Bochs/bochs/iodev/acpi.cc
Volker Ruppert c9c01954b9 - PM/SM i/o space enable control bits implemented
- ACPI debug port added
2006-10-07 08:59:15 +00:00

518 lines
16 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: acpi.cc,v 1.5 2006-10-07 08:59:15 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2006 Volker Ruppert
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// PIIX4 ACPI support
//
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "bochs.h"
#include "cpu/cpu.h"
#include "iodev.h"
#if BX_SUPPORT_PCI && BX_SUPPORT_ACPI
#define LOG_THIS theACPIController->
bx_acpi_ctrl_c* theACPIController = NULL;
// FIXME
const Bit8u acpi_pm_iomask[64] = {2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 7, 7, 7, 7,
7, 7, 7, 7, 1, 1, 0, 0, 7, 7, 0, 0, 7, 7, 7, 7,
7, 7, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 7,
1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0};
const Bit8u acpi_sm_iomask[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 0, 0};
#define PM_FREQ 3579545
#define ACPI_DBG_IO_ADDR 0xb044
#define RTC_EN (1 << 10)
#define PWRBTN_EN (1 << 8)
#define GBL_EN (1 << 5)
#define TMROF_EN (1 << 0)
#define SCI_EN (1 << 0)
#define SUS_EN (1 << 13)
int libacpi_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
theACPIController = new bx_acpi_ctrl_c();
bx_devices.pluginACPIController = theACPIController;
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theACPIController, BX_PLUGIN_ACPI);
return 0; // Success
}
void libacpi_LTX_plugin_fini(void)
{
delete theACPIController;
}
/* ported from QEMU: compute with 96 bit intermediate result: (a*b)/c */
Bit64u muldiv64(Bit64u a, Bit32u b, Bit32u c)
{
union {
Bit64u ll;
struct {
#ifdef WORDS_BIGENDIAN
Bit32u high, low;
#else
Bit32u low, high;
#endif
} l;
} u, res;
Bit64u rl, rh;
u.ll = a;
rl = (Bit64u)u.l.low * (Bit64u)b;
rh = (Bit64u)u.l.high * (Bit64u)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
bx_acpi_ctrl_c::bx_acpi_ctrl_c()
{
put("ACPI");
settype(ACPILOG);
s.timer_index = BX_NULL_TIMER_HANDLE;
}
bx_acpi_ctrl_c::~bx_acpi_ctrl_c()
{
BX_DEBUG(("Exit"));
}
void bx_acpi_ctrl_c::init(void)
{
// called once when bochs initializes
unsigned i;
BX_ACPI_THIS s.devfunc = BX_PCI_DEVICE(1, 3);
DEV_register_pci_handlers(this, &BX_ACPI_THIS s.devfunc, BX_PLUGIN_ACPI,
"ACPI Controller");
if (BX_ACPI_THIS s.timer_index == BX_NULL_TIMER_HANDLE) {
BX_ACPI_THIS s.timer_index =
bx_pc_system.register_timer(this, timer_handler, 1000, 0, 0, "ACPI");
}
DEV_register_iowrite_handler(this, write_handler, ACPI_DBG_IO_ADDR, "ACPI", 4);
for (i=0; i<256; i++) {
BX_ACPI_THIS s.pci_conf[i] = 0x0;
}
BX_ACPI_THIS s.pm_base = 0x0;
BX_ACPI_THIS s.sm_base = 0x0;
// readonly registers
static const struct init_vals_t {
unsigned addr;
unsigned char val;
} init_vals[] = {
{ 0x00, 0x86 }, { 0x01, 0x80 },
{ 0x02, 0x13 }, { 0x03, 0x71 },
{ 0x0a, 0x80 }, // other bridge device
{ 0x0b, 0x06 }, // bridge device
{ 0x0e, 0x00 }, // header type
{ 0x3d, BX_PCI_INTA } // interrupt pin #1
};
for (i = 0; i < sizeof(init_vals) / sizeof(*init_vals); ++i) {
BX_ACPI_THIS s.pci_conf[init_vals[i].addr] = init_vals[i].val;
}
}
void bx_acpi_ctrl_c::reset(unsigned type)
{
static const struct reset_vals_t {
unsigned addr;
unsigned char val;
} reset_vals[] = {
{ 0x04, 0x00 }, { 0x05, 0x00 }, // command_io + command_mem
{ 0x06, 0x80 }, { 0x07, 0x02 }, // status_devsel_medium
{ 0x3c, 0x00 }, // IRQ
// PM base 0x40 - 0x43
{ 0x40, 0x01 }, { 0x41, 0x00 },
{ 0x42, 0x00 }, { 0x43, 0x00 },
// device resources
{ 0x5f, 0x90 }, { 0x63, 0x60 },
{ 0x67, 0x98 },
// SM base 0x90 - 0x93
{ 0x90, 0x01 }, { 0x91, 0x00 },
{ 0x92, 0x00 }, { 0x93, 0x00 }
};
for (unsigned i = 0; i < sizeof(reset_vals) / sizeof(*reset_vals); ++i) {
BX_ACPI_THIS s.pci_conf[reset_vals[i].addr] = reset_vals[i].val;
}
BX_ACPI_THIS s.pmsts = 0;
BX_ACPI_THIS s.pmen = 0;
BX_ACPI_THIS s.pmcntrl = 0;
BX_ACPI_THIS s.tmr_overflow_time = 0xffffff;
}
#if BX_SUPPORT_SAVE_RESTORE
void bx_acpi_ctrl_c::register_state(void)
{
unsigned i;
char name[6];
bx_list_c *list = new bx_list_c(SIM->get_sr_root(), "acpi", "ACPI Controller State");
BXRS_HEX_PARAM_FIELD(list, pmsts, BX_ACPI_THIS s.pmsts);
BXRS_HEX_PARAM_FIELD(list, pmen, BX_ACPI_THIS s.pmen);
BXRS_HEX_PARAM_FIELD(list, pmcntrl, BX_ACPI_THIS s.pmcntrl);
BXRS_HEX_PARAM_FIELD(list, tmr_overflow_time, BX_ACPI_THIS s.tmr_overflow_time);
bx_list_c *pci_conf = new bx_list_c(list, "pci_conf", 256);
for (i=0; i<256; i++) {
sprintf(name, "0x%02x", i);
new bx_shadow_num_c(pci_conf, name, &BX_ACPI_THIS s.pci_conf[i], BASE_HEX);
}
}
void bx_acpi_ctrl_c::after_restore_state(void)
{
if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler,
&BX_ACPI_THIS s.pm_base,
&BX_ACPI_THIS s.pci_conf[0x40],
64, &acpi_pm_iomask[0], "ACPI PM base"))
{
BX_INFO(("new PM base address: 0x%04x", BX_ACPI_THIS s.pm_base));
}
if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler,
&BX_ACPI_THIS s.sm_base,
&BX_ACPI_THIS s.pci_conf[0x90],
16, &acpi_sm_iomask[0], "ACPI SM base"))
{
BX_INFO(("new SM base address: 0x%04x", BX_ACPI_THIS s.sm_base));
}
}
#endif
void bx_acpi_ctrl_c::set_irq_level(bx_bool level)
{
DEV_pci_set_irq(BX_ACPI_THIS s.devfunc, BX_ACPI_THIS s.pci_conf[0x3d], level);
}
Bit32u bx_acpi_ctrl_c::get_pmtmr(void)
{
Bit64u value = muldiv64(bx_pc_system.time_usec(), PM_FREQ, 1000000);
return (Bit32u)(value & 0xffffff);
}
Bit16u bx_acpi_ctrl_c::get_pmsts(void)
{
Bit16u pmsts = BX_ACPI_THIS s.pmsts;
Bit64u value = muldiv64(bx_pc_system.time_usec(), PM_FREQ, 1000000);
if (value >= BX_ACPI_THIS s.tmr_overflow_time)
BX_ACPI_THIS s.pmsts |= TMROF_EN;
return pmsts;
}
void bx_acpi_ctrl_c::pm_update_sci(void)
{
Bit16u pmsts = get_pmsts();
bx_bool sci_level = (((pmsts & BX_ACPI_THIS s.pmen) &
(RTC_EN | PWRBTN_EN | GBL_EN | TMROF_EN)) != 0);
BX_ACPI_THIS set_irq_level(sci_level);
// schedule a timer interruption if needed
if ((BX_ACPI_THIS s.pmen & TMROF_EN) && !(pmsts & TMROF_EN)) {
Bit64u expire_time = muldiv64(BX_ACPI_THIS s.tmr_overflow_time, 1000000, PM_FREQ);
bx_pc_system.activate_timer(BX_ACPI_THIS s.timer_index, expire_time, 0);
} else {
bx_pc_system.deactivate_timer(BX_ACPI_THIS s.timer_index);
}
}
void bx_acpi_ctrl_c::generate_smi(void)
{
if (BX_ACPI_THIS s.pci_conf[0x5b] & 0x02) {
BX_CPU(0)->deliver_SMI();
}
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u bx_acpi_ctrl_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_ACPI_SMF
bx_acpi_ctrl_c *class_ptr = (bx_acpi_ctrl_c *) this_ptr;
return class_ptr->read(address, io_len);
}
Bit32u bx_acpi_ctrl_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_ACPI_SMF
Bit8u reg = address & 0x3f;
Bit32u value = 0xffffffff;
if ((address & 0xffc0) == BX_ACPI_THIS s.pm_base) {
if ((BX_ACPI_THIS s.pci_conf[0x80] & 0x01) == 0) {
return value;
}
switch (reg) {
case 0x00:
value = BX_ACPI_THIS get_pmsts();
break;
case 0x02:
value = BX_ACPI_THIS s.pmen;
break;
case 0x04:
value = BX_ACPI_THIS s.pmcntrl;
break;
case 0x08:
value = BX_ACPI_THIS get_pmtmr();
break;
default:
BX_INFO(("ACPI read from PM register 0x%02x not implemented yet", reg));
}
BX_DEBUG(("ACPI read from PM register 0x%02x returns 0x%08x", reg, value));
} else {
if ((BX_ACPI_THIS s.pci_conf[0x04] & 0x01) == 0) {
return value;
}
BX_INFO(("ACPI read from SM register 0x%02x not implemented yet", reg));
}
return value;
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void bx_acpi_ctrl_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_ACPI_SMF
bx_acpi_ctrl_c *class_ptr = (bx_acpi_ctrl_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void bx_acpi_ctrl_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_ACPI_SMF
Bit8u reg = address & 0x3f;
if ((address & 0xffc0) == BX_ACPI_THIS s.pm_base) {
if ((BX_ACPI_THIS s.pci_conf[0x80] & 0x01) == 0) {
return;
}
BX_DEBUG(("ACPI write to PM register 0x%02x, value = 0x%04x", reg, value));
switch (reg) {
case 0x00:
{
Bit16u pmsts = BX_ACPI_THIS get_pmsts();
if (pmsts & value & TMROF_EN) {
// if TMRSTS is reset, then compute the new overflow time
Bit64u d = muldiv64(bx_pc_system.time_usec(), PM_FREQ, 1000000);
BX_ACPI_THIS s.tmr_overflow_time = (d + 0x800000LL) & ~0x7fffffLL;
}
BX_ACPI_THIS s.pmsts &= ~value;
BX_ACPI_THIS pm_update_sci();
}
break;
case 0x02:
BX_ACPI_THIS s.pmen = value;
BX_ACPI_THIS pm_update_sci();
break;
case 0x04:
{
BX_ACPI_THIS s.pmcntrl = value & ~(SUS_EN);
if (value & SUS_EN) {
// change suspend type
Bit16u sus_typ = (value >> 10) & 3;
switch (sus_typ) {
case 0: // soft power off
bx_user_quit = 1;
LOG_THIS setonoff(LOGLEV_PANIC, ACT_FATAL);
BX_PANIC(("ACPI control: soft power off"));
break;
default:
break;
}
}
}
break;
default:
BX_INFO(("ACPI write to PM register 0x%02x not implemented yet", reg));
}
} else if ((address & 0xffe0) == BX_ACPI_THIS s.sm_base) {
if ((BX_ACPI_THIS s.pci_conf[0x04] & 0x01) == 0) {
return;
}
BX_INFO(("ACPI write to SM register 0x%02x not implemented yet", reg));
} else {
BX_DEBUG(("DBG: 0x%08x", value));
}
}
void bx_acpi_ctrl_c::timer_handler(void *this_ptr)
{
bx_acpi_ctrl_c *class_ptr = (bx_acpi_ctrl_c *) this_ptr;
class_ptr->timer();
}
void bx_acpi_ctrl_c::timer()
{
BX_ACPI_THIS pm_update_sci();
}
// pci configuration space read callback handler
Bit32u bx_acpi_ctrl_c::pci_read_handler(Bit8u address, unsigned io_len)
{
Bit32u value = 0;
if (io_len > 4 || io_len == 0) {
BX_DEBUG(("ACPI controller read register 0x%02x, len=%u !",
(unsigned) address, (unsigned) io_len));
return 0xffffffff;
}
const char* pszName = " ";
switch (address) {
case 0x00: if (io_len == 2) {
pszName = "(vendor id) ";
} else if (io_len == 4) {
pszName = "(vendor + device) ";
}
break;
case 0x04: if (io_len == 2) {
pszName = "(command) ";
} else if (io_len == 4) {
pszName = "(command+status) ";
}
break;
case 0x08: if (io_len == 1) {
pszName = "(revision id) ";
} else if (io_len == 4) {
pszName = "(rev.+class code) ";
}
break;
case 0x0c: pszName = "(cache line size) "; break;
case 0x28: pszName = "(cardbus cis) "; break;
case 0x2c: pszName = "(subsys. vendor+) "; break;
case 0x30: pszName = "(rom base) "; break;
case 0x3c: pszName = "(interrupt line+) "; break;
case 0x3d: pszName = "(interrupt pin) "; break;
}
// This odd code is to display only what bytes actually were read.
char szTmp[9];
char szTmp2[3];
szTmp[0] = '\0';
szTmp2[0] = '\0';
for (unsigned i=0; i<io_len; i++) {
value |= (BX_ACPI_THIS s.pci_conf[address+i] << (i*8));
sprintf(szTmp2, "%02x", (BX_ACPI_THIS s.pci_conf[address+i]));
strrev(szTmp2);
strcat(szTmp, szTmp2);
}
strrev(szTmp);
BX_DEBUG(("ACPI controller read register 0x%02x %svalue 0x%s",
address, pszName, szTmp));
return value;
}
// static pci configuration space write callback handler
void bx_acpi_ctrl_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len)
{
Bit8u value8, oldval;
bx_bool pm_base_change = 0, sm_base_change = 0;
if ((address >= 0x10) && (address < 0x34))
return;
// This odd code is to display only what bytes actually were written.
char szTmp[9];
char szTmp2[3];
szTmp[0] = '\0';
szTmp2[0] = '\0';
for (unsigned i=0; i<io_len; i++) {
value8 = (value >> (i*8)) & 0xFF;
oldval = BX_ACPI_THIS s.pci_conf[address+i];
switch (address+i) {
case 0x04:
value8 = (value8 & 0xfe) | (value & 0x01);
goto set_value;
break;
case 0x06: // disallowing write to status lo-byte (is that expected?)
strcpy(szTmp2, "..");
break;
case 0x3c:
if (value8 != oldval) {
BX_INFO(("new irq line = %d", value8));
}
goto set_value;
break;
case 0x40:
value8 = (value8 & 0xfc) | 0x01;
case 0x41:
case 0x42:
case 0x43:
pm_base_change |= (value8 != oldval);
goto set_value;
break;
case 0x90:
value8 = (value8 & 0xfc) | 0x01;
case 0x91:
case 0x92:
case 0x93:
sm_base_change |= (value8 != oldval);
default:
set_value:
BX_ACPI_THIS s.pci_conf[address+i] = value8;
sprintf(szTmp2, "%02x", value8);
}
strrev(szTmp2);
strcat(szTmp, szTmp2);
}
if (pm_base_change) {
if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler,
&BX_ACPI_THIS s.pm_base,
&BX_ACPI_THIS s.pci_conf[0x40],
64, &acpi_pm_iomask[0], "ACPI PM base"))
{
BX_INFO(("new PM base address: 0x%04x", BX_ACPI_THIS s.pm_base));
}
}
if (sm_base_change) {
if (DEV_pci_set_base_io(BX_ACPI_THIS_PTR, read_handler, write_handler,
&BX_ACPI_THIS s.sm_base,
&BX_ACPI_THIS s.pci_conf[0x90],
16, &acpi_sm_iomask[0], "ACPI SM base"))
{
BX_INFO(("new SM base address: 0x%04x", BX_ACPI_THIS s.sm_base));
}
}
strrev(szTmp);
BX_DEBUG(("ACPI controller write register 0x%02x value 0x%s", address, szTmp));
}
#endif // BX_SUPPORT_PCI