void BX_MEM_C::register_state()
|
|
{
|
|
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "memory", "Memory State", 6);
|
|
new bx_shadow_data_c(list, "ram", BX_MEM_THIS vector, BX_MEM_THIS allocated);
|
|
BXRS_DEC_PARAM_FIELD(list, len, BX_MEM_THIS len);
|
|
BXRS_DEC_PARAM_FIELD(list, allocated, BX_MEM_THIS allocated);
|
|
BXRS_DEC_PARAM_FIELD(list, used_blocks, BX_MEM_THIS used_blocks);
|
|
|
|
Bit32u num_blocks = BX_MEM_THIS len / BX_MEM_BLOCK_LEN;
|
|
bx_list_c *mapping = new bx_list_c(list, "mapping", num_blocks);
|
|
for (Bit32u blk=0; blk < num_blocks; blk++) {
|
|
char param_name[15];
|
|
sprintf(param_name, "blk%d", blk);
|
|
bx_param_num_c *param = new bx_param_num_c(mapping, param_name, "", "", 0, BX_MAX_BIT32U, 0);
|
|
param->set_base(BASE_DEC);
|
|
param->set_sr_handlers(this, memory_param_save_handler, memory_param_restore_handler);
|
|
}
|
|
}
|
|
|
|
void BX_MEM_C::cleanup_memory()
|
|
{
|
|
unsigned idx;
|
|
|
|
if (BX_MEM_THIS vector != NULL) {
|
|
delete [] BX_MEM_THIS actual_vector;
|
|
BX_MEM_THIS actual_vector = NULL;
|
|
BX_MEM_THIS vector = NULL;
|
|
BX_MEM_THIS rom = NULL;
|
|
BX_MEM_THIS bogus = NULL;
|
|
delete [] BX_MEM_THIS blocks;
|
|
BX_MEM_THIS blocks = 0;
|
|
BX_MEM_THIS used_blocks = 0;
|
|
if (BX_MEM_THIS memory_handlers != NULL) {
|
|
for (idx = 0; idx < BX_MEM_HANDLERS; idx++) {
|
|
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[idx];
|
|
struct memory_handler_struct *prev = NULL;
|
|
while (memory_handler) {
|
|
prev = memory_handler;
|
|
memory_handler = memory_handler->next;
|
|
delete prev;
|
|
}
|
|
}
|
|
delete [] BX_MEM_THIS memory_handlers;
|
|
BX_MEM_THIS memory_handlers = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Values for type:
|
|
// 0 : System Bios
|
|
// 1 : VGA Bios
|
|
// 2 : Optional ROM Bios
|
|
//
|
|
void BX_MEM_C::load_ROM(const char *path, bx_phy_address romaddress, Bit8u type)
|
|
{
|
|
struct stat stat_buf;
|
|
int fd, ret, i, start_idx, end_idx;
|
|
unsigned long size, max_size, offset;
|
|
bx_bool is_bochs_bios = 0;
|
|
|
|
if (*path == '\0') {
|
|
if (type == 2) {
|
|
BX_PANIC(("ROM: Optional ROM image undefined"));
|
|
}
|
|
else if (type == 1) {
|
|
BX_PANIC(("ROM: VGA BIOS image undefined"));
|
|
}
|
|
else {
|
|
BX_PANIC(("ROM: System BIOS image undefined"));
|
|
}
|
|
return;
|
|
}
|
|
// read in ROM BIOS image file
|
|
fd = open(path, O_RDONLY
|
|
#ifdef O_BINARY
|
|
| O_BINARY
|
|
#endif
|
|
);
|
|
if (fd < 0) {
|
|
if (type < 2) {
|
|
BX_PANIC(("ROM: couldn't open ROM image file '%s'.", path));
|
|
}
|
|
else {
|
|
BX_ERROR(("ROM: couldn't open ROM image file '%s'.", path));
|
|
}
|
|
return;
|
|
}
|
|
ret = fstat(fd, &stat_buf);
|
|
if (ret) {
|
|
if (type < 2) {
|
|
BX_PANIC(("ROM: couldn't stat ROM image file '%s'.", path));
|
|
}
|
|
else {
|
|
BX_ERROR(("ROM: couldn't stat ROM image file '%s'.", path));
|
|
}
|
|
return;
|
|
}
|
|
|
|
size = (unsigned long)stat_buf.st_size;
|
|
|
|
if (type > 0) {
|
|
max_size = 0x20000;
|
|
} else {
|
|
max_size = BIOSROMSZ;
|
|
}
|
|
if (size > max_size) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM image too large"));
|
|
return;
|
|
}
|
|
if (type == 0) {
|
|
if (romaddress > 0) {
|
|
if ((romaddress + size) != 0x100000 && (romaddress + size)) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: System BIOS must end at 0xfffff"));
|
|
return;
|
|
}
|
|
} else {
|
|
romaddress = -size;
|
|
}
|
|
offset = romaddress & BIOS_MASK;
|
|
if ((romaddress & 0xf0000) < 0xf0000) {
|
|
BX_MEM_THIS rom_present[64] = 1;
|
|
}
|
|
is_bochs_bios = (strstr(path, "BIOS-bochs-latest") != NULL);
|
|
} else {
|
|
if ((size % 512) != 0) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM image size must be multiple of 512 (size = %ld)", size));
|
|
return;
|
|
}
|
|
if ((romaddress % 2048) != 0) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM image must start at a 2k boundary"));
|
|
return;
|
|
}
|
|
if ((romaddress < 0xc0000) ||
|
|
(((romaddress + size - 1) > 0xdffff) && (romaddress < 0xe0000))) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: ROM address space out of range"));
|
|
return;
|
|
}
|
|
if (romaddress < 0xe0000) {
|
|
offset = (romaddress & EXROM_MASK) + BIOSROMSZ;
|
|
start_idx = (((Bit32u)romaddress - 0xc0000) >> 11);
|
|
end_idx = start_idx + (size >> 11) + (((size % 2048) > 0) ? 1 : 0);
|
|
} else {
|
|
offset = romaddress & BIOS_MASK;
|
|
start_idx = 64;
|
|
end_idx = 64;
|
|
}
|
|
for (i = start_idx; i < end_idx; i++) {
|
|
if (BX_MEM_THIS rom_present[i]) {
|
|
close(fd);
|
|
BX_PANIC(("ROM: address space 0x%x already in use", (i * 2048) + 0xc0000));
|
|
return;
|
|
} else {
|
|
BX_MEM_THIS rom_present[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
while (size > 0) {
|
|
ret = read(fd, (bx_ptr_t) &BX_MEM_THIS rom[offset], size);
|
|
if (ret <= 0) {
|
|
BX_PANIC(("ROM: read failed on BIOS image: '%s'",path));
|
|
}
|
|
size -= ret;
|
|
offset += ret;
|
|
}
|
|
close(fd);
|
|
offset -= (unsigned long)stat_buf.st_size;
|
|
if (((romaddress & 0xfffff) != 0xe0000) ||
|
|
((BX_MEM_THIS rom[offset] == 0x55) && (BX_MEM_THIS rom[offset+1] == 0xaa))) {
|
|
Bit8u checksum = 0;
|
|
for (i = 0; i < stat_buf.st_size; i++) {
|
|
checksum += BX_MEM_THIS rom[offset + i];
|
|
}
|
|
if (checksum != 0) {
|
|
if (type == 1) {
|
|
BX_PANIC(("ROM: checksum error in VGABIOS image: '%s'", path));
|
|
} else if (is_bochs_bios) {
|
|
BX_ERROR(("ROM: checksum error in BIOS image: '%s'", path));
|
|
}
|
|
}
|
|
}
|
|
BX_INFO(("rom at 0x%05x/%u ('%s')",
|
|
(unsigned) romaddress,
|
|
(unsigned) stat_buf.st_size,
|
|
path));
|
|
}
|
|
|
|
void BX_MEM_C::load_RAM(const char *path, bx_phy_address ramaddress, Bit8u type)
|
|
{
|
|
struct stat stat_buf;
|
|
int fd, ret;
|
|
Bit32u size, offset;
|
|
|
|
if (*path == '\0') {
|
|
BX_PANIC(("RAM: Optional RAM image undefined"));
|
|
return;
|
|
}
|
|
// read in RAM BIOS image file
|
|
fd = open(path, O_RDONLY
|
|
#ifdef O_BINARY
|
|
| O_BINARY
|
|
#endif
|
|
);
|
|
if (fd < 0) {
|
|
BX_PANIC(("RAM: couldn't open RAM image file '%s'.", path));
|
|
return;
|
|
}
|
|
ret = fstat(fd, &stat_buf);
|
|
if (ret) {
|
|
BX_PANIC(("RAM: couldn't stat RAM image file '%s'.", path));
|
|
return;
|
|
}
|
|
|
|
size = (unsigned long)stat_buf.st_size;
|
|
|
|
offset = ramaddress;
|
|
while (size > 0) {
|
|
ret = read(fd, (bx_ptr_t) BX_MEM_THIS get_vector(offset), size);
|
|
if (ret <= 0) {
|
|
BX_PANIC(("RAM: read failed on RAM image: '%s'",path));
|
|
}
|
|
size -= ret;
|
|
offset += ret;
|
|
}
|
|
close(fd);
|
|
BX_INFO(("ram at 0x%05x/%u ('%s')",
|
|
(unsigned) ramaddress,
|
|
(unsigned) stat_buf.st_size,
|
|
path));
|
|
}
|
|
|
|
#if (BX_DEBUGGER || BX_DISASM || BX_GDBSTUB)
|
|
bx_bool BX_MEM_C::dbg_fetch_mem(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, Bit8u *buf)
|
|
{
|
|
bx_bool ret = 1;
|
|
|
|
for (; len>0; len--) {
|
|
// Reading standard PCI/ISA Video Mem / SMMRAM
|
|
if (addr >= 0x000a0000 && addr < 0x000c0000) {
|
|
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
|
|
*buf = *(BX_MEM_THIS get_vector(addr));
|
|
else
|
|
*buf = DEV_vga_mem_read(addr);
|
|
}
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && (addr >= 0x000c0000 && addr < 0x00100000))
|
|
{
|
|
switch (DEV_pci_rd_memtype ((Bit32u) addr)) {
|
|
case 0x0: // Read from ROM
|
|
if ((addr & 0xfffe0000) == 0x000e0000) {
|
|
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
|
|
*buf = BX_MEM_THIS rom[BIOS_MAP_LAST128K(addr)];
|
|
}
|
|
else {
|
|
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
|
|
}
|
|
break;
|
|
case 0x1: // Read from ShadowRAM
|
|
*buf = *(BX_MEM_THIS get_vector(addr));
|
|
break;
|
|
default:
|
|
BX_PANIC(("dbg_fetch_mem: default case"));
|
|
}
|
|
}
|
|
#endif // #if BX_SUPPORT_PCI
|
|
else if (addr < BX_MEM_THIS len)
|
|
{
|
|
if (addr < 0x000c0000 || addr >= 0x00100000) {
|
|
*buf = *(BX_MEM_THIS get_vector(addr));
|
|
}
|
|
// must be in C0000 - FFFFF range
|
|
else if ((addr & 0xfffe0000) == 0x000e0000) {
|
|
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
|
|
*buf = BX_MEM_THIS rom[BIOS_MAP_LAST128K(addr)];
|
|
}
|
|
else {
|
|
*buf = BX_MEM_THIS rom[(addr & EXROM_MASK) + BIOSROMSZ];
|
|
}
|
|
}
|
|
#if BX_PHY_ADDRESS_LONG
|
|
else if (addr > BX_CONST64(0xffffffff)) {
|
|
*buf = 0xff;
|
|
ret = 0; // error, beyond limits of memory
|
|
}
|
|
#endif
|
|
else if (addr >= (bx_phy_address)~BIOS_MASK)
|
|
{
|
|
*buf = BX_MEM_THIS rom[addr & BIOS_MASK];
|
|
}
|
|
else
|
|
{
|
|
*buf = 0xff;
|
|
ret = 0; // error, beyond limits of memory
|
|
}
|
|
buf++;
|
|
addr++;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#if BX_DEBUGGER || BX_GDBSTUB
|
|
bx_bool BX_MEM_C::dbg_set_mem(bx_phy_address addr, unsigned len, Bit8u *buf)
|
|
{
|
|
if ((addr + len - 1) > BX_MEM_THIS len) {
|
|
return(0); // error, beyond limits of memory
|
|
}
|
|
for (; len>0; len--) {
|
|
// Write to standard PCI/ISA Video Mem / SMMRAM
|
|
if (addr >= 0x000a0000 && addr < 0x000c0000) {
|
|
if (BX_MEM_THIS smram_enable)
|
|
*(BX_MEM_THIS get_vector(addr)) = *buf;
|
|
else
|
|
DEV_vga_mem_write(addr, *buf);
|
|
}
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && (addr >= 0x000c0000 && addr < 0x00100000))
|
|
{
|
|
switch (DEV_pci_wr_memtype (addr)) {
|
|
case 0x0: // Ignore write to ROM
|
|
break;
|
|
case 0x1: // Write to ShadowRAM
|
|
*(BX_MEM_THIS get_vector(addr)) = *buf;
|
|
break;
|
|
default:
|
|
BX_PANIC(("dbg_fetch_mem: default case"));
|
|
}
|
|
}
|
|
#endif // #if BX_SUPPORT_PCI
|
|
else if ((addr < 0x000c0000 || addr >= 0x00100000) && (addr < (bx_phy_address)(~BIOS_MASK)))
|
|
{
|
|
*(BX_MEM_THIS get_vector(addr)) = *buf;
|
|
}
|
|
buf++;
|
|
addr++;
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
bx_bool BX_MEM_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc)
|
|
{
|
|
*crc = 0;
|
|
if (addr1 > addr2)
|
|
return(0);
|
|
|
|
if (addr2 >= BX_MEM_THIS len)
|
|
return(0); // error, specified address past last phy mem addr
|
|
|
|
unsigned len = 1 + addr2 - addr1;
|
|
|
|
// do not cross 4K boundary
|
|
while(1) {
|
|
unsigned remainsInPage = 0x1000 - (addr1 & 0xfff);
|
|
unsigned access_length = (len < remainsInPage) ? len : remainsInPage;
|
|
*crc = crc32(BX_MEM_THIS get_vector(addr1), access_length);
|
|
addr1 += access_length;
|
|
len -= access_length;
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Return a host address corresponding to the guest physical memory
|
|
// address (with A20 already applied), given that the calling
|
|
// code will perform an 'op' operation. This address will be
|
|
// used for direct access to guest memory.
|
|
// Values of 'op' are { BX_READ, BX_WRITE, BX_EXECUTE, BX_RW }.
|
|
//
|
|
// The other assumption is that the calling code _only_ accesses memory
|
|
// directly within the page that encompasses the address requested.
|
|
//
|
|
|
|
//
|
|
// Memory map inside the 1st megabyte:
|
|
//
|
|
// 0x00000 - 0x7ffff DOS area (512K)
|
|
// 0x80000 - 0x9ffff Optional fixed memory hole (128K)
|
|
// 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K)
|
|
// 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K)
|
|
// 0xe0000 - 0xeffff Lower BIOS Area (64K)
|
|
// 0xf0000 - 0xfffff Upper BIOS Area (64K)
|
|
//
|
|
|
|
Bit8u *BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address addr, unsigned rw)
|
|
{
|
|
bx_phy_address a20addr = A20ADDR(addr);
|
|
|
|
bx_bool is_bios = (a20addr >= (bx_phy_address)~BIOS_MASK);
|
|
#if BX_PHY_ADDRESS_LONG
|
|
if (a20addr > BX_CONST64(0xffffffff)) is_bios = 0;
|
|
#endif
|
|
|
|
bx_bool write = rw & 1;
|
|
|
|
// allow direct access to SMRAM memory space for code and veto data
|
|
if ((cpu != NULL) && (rw == BX_EXECUTE)) {
|
|
// reading from SMRAM memory space
|
|
if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000) && (BX_MEM_THIS smram_available))
|
|
{
|
|
if (BX_MEM_THIS smram_enable || cpu->smm_mode())
|
|
return BX_MEM_THIS get_vector(a20addr);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_MONITOR_MWAIT
|
|
if (write && BX_MEM_THIS is_monitor(a20addr & ~((bx_phy_address)(0xfff)), 0xfff)) {
|
|
// Vetoed! Write monitored page !
|
|
return(NULL);
|
|
}
|
|
#endif
|
|
|
|
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20];
|
|
while (memory_handler) {
|
|
if (memory_handler->begin <= a20addr &&
|
|
memory_handler->end >= a20addr) {
|
|
return(NULL); // Vetoed! memory handler for i/o apic, vram, mmio and PCI PnP
|
|
}
|
|
memory_handler = memory_handler->next;
|
|
}
|
|
|
|
if (! write) {
|
|
if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000))
|
|
return(NULL); // Vetoed! Mem mapped IO (VGA)
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000))
|
|
{
|
|
switch (DEV_pci_rd_memtype ((Bit32u) a20addr)) {
|
|
case 0x0: // Read from ROM
|
|
if ((a20addr & 0xfffe0000) == 0x000e0000) {
|
|
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
|
|
return (Bit8u *) &BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)];
|
|
}
|
|
else {
|
|
return (Bit8u *) &BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ];
|
|
}
|
|
break;
|
|
case 0x1: // Read from ShadowRAM
|
|
return BX_MEM_THIS get_vector(a20addr);
|
|
default:
|
|
BX_PANIC(("getHostMemAddr(): default case"));
|
|
return(NULL);
|
|
}
|
|
}
|
|
#endif
|
|
else if(a20addr < BX_MEM_THIS len && ! is_bios)
|
|
{
|
|
if (a20addr < 0x000c0000 || a20addr >= 0x00100000) {
|
|
return BX_MEM_THIS get_vector(a20addr);
|
|
}
|
|
// must be in C0000 - FFFFF range
|
|
else if ((a20addr & 0xfffe0000) == 0x000e0000) {
|
|
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
|
|
return (Bit8u *) &BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)];
|
|
}
|
|
else {
|
|
return((Bit8u *) &BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ]);
|
|
}
|
|
}
|
|
#if BX_PHY_ADDRESS_LONG
|
|
else if (a20addr > BX_CONST64(0xffffffff)) {
|
|
// Error, requested addr is out of bounds.
|
|
return (Bit8u *) &BX_MEM_THIS bogus[a20addr & 0xfff];
|
|
}
|
|
#endif
|
|
else if (a20addr >= (bx_phy_address)~BIOS_MASK)
|
|
{
|
|
return (Bit8u *) &BX_MEM_THIS rom[a20addr & BIOS_MASK];
|
|
}
|
|
else
|
|
{
|
|
// Error, requested addr is out of bounds.
|
|
return (Bit8u *) &BX_MEM_THIS bogus[a20addr & 0xfff];
|
|
}
|
|
}
|
|
else
|
|
{ // op == {BX_WRITE, BX_RW}
|
|
if (a20addr >= BX_MEM_THIS len || is_bios)
|
|
return(NULL); // Error, requested addr is out of bounds.
|
|
else if (a20addr >= 0x000a0000 && a20addr < 0x000c0000)
|
|
return(NULL); // Vetoed! Mem mapped IO (VGA)
|
|
#if BX_SUPPORT_PCI
|
|
else if (BX_MEM_THIS pci_enabled && (a20addr >= 0x000c0000 && a20addr < 0x00100000))
|
|
{
|
|
// Veto direct writes to this area. Otherwise, there is a chance
|
|
// for Guest2HostTLB and memory consistency problems, for example
|
|
// when some 16K block marked as write-only using PAM registers.
|
|
return(NULL);
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
if (a20addr < 0x000c0000 || a20addr >= 0x00100000) {
|
|
return BX_MEM_THIS get_vector(a20addr);
|
|
}
|
|
else {
|
|
return(NULL); // Vetoed! ROMs
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* One needs to provide both a read_handler and a write_handler.
|
|
* XXX: maybe we should check for overlapping memory handlers
|
|
*/
|
|
bx_bool
|
|
BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler,
|
|
memory_handler_t write_handler, bx_phy_address begin_addr, bx_phy_address end_addr)
|
|
{
|
|
if (end_addr < begin_addr)
|
|
return 0;
|
|
if (!read_handler || !write_handler)
|
|
return 0;
|
|
BX_INFO(("Register memory access handlers: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
|
|
for (unsigned page_idx = (Bit32u)(begin_addr >> 20); page_idx <= (Bit32u)(end_addr >> 20); page_idx++) {
|
|
struct memory_handler_struct *memory_handler = new struct memory_handler_struct;
|
|
memory_handler->next = BX_MEM_THIS memory_handlers[page_idx];
|
|
BX_MEM_THIS memory_handlers[page_idx] = memory_handler;
|
|
memory_handler->read_handler = read_handler;
|
|
memory_handler->write_handler = write_handler;
|
|
memory_handler->param = param;
|
|
memory_handler->begin = begin_addr;
|
|
memory_handler->end = end_addr;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
bx_bool
|
|
BX_MEM_C::unregisterMemoryHandlers(memory_handler_t read_handler, memory_handler_t write_handler,
|
|
bx_phy_address begin_addr, bx_phy_address end_addr)
|
|
{
|
|
bx_bool ret = 1;
|
|
BX_INFO(("Memory access handlers unregistered: 0x" FMT_PHY_ADDRX " - 0x" FMT_PHY_ADDRX, begin_addr, end_addr));
|
|
for (unsigned page_idx = (Bit32u)(begin_addr >> 20); page_idx <= (Bit32u)(end_addr >> 20); page_idx++) {
|
|
struct memory_handler_struct *memory_handler = BX_MEM_THIS memory_handlers[page_idx];
|
|
struct memory_handler_struct *prev = NULL;
|
|
while (memory_handler &&
|
|
memory_handler->read_handler != read_handler &&
|
|
memory_handler->write_handler != write_handler &&
|
|
memory_handler->begin != begin_addr &&
|
|
memory_handler->end != end_addr)
|
|
{
|
|
prev = memory_handler;
|
|
memory_handler = memory_handler->next;
|
|
}
|
|
if (!memory_handler) {
|
|
ret = 0; // we should have found it
|
|
continue; // anyway, try the other pages
|
|
}
|
|
if (prev)
|
|
prev->next = memory_handler->next;
|
|
else
|
|
BX_MEM_THIS memory_handlers[page_idx] = memory_handler->next;
|
|
delete memory_handler;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void BX_MEM_C::enable_smram(bx_bool enable, bx_bool restricted)
|
|
{
|
|
BX_MEM_THIS smram_available = 1;
|
|
BX_MEM_THIS smram_enable = (enable > 0);
|
|
BX_MEM_THIS smram_restricted = (restricted > 0);
|
|
}
|
|
|
|
void BX_MEM_C::disable_smram(void)
|
|
{
|
|
BX_MEM_THIS smram_available = 0;
|
|
BX_MEM_THIS smram_enable = 0;
|
|
BX_MEM_THIS smram_restricted = 0;
|
|
}
|
|
|
|
// check if SMRAM is aavailable for CPU data accesses
|
|
bx_bool BX_MEM_C::is_smram_accessible(void)
|
|
{
|
|
return(BX_MEM_THIS smram_available) &&
|
|
(BX_MEM_THIS smram_enable || !BX_MEM_THIS smram_restricted);
|
|
}
|
|
|
|
#if BX_SUPPORT_MONITOR_MWAIT
|
|
|
|
//
|
|
// MONITOR/MWAIT - x86arch way to optimize idle loops in CPU
|
|
//
|
|
|
|
bx_bool BX_MEM_C::is_monitor(bx_phy_address begin_addr, unsigned len)
|
|
{
|
|
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
|
|
if (BX_CPU(i)->is_monitor(begin_addr, len))
|
|
return 1;
|
|
}
|
|
|
|
return 0; // // this is NOT monitored page
|
|
}
|
|
|
|
void BX_MEM_C::check_monitor(bx_phy_address begin_addr, unsigned len)
|
|
{
|
|
for (int i=0; i<BX_SMP_PROCESSORS;i++) {
|
|
BX_CPU(i)->check_monitor(begin_addr, len);
|
|
}
|
|
}
|
|
|
|
#endif
|