Bochs/bochs/cpu/sse_move.cc
Stanislav Shwartsman 7f570b0150 Added PNI new streaming extensions instructions
PNI could be enabled by setting BX_SUPPORT_PNI in config.h
After the feature will be fully validation I'll also add configure option.

The implemntation is ~complete. I've missed only three FPU new opcodes of FUSTTP instruction and MONITOR/WAIT instructions.

Enjoy ! ;)
2003-08-29 21:20:52 +00:00

1472 lines
38 KiB
C++

/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002 Stanislav Shwartsman
// Written by Stanislav Shwartsman <gate@fidonet.org.il>
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_SSE
void BX_CPU_C::prepareSSE(void)
{
if(BX_CPU_THIS_PTR cr0.ts)
exception(BX_NM_EXCEPTION, 0, 0);
if(BX_CPU_THIS_PTR cr0.em)
exception(BX_UD_EXCEPTION, 0, 0);
if(! (BX_CPU_THIS_PTR cr4.get_OSFXSR()))
exception(BX_UD_EXCEPTION, 0, 0);
}
#define BX_MXCSR_REGISTER (BX_CPU_THIS_PTR mxcsr.mxcsr)
#endif
/* ************************************ */
/* SSE: SAVE/RESTORE FPU/MMX/SSEx STATE */
/* ************************************ */
/* 0F AE Grp15 010 */
void BX_CPU_C::LDMXCSR(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit32u new_mxcsr;
read_virtual_dword(i->seg(), RMAddr(i), &new_mxcsr);
if(new_mxcsr & ~MXCSR_MASK)
exception(BX_GP_EXCEPTION, 0, 0);
BX_MXCSR_REGISTER = new_mxcsr;
#else
BX_INFO(("LDMXCSR: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 0F AE Grp15 011 */
void BX_CPU_C::STMXCSR(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit32u mxcsr = BX_MXCSR_REGISTER & MXCSR_MASK;
write_virtual_dword(i->seg(), RMAddr(i), &mxcsr);
#else
BX_INFO(("STMXCSR: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 0F AE Grp15 000 */
void BX_CPU_C::FXSAVE(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BxPackedXmmRegister xmm;
Bit16u twd = BX_CPU_THIS_PTR the_i387.twd, tag_byte = 0;
Bit16u status_w = BX_CPU_THIS_PTR the_i387.swd;
Bit16u tos = BX_CPU_THIS_PTR the_i387.tos;
unsigned index;
BX_DEBUG(("FXSAVE: save FPU/MMX/SSE state"));
#define SW_TOP (0x3800)
xmm.xmm16u(0) = (BX_CPU_THIS_PTR the_i387.cwd);
xmm.xmm16u(1) = (status_w & ~SW_TOP & 0xffff) | ((tos << 11) & SW_TOP);
if(twd & 0x0003 != 0x0003) tag_byte |= 0x0100;
if(twd & 0x000c != 0x000c) tag_byte |= 0x0200;
if(twd & 0x0030 != 0x0030) tag_byte |= 0x0400;
if(twd & 0x00c0 != 0x00c0) tag_byte |= 0x0800;
if(twd & 0x0300 != 0x0300) tag_byte |= 0x1000;
if(twd & 0x0c00 != 0x0c00) tag_byte |= 0x2000;
if(twd & 0x3000 != 0x3000) tag_byte |= 0x4000;
if(twd & 0xc000 != 0xc000) tag_byte |= 0x8000;
xmm.xmm16u(2) = tag_byte;
/* x87 FPU Opcode (16 bits) */
/* The lower 11 bits contain the FPU opcode, upper 5 bits are reserved */
xmm.xmm16u(3) = 0; /* still not implemented */
/*
* x87 FPU IP Offset (32 bits)
* The contents of this field differ depending on the current
* addressing mode (16/32 bit) when the FXSAVE instruction was executed:
* + 32-bit mode-32-bit IP offset
* + 16-bit mode-low 16 bits are IP offset; high 16 bits are reserved.
*
* x87 CS FPU IP Selector (16 bits)
*/
xmm.xmm64u(1) = 0; /* still not implemented */
writeVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &xmm);
/*
* x87 FPU Instruction Operand (Data) Pointer Offset (32 bits)
* The contents of this field differ depending on the current
* addressing mode (16/32 bit) when the FXSAVE instruction was executed:
* + 32-bit mode-32-bit offset
* + 16-bit mode-low 16 bits are offset; high 16 bits are reserved.
*
* x87 DS FPU Instruction Operand (Data) Pointer Selector (16 bits)
*/
xmm.xmm64u(0) = 0; /* still not implemented */
xmm.xmm32u(2) = BX_MXCSR_REGISTER;
xmm.xmm32u(3) = MXCSR_MASK;
writeVirtualDQwordAligned(i->seg(), RMAddr(i) + 16, (Bit8u *) &xmm);
/* store i387 register file */
for(index=0; index < 8; index++)
{
writeVirtualDQwordAligned(i->seg(),
RMAddr(i)+index*16+32, (Bit8u *) &(BX_FPU_REG(index)));
}
/* store XMM register file */
for(index=0; index < BX_XMM_REGISTERS; index++)
{
writeVirtualDQwordAligned(i->seg(),
RMAddr(i)+index*16+160, (Bit8u *) &(BX_CPU_THIS_PTR xmm[index]));
}
/* do not touch reserved fields */
#else
BX_INFO(("FXSAVE: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 0F AE Grp15 001 */
void BX_CPU_C::FXRSTOR(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BxPackedXmmRegister xmm;
Bit32u tag_byte, tag_byte_mask, twd = 0;
unsigned index;
BX_DEBUG(("FXRSTOR: restore FPU/MMX/SSE state"));
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &xmm);
BX_CPU_THIS_PTR the_i387.cwd = xmm.xmm16u(0);
BX_CPU_THIS_PTR the_i387.swd = xmm.xmm16u(1);
BX_CPU_THIS_PTR the_i387.tos = (xmm.xmm16u(1) >> 11) & 0x07;
/* FOO/FPU IP restore still not implemented */
tag_byte = xmm.xmm16u(2);
/* FPU DP restore still not implemented */
/* If the OSFXSR bit in CR4 is not set, the FXRSTOR instruction does
not restore the states of the XMM and MXCSR registers. */
if(! (BX_CPU_THIS_PTR cr4.get_OSFXSR()))
{
readVirtualDQwordAligned(i->seg(), RMAddr(i) + 16, (Bit8u *) &xmm);
Bit32u new_mxcsr = xmm.xmm32u(2), mxcsr_msk = xmm.xmm32u(3);
if(! mxcsr_msk) mxcsr_msk = MXCSR_MASK;
if(new_mxcsr & ~mxcsr_msk)
exception(BX_GP_EXCEPTION, 0, 0);
BX_MXCSR_REGISTER = new_mxcsr;
}
/* load i387 register file */
for(index=0; index < 8; index++)
{
readVirtualDQwordAligned(i->seg(),
RMAddr(i)+index*16+32, (Bit8u *) &(BX_FPU_REG(index)));
}
/* FTW
*
* Note that the original format for FTW can be recreated from the stored
* FTW valid bits and the stored 80-bit FP data (assuming the stored data
* was not the contents of MMX registers) using the following table:
| Exponent | Exponent | Fraction | J,M bits | FTW valid | x87 FTW |
| all 1s | all 0s | all 0s | | | |
-------------------------------------------------------------------
| 0 | 0 | 0 | 0x | 1 | S 10 |
| 0 | 0 | 0 | 1x | 1 | V 00 |
-------------------------------------------------------------------
| 0 | 0 | 1 | 00 | 1 | S 10 |
| 0 | 0 | 1 | 10 | 1 | V 00 |
-------------------------------------------------------------------
| 0 | 1 | 0 | 0x | 1 | S 10 |
| 0 | 1 | 0 | 1x | 1 | S 10 |
-------------------------------------------------------------------
| 0 | 1 | 1 | 00 | 1 | Z 01 |
| 0 | 1 | 1 | 10 | 1 | S 10 |
-------------------------------------------------------------------
| 1 | 0 | 0 | 1x | 1 | S 10 |
| 1 | 0 | 0 | 1x | 1 | S 10 |
-------------------------------------------------------------------
| 1 | 0 | 1 | 00 | 1 | S 10 |
| 1 | 0 | 1 | 10 | 1 | S 10 |
-------------------------------------------------------------------
| all combinations above | 0 | E 11 |
*
* The J-bit is defined to be the 1-bit binary integer to the left of
* the decimal place in the significand.
*
* The M-bit is defined to be the most significant bit of the fractional
* portion of the significand (i.e., the bit immediately to the right of
* the decimal place). When the M-bit is the most significant bit of the
* fractional portion of the significand, it must be 0 if the fraction
* is all 0's.
*/
tag_byte_mask = 0x0100;
#define FPU_TAG_VALID 0x00
#define FPU_TAG_ZERO 0x01
#define FPU_TAG_SPECIAL 0x02
#define FPU_TAG_EMPTY 0x03
for(index = 0;index < 8; index++, twd <<= 2, tag_byte_mask <<= 1)
{
if(tag_byte & tag_byte_mask) {
bx_fpu_reg_t *fpu_reg = (bx_fpu_reg_t *) &(BX_FPU_REG(index));
if (fpu_reg->exp == 0) {
if(!(fpu_reg->sigl | fpu_reg->sigh)) twd |= FPU_TAG_ZERO;
else twd |= FPU_TAG_SPECIAL;
}
else if (fpu_reg->exp == 0x7fff) twd |= FPU_TAG_SPECIAL;
else if (fpu_reg->sigh & 0x80000000) twd |= FPU_TAG_VALID;
else twd |= FPU_TAG_SPECIAL;
}
else {
twd |= FPU_TAG_EMPTY;
}
}
BX_CPU_THIS_PTR the_i387.twd = (twd >> 2);
/* If the OSFXSR bit in CR4 is not set, the FXRSTOR instruction does
not restore the states of the XMM and MXCSR registers. */
if(! (BX_CPU_THIS_PTR cr4.get_OSFXSR()))
{
/* load XMM register file */
for(index=0; index < BX_XMM_REGISTERS; index++)
{
readVirtualDQwordAligned(i->seg(),
RMAddr(i)+index*16+160, (Bit8u *) &(BX_CPU_THIS_PTR xmm[index]));
}
}
#else
BX_INFO(("FXRSTOR: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* *************************** */
/* SSE: MEMORY MOVE OPERATIONS */
/* *************************** */
/* All these opcodes never generate SIMD floating point exeptions */
/* MOVUPS: 0F 10 */
/* MOVUPD: 66 0F 10 */
/* MOVDQU: F3 0F 6F */
void BX_CPU_C::MOVUPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQword(i->seg(), RMAddr(i), (Bit8u *) &op);
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVUPS_VpsWps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* MOVUPS: 0F 11 */
/* MOVUPD: 66 0F 11 */
/* MOVDQU: F3 0F 7F */
void BX_CPU_C::MOVUPS_WpsVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
/* op is a register or memory reference */
if (i->modC0()) {
BX_WRITE_XMM_REG(i->rm(), op);
}
else {
writeVirtualDQword(i->seg(), RMAddr(i), (Bit8u *) &op);
}
#else
BX_INFO(("MOVUPS_WpsVps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* MOVAPS: 0F 28 */
/* MOVAPD: 66 0F 28 */
/* MOVDQA: F3 0F 6F */
void BX_CPU_C::MOVAPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op);
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVAPS_VpsWps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* MOVAPS: 0F 29 */
/* MOVAPD: 66 0F 29 */
/* MOVDQA: F3 0F 7F */
void BX_CPU_C::MOVAPS_WpsVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
/* op is a register or memory reference */
if (i->modC0()) {
BX_WRITE_XMM_REG(i->rm(), op);
}
else {
writeVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op);
}
#else
BX_INFO(("MOVAPS_WpsVps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F3 0F 10 */
void BX_CPU_C::MOVSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
Bit32u val32;
/* op2 is a register or memory reference */
if (i->modC0())
{
op2 = BX_READ_XMM_REG(i->rm());
/* If the source operand is an XMM register, the high-order
96 bits of the destination XMM register are not modified. */
op1.xmm32u(0) = op2.xmm32u(0);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &val32);
/* If the source operand is a memory location, the high-order
96 bits of the destination XMM register are cleared to 0s */
op1.xmm32u(0) = val32;
op1.xmm32u(1) = 0;
op1.xmm64u(1) = 0;
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MOVSS_VssWss: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F3 0F 11 */
void BX_CPU_C::MOVSS_WssVss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit32u val32 = BX_READ_XMM_REG_LO_DWORD(i->nnn());
/* destination is a register or memory reference */
if (i->modC0())
{
/* If the source operand is an XMM register, the high-order
96 bits of the destination XMM register are not modified. */
BX_WRITE_XMM_REG_LO_DWORD(i->rm(), val32);
}
else {
/* pointer, segment address pair */
write_virtual_dword(i->seg(), RMAddr(i), &val32);
}
#else
BX_INFO(("MOVSS_WssVss: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F2 0F 10 */
void BX_CPU_C::MOVSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
Bit64u val64;
/* op2 is a register or memory reference */
if (i->modC0())
{
op2 = BX_READ_XMM_REG(i->rm());
/* If the source operand is an XMM register, the high-order
64 bits of the destination XMM register are not modified. */
op1.xmm64u(0) = op2.xmm64u(0);
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &val64);
/* If the source operand is a memory location, the high-order
64 bits of the destination XMM register are cleared to 0s */
op1.xmm64u(0) = val64;
op1.xmm64u(1) = 0;
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MOVSD_VsdWsd: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F2 0F 11 */
void BX_CPU_C::MOVSD_WsdVsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64 = BX_READ_XMM_REG_LO_QWORD(i->nnn());
/* destination is a register or memory reference */
if (i->modC0())
{
/* If the source operand is an XMM register, the high-order
64 bits of the destination XMM register are not modified. */
BX_WRITE_XMM_REG_LO_QWORD(i->rm(), val64);
}
else {
/* pointer, segment address pair */
write_virtual_qword(i->seg(), RMAddr(i), &val64);
}
#else
BX_INFO(("MOVSD_WsdVsd: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* MOVLPS: 0F 12 */
/* MOVLPD: 66 0F 12 */
void BX_CPU_C::MOVLPS_VpsMq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64;
if (i->modC0()) /* MOVHLPS xmm1, xmm2 opcode */
{
val64 = BX_READ_XMM_REG_HI_QWORD(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &val64);
}
/* now write result back to destination */
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), val64);
#else
BX_INFO(("MOVLPS_VpsMq: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F2 0F 12 */
void BX_CPU_C::MOVDDUP_VpdWq(bxInstruction_c *i)
{
#if BX_SUPPORT_PNI
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64;
BxPackedXmmRegister op;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &val64);
}
op.xmm64u(0) = val64;
op.xmm64u(1) = val64;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVDDUP_VpdWq: required PNI, use --enable-pni option"));
UndefinedOpcode(i);
#endif
}
/* F3 0F 12 */
void BX_CPU_C::MOVSLDUP_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_PNI
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op);
}
result.xmm32u(0) = op.xmm32u(0);
result.xmm32u(1) = op.xmm32u(0);
result.xmm32u(2) = op.xmm32u(2);
result.xmm32u(3) = op.xmm32u(2);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("MOVSLDUP_VpsWps: required PNI, use --enable-pni option"));
UndefinedOpcode(i);
#endif
}
/* F3 0F 16 */
void BX_CPU_C::MOVSHDUP_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_PNI
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op);
}
result.xmm32u(0) = op.xmm32u(1);
result.xmm32u(1) = op.xmm32u(1);
result.xmm32u(2) = op.xmm32u(3);
result.xmm32u(3) = op.xmm32u(3);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("MOVHLDUP_VpsWps: required PNI, use --enable-pni option"));
UndefinedOpcode(i);
#endif
}
/* MOVLPS: 0F 13 */
/* MOVLPD: 66 0F 13 */
void BX_CPU_C::MOVLPS_MqVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
if (i->modC0())
{
BX_INFO(("MOVLPS_MqVps: must be memory reference"));
UndefinedOpcode(i);
}
write_virtual_qword(i->seg(), RMAddr(i), &BX_XMM_REG_LO_QWORD(i->nnn()));
#else
BX_INFO(("MOVLPS_MqVps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* MOVHPS: 0F 16 */
/* MOVHPD: 66 0F 16 */
void BX_CPU_C::MOVHPS_VpsMq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64;
if (i->modC0()) /* MOVLHPS xmm1, xmm2 opcode */
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &val64);
}
/* now write result back to destination */
BX_WRITE_XMM_REG_HI_QWORD(i->nnn(), val64);
#else
BX_INFO(("MOVHPS_VpsMq: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* MOVHPS: 0F 17 */
/* MOVHPD: 66 0F 17 */
void BX_CPU_C::MOVHPS_MqVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
if (i->modC0())
{
BX_INFO(("MOVHPS_MqVps: must be memory reference"));
UndefinedOpcode(i);
}
write_virtual_qword(i->seg(), RMAddr(i), &BX_XMM_REG_HI_QWORD(i->nnn()));
#else
BX_INFO(("MOVHPS_MqVps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F2 0F F0 */
void BX_CPU_C::LDDQU_VdqMdq(bxInstruction_c *i)
{
#if BX_SUPPORT_PNI
BX_CPU_THIS_PTR prepareSSE();
/* source must be memory reference */
if (i->modC0()) {
BX_INFO(("LDDQU_VdqMdq: must be memory reference"));
UndefinedOpcode(i);
}
BxPackedXmmRegister op;
readVirtualDQword(i->seg(), RMAddr(i), (Bit8u *) &op);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("LDDQU_VdqMdq: required PNI, use --enable-pni option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F F7 */
void BX_CPU_C::MASKMOVDQU_VdqVRdq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
if (! i->modC0()) {
BX_INFO(("MASKMOVDQU_VdqVRdq: unexpected memory reference"));
UndefinedOpcode(i);
}
bx_address rdi;
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn()),
mask = BX_READ_XMM_REG(i->rm());
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
rdi = RDI;
}
else
#endif
if (i->as32L()) {
rdi = EDI;
}
else { /* 16 bit address mode */
rdi = DI;
}
/* partial write, no data will be written to memory if mask is all 0s */
for(unsigned j=0; j<16; j++)
{
if(mask.xmmubyte(j) & 0x80)
write_virtual_byte(BX_SEG_REG_DS, rdi+j, &op.xmmubyte(j));
}
#else
BX_INFO(("MASKMOVDQU_VdqVRdq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 0F 50 */
void BX_CPU_C::MOVMSKPS_GdVRps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
Bit32u val32 = 0;
if(op.xmm32u(0) & 0x80000000) val32 |= 0x1;
if(op.xmm32u(1) & 0x80000000) val32 |= 0x2;
if(op.xmm32u(2) & 0x80000000) val32 |= 0x4;
if(op.xmm32u(3) & 0x80000000) val32 |= 0x8;
BX_WRITE_32BIT_REG(i->rm(), val32);
#else
BX_INFO(("MOVMSKPS_GdVRps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 50 */
void BX_CPU_C::MOVMSKPD_EdVRpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
Bit32u val32 = 0;
if(op.xmm32u(1) & 0x80000000) val32 |= 0x1;
if(op.xmm32u(3) & 0x80000000) val32 |= 0x2;
BX_WRITE_32BIT_REG(i->rm(), val32);
#else
BX_INFO(("MOVMSKPD_EdVRpd: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 6E */
void BX_CPU_C::MOVD_VdqEd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1;
op1.xmm64u(1) = 0;
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op2);
}
op1.xmm64u(0) = op2;
}
else
#endif
{
Bit32u op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2);
}
op1.xmm64u(0) = (Bit64u)(op2);
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MOVD_VdqEd: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 7E */
void BX_CPU_C::MOVD_EdVd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn());
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u op2 = op1.xmm64u(0);
/* destination is a register or memory reference */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), op2);
}
else {
/* pointer, segment address pair */
write_virtual_qword(i->seg(), RMAddr(i), &op2);
}
}
else
#endif
{
Bit32u op2 = op1.xmm32u(0);
/* destination is a register or memory reference */
if (i->modC0()) {
BX_WRITE_32BIT_REG(i->rm(), op2);
}
else {
/* pointer, segment address pair */
write_virtual_dword(i->seg(), RMAddr(i), &op2);
}
}
BX_INFO(("MOVD_EdVd: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F3 0F 7E */
void BX_CPU_C::MOVQ_VqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
Bit64u val64;
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &val64);
op.xmm64u(0) = val64;
}
/* zero-extension to 128 bit */
op.xmm64u(1) = 0;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVQ_VqWq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F D6 */
void BX_CPU_C::MOVQ_WqVq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
if (i->modC0())
{
op.xmm64u(1) = 0; /* zero-extension to 128 bits */
BX_WRITE_XMM_REG(i->rm(), op);
}
else {
write_virtual_qword(i->seg(), RMAddr(i), &(op.xmm64u(0)));
}
#else
BX_INFO(("MOVQ_WqVq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F2 0F D6 */
void BX_CPU_C::MOVDQ2Q_PqVRq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BX_CPU_THIS_PTR prepareFPU2MMX();
BxPackedMmxRegister mm;
MMXUQ(mm) = BX_READ_XMM_REG_LO_QWORD(i->nnn());
BX_WRITE_MMX_REG(i->rm(), mm);
#else
BX_INFO(("MOVDQ2Q_PqVRq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F3 0F D6 */
void BX_CPU_C::MOVQ2DQ_VdqQq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BX_CPU_THIS_PTR prepareFPU2MMX();
BxPackedXmmRegister op;
BxPackedMmxRegister mm = BX_READ_MMX_REG(i->nnn());
op.xmm64u(0) = MMXUQ(mm);
op.xmm64u(1) = 0;
BX_WRITE_XMM_REG(i->rm(), op);
#else
BX_INFO(("MOVQ2DQ_VdqQq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* ****************************** */
/* SSE: MEMORY SHUFFLE OPERATIONS */
/* ****************************** */
/* 0F C6 */
void BX_CPU_C::SHUFPS_VpsWpsIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
Bit8u order = i->Ib();
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmm32u(0) = op1.xmm32u((order >> 0) & 0x3);
result.xmm32u(1) = op1.xmm32u((order >> 2) & 0x3);
result.xmm32u(2) = op2.xmm32u((order >> 4) & 0x3);
result.xmm32u(3) = op2.xmm32u((order >> 6) & 0x3);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("SHUFPS_VpsWpsIb: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F C6 */
void BX_CPU_C::SHUFPD_VpdWpdIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
Bit8u order = i->Ib();
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmm64u(0) = op1.xmm64u((order >> 0) & 0x1);
result.xmm64u(1) = op2.xmm64u((order >> 1) & 0x1);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("SHUFPD_VpdWpdIb: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 60 */
void BX_CPU_C::PUNPCKLBW_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmmubyte(0x0) = op1.xmmubyte(0);
result.xmmubyte(0x1) = op2.xmmubyte(0);
result.xmmubyte(0x2) = op1.xmmubyte(1);
result.xmmubyte(0x3) = op2.xmmubyte(1);
result.xmmubyte(0x4) = op1.xmmubyte(2);
result.xmmubyte(0x5) = op2.xmmubyte(2);
result.xmmubyte(0x6) = op1.xmmubyte(3);
result.xmmubyte(0x7) = op2.xmmubyte(3);
result.xmmubyte(0x8) = op1.xmmubyte(4);
result.xmmubyte(0x9) = op2.xmmubyte(4);
result.xmmubyte(0xA) = op1.xmmubyte(5);
result.xmmubyte(0xB) = op2.xmmubyte(5);
result.xmmubyte(0xC) = op1.xmmubyte(6);
result.xmmubyte(0xD) = op2.xmmubyte(6);
result.xmmubyte(0xE) = op1.xmmubyte(7);
result.xmmubyte(0xF) = op2.xmmubyte(7);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PUNPCKLBW_VdqWq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 61 */
void BX_CPU_C::PUNPCKLWD_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmm16u(0) = op1.xmm16u(0);
result.xmm16u(1) = op2.xmm16u(0);
result.xmm16u(2) = op1.xmm16u(1);
result.xmm16u(3) = op2.xmm16u(1);
result.xmm16u(4) = op1.xmm16u(2);
result.xmm16u(5) = op2.xmm16u(2);
result.xmm16u(6) = op1.xmm16u(3);
result.xmm16u(7) = op2.xmm16u(3);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PUNPCKLWD_VdqWq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* UNPCKLPS: 0F 14 */
/* PUNPCKLDQ: 66 0F 62 */
void BX_CPU_C::PUNPCKLDQ_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmm32u(0) = op1.xmm32u(0);
result.xmm32u(1) = op2.xmm32u(0);
result.xmm32u(2) = op1.xmm32u(1);
result.xmm32u(3) = op2.xmm32u(1);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PUNPCKLDQ_VdqWq: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 68 */
void BX_CPU_C::PUNPCKHBW_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmmubyte(0x0) = op1.xmmubyte(0x8);
result.xmmubyte(0x1) = op2.xmmubyte(0x8);
result.xmmubyte(0x2) = op1.xmmubyte(0x9);
result.xmmubyte(0x3) = op2.xmmubyte(0x9);
result.xmmubyte(0x4) = op1.xmmubyte(0xA);
result.xmmubyte(0x5) = op2.xmmubyte(0xA);
result.xmmubyte(0x6) = op1.xmmubyte(0xB);
result.xmmubyte(0x7) = op2.xmmubyte(0xB);
result.xmmubyte(0x8) = op1.xmmubyte(0xC);
result.xmmubyte(0x9) = op2.xmmubyte(0xC);
result.xmmubyte(0xA) = op1.xmmubyte(0xD);
result.xmmubyte(0xB) = op2.xmmubyte(0xD);
result.xmmubyte(0xC) = op1.xmmubyte(0xE);
result.xmmubyte(0xD) = op2.xmmubyte(0xE);
result.xmmubyte(0xE) = op1.xmmubyte(0xF);
result.xmmubyte(0xF) = op2.xmmubyte(0xF);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PUNPCKHBW_VdqWq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 69 */
void BX_CPU_C::PUNPCKHWD_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmm16u(0) = op1.xmm16u(4);
result.xmm16u(1) = op2.xmm16u(4);
result.xmm16u(2) = op1.xmm16u(5);
result.xmm16u(3) = op2.xmm16u(5);
result.xmm16u(4) = op1.xmm16u(6);
result.xmm16u(5) = op2.xmm16u(6);
result.xmm16u(6) = op1.xmm16u(7);
result.xmm16u(7) = op2.xmm16u(7);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PUNPCKHWD_VdqWq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* UNPCKHPS: 0F 15 */
/* PUNPCKHDQ: 66 0F 6A */
void BX_CPU_C::PUNPCKHDQ_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmm32u(0) = op1.xmm32u(2);
result.xmm32u(1) = op2.xmm32u(2);
result.xmm32u(2) = op1.xmm32u(3);
result.xmm32u(3) = op2.xmm32u(3);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PUNPCKHDQ_VdqWq: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* UNPCKLPD: 66 0F 14 */
/* PUNPCKLQDQ: 66 0F 6C */
void BX_CPU_C::PUNPCKLQDQ_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
op1.xmm64u(1) = op2.xmm64u(0);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("PUNPCKLQDQ_VdqWq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* UNPCKHPD: 66 0F 15 */
/* PUNPCKHQDQ: 66 0F 6D */
void BX_CPU_C::PUNPCKHQDQ_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), RMAddr(i), (Bit8u *) &op2);
}
result.xmm64u(0) = op1.xmm64u(1);
result.xmm64u(1) = op2.xmm64u(1);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PUNPCKHQDQ_VdqWq: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* 66 0F 70 */
void BX_CPU_C::PSHUFD_VdqWdqIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
Bit8u order = i->Ib();
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQword(i->seg(), RMAddr(i), (Bit8u *) &op);
}
result.xmm32u(0) = op.xmm32u((order >> 0) & 0x3);
result.xmm32u(1) = op.xmm32u((order >> 2) & 0x3);
result.xmm32u(2) = op.xmm32u((order >> 4) & 0x3);
result.xmm32u(3) = op.xmm32u((order >> 6) & 0x3);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PSHUFD_VdqWdqIb: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F2 0F 70 */
void BX_CPU_C::PSHUFHW_VqWqIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
Bit8u order = i->Ib();
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQword(i->seg(), RMAddr(i), (Bit8u *) &op);
}
result.xmm64u(0) = op.xmm64u(0);
result.xmm16u(4) = op.xmm16u(4 + ((order >> 0) & 0x3));
result.xmm16u(5) = op.xmm16u(4 + ((order >> 2) & 0x3));
result.xmm16u(6) = op.xmm16u(4 + ((order >> 4) & 0x3));
result.xmm16u(7) = op.xmm16u(4 + ((order >> 6) & 0x3));
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PSHUFHW_VqWqIb: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* F3 0F 70 */
void BX_CPU_C::PSHUFLW_VqWqIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
Bit8u order = i->Ib();
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
/* pointer, segment address pair */
readVirtualDQword(i->seg(), RMAddr(i), (Bit8u *) &op);
}
result.xmm16u(0) = op.xmm16u((order >> 0) & 0x3);
result.xmm16u(1) = op.xmm16u((order >> 2) & 0x3);
result.xmm16u(2) = op.xmm16u((order >> 4) & 0x3);
result.xmm16u(3) = op.xmm16u((order >> 6) & 0x3);
result.xmm64u(1) = op.xmm64u(1);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PSHUFLW_VqWqIb: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* **************************** */
/* SSE: STORE DATA NON-TEMPORAL */
/* **************************** */
/* 0F C3 */
void BX_CPU_C::MOVNTI_MdGd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
if (i->modC0()) {
BX_INFO(("MOVNTI_MdGd: must be memory reference"));
UndefinedOpcode(i);
}
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u val64 = BX_READ_64BIT_REG(i->nnn());
write_virtual_qword(i->seg(), RMAddr(i), &val64);
}
else
#endif
{
Bit32u val32 = BX_READ_32BIT_REG(i->nnn());
write_virtual_dword(i->seg(), RMAddr(i), &val32);
}
#else
BX_INFO(("MOVNTI_MdGd: required SSE2, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}
/* MOVNTPS: 0F 2B */
/* MOVNTPD: 66 0F 2B */
/* MOVNTDQ: 66 0F E7 */
void BX_CPU_C::MOVNTPS_MdqVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
if (i->modC0()) {
BX_INFO(("MOVNTPS_MdqVps: must be memory reference"));
UndefinedOpcode(i);
}
writeVirtualDQword(i->seg(), RMAddr(i), (Bit8u *)(&BX_READ_XMM_REG(i->nnn())));
#else
BX_INFO(("MOVNTPS_MdqVps: required SSE, use --enable-sse option"));
UndefinedOpcode(i);
#endif
}