Bochs/bochs/cpu/stack32.cc
2005-08-10 18:40:38 +00:00

377 lines
8.6 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: stack32.cc,v 1.30 2005-08-10 18:40:38 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier for merging 64&32-bit code.
#define RBP EBP
#endif
void BX_CPU_C::POP_Ed(bxInstruction_c *i)
{
Bit32u val32;
pop_32(&val32);
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), val32);
}
else {
// Note: there is one little weirdism here. When 32bit addressing
// is used, it is possible to use ESP in the modrm addressing.
// If used, the value of ESP after the pop is used to calculate
// the address.
if (i->as32L() && (!i->modC0()) && (i->rm()==4) && (i->sibBase()==4)) {
// call method on BX_CPU_C object
BX_CPU_CALL_METHODR (i->ResolveModrm, (i));
}
write_virtual_dword(i->seg(), RMAddr(i), &val32);
}
}
void BX_CPU_C::PUSH_ERX(bxInstruction_c *i)
{
push_32(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx);
}
void BX_CPU_C::POP_ERX(bxInstruction_c *i)
{
Bit32u erx;
pop_32(&erx);
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = erx;
}
void BX_CPU_C::PUSH32_CS(bxInstruction_c *i)
{
Bit32u eSP;
decrementESPForPush(4, &eSP);
write_virtual_word(BX_SEG_REG_SS, eSP,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
}
void BX_CPU_C::PUSH32_DS(bxInstruction_c *i)
{
Bit32u eSP;
decrementESPForPush(4, &eSP);
write_virtual_word(BX_SEG_REG_SS, eSP,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
}
void BX_CPU_C::PUSH32_ES(bxInstruction_c *i)
{
Bit32u eSP;
decrementESPForPush(4, &eSP);
write_virtual_word(BX_SEG_REG_SS, eSP,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
}
void BX_CPU_C::PUSH32_FS(bxInstruction_c *i)
{
Bit32u eSP;
decrementESPForPush(4, &eSP);
write_virtual_word(BX_SEG_REG_SS, eSP,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
}
void BX_CPU_C::PUSH32_GS(bxInstruction_c *i)
{
Bit32u eSP;
decrementESPForPush(4, &eSP);
write_virtual_word(BX_SEG_REG_SS, eSP,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
}
void BX_CPU_C::PUSH32_SS(bxInstruction_c *i)
{
Bit32u eSP;
decrementESPForPush(4, &eSP);
write_virtual_word(BX_SEG_REG_SS, eSP,
&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
}
void BX_CPU_C::POP32_DS(bxInstruction_c *i)
{
Bit32u ds;
pop_32(&ds);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], (Bit16u) ds);
}
void BX_CPU_C::POP32_ES(bxInstruction_c *i)
{
Bit32u es;
pop_32(&es);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], (Bit16u) es);
}
void BX_CPU_C::POP32_FS(bxInstruction_c *i)
{
Bit32u fs;
pop_32(&fs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs);
}
void BX_CPU_C::POP32_GS(bxInstruction_c *i)
{
Bit32u gs;
pop_32(&gs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs);
}
void BX_CPU_C::POP32_SS(bxInstruction_c *i)
{
Bit32u ss;
pop_32(&ss);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], (Bit16u) ss);
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
BX_CPU_THIS_PTR inhibit_mask |=
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
BX_CPU_THIS_PTR async_event = 1;
}
#if BX_CPU_LEVEL >= 2
void BX_CPU_C::PUSHAD32(bxInstruction_c *i)
{
Bit32u temp_ESP;
Bit32u esp;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
if (protected_mode()) {
if (! can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 32)) {
BX_ERROR(("PUSHAD(): stack doesn't have enough room!"));
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
}
else {
if (temp_ESP < 32)
BX_PANIC(("pushad: eSP < 32"));
}
esp = ESP;
/* ??? optimize this by using virtual write, all checks passed */
push_32(EAX);
push_32(ECX);
push_32(EDX);
push_32(EBX);
push_32(esp);
push_32(EBP);
push_32(ESI);
push_32(EDI);
}
void BX_CPU_C::POPAD32(bxInstruction_c *i)
{
Bit32u edi, esi, ebp, etmp, ebx, edx, ecx, eax;
if (protected_mode()) {
if ( !can_pop(32) ) {
BX_ERROR(("POPAD: not enough bytes on stack"));
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
}
/* ??? optimize this */
pop_32(&edi);
pop_32(&esi);
pop_32(&ebp);
pop_32(&etmp); /* value for ESP discarded */
pop_32(&ebx);
pop_32(&edx);
pop_32(&ecx);
pop_32(&eax);
EDI = edi;
ESI = esi;
EBP = ebp;
EBX = ebx;
EDX = edx;
ECX = ecx;
EAX = eax;
}
#endif
void BX_CPU_C::PUSH_Id(bxInstruction_c *i)
{
push_32(i->Id());
}
void BX_CPU_C::PUSH_Ed(bxInstruction_c *i)
{
Bit32u op1_32;
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
push_32(op1_32);
}
#if BX_CPU_LEVEL >= 2
void BX_CPU_C::ENTER_IwIb(bxInstruction_c *i)
{
unsigned ss32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b;
Bit16u imm16 = i->Iw();
Bit8u level = i->Ib2();
level &= 0x1F;
Bit32u ebp; // Use temp copy in case of exception.
if (i->os32L())
push_32(EBP);
else
push_16(BP);
Bit32u frame_ptr32 = ESP;
if (ss32) {
ebp = EBP;
}
else {
ebp = BP;
}
if (level > 0) {
/* do level-1 times */
while (--level) {
if (i->os32L()) {
Bit32u temp32;
if (ss32) {
ebp -= 4;
read_virtual_dword(BX_SEG_REG_SS, ebp, &temp32);
}
else { /* 16bit stacksize */
ebp -= 4; ebp &= 0xffff;
read_virtual_dword(BX_SEG_REG_SS, ebp, &temp32);
}
push_32(temp32);
}
else { /* 16bit opsize */
Bit16u temp16;
if (ss32) {
ebp -= 2;
read_virtual_word(BX_SEG_REG_SS, ebp, &temp16);
}
else { /* 16bit stacksize */
ebp -= 2; ebp &= 0xffff;
read_virtual_word(BX_SEG_REG_SS, ebp, &temp16);
}
push_16(temp16);
}
} /* while (--level) */
/* push(frame pointer) */
if (i->os32L()) {
push_32(frame_ptr32);
}
else { /* 16bit opsize */
push_16((Bit16u)frame_ptr32);
}
} /* if (level > 0) ... */
if (ss32) {
RBP = frame_ptr32;
ESP -= imm16;
}
else {
BP = (Bit16u) frame_ptr32;
SP -= imm16;
}
}
void BX_CPU_C::LEAVE(bxInstruction_c *i)
{
Bit32u temp_EBP;
#if BX_CPU_LEVEL >= 3
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_EBP = EBP;
else
#endif
temp_EBP = BP;
if ( protected_mode() ) {
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed) { /* expand up */
if (temp_EBP <= BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
BX_PANIC(("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit"));
exception(BX_SS_EXCEPTION, 0, 0);
}
}
else { /* normal */
if (temp_EBP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
BX_PANIC(("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit"));
exception(BX_SS_EXCEPTION, 0, 0);
}
}
}
// delete frame
#if BX_CPU_LEVEL >= 3
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP = EBP;
else
#endif
SP = BP;
// restore frame pointer
#if BX_CPU_LEVEL >= 3
if (i->os32L()) {
Bit32u temp32;
pop_32(&temp32);
RBP = temp32;
}
else
#endif
{
Bit16u temp16;
pop_16(&temp16);
BP = temp16;
}
}
#endif