Bochs/bochs/iodev/pit_wrap.cc
Volker Ruppert e98c100f74 - a bunch of warnings in MSVC fixed
- name of source file in wxworkspace.zip fixed
2005-06-04 17:44:59 +00:00

421 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////
// $Id: pit_wrap.cc,v 1.59 2005-06-04 17:44:58 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "iodev.h"
#if BX_USE_NEW_PIT
#include "speaker.h"
//Important constant #defines:
#define USEC_PER_SECOND (1000000)
//1.193181MHz Clock
#define TICKS_PER_SECOND (1193181)
// define a macro to convert floating point numbers into 64-bit integers.
// In MSVC++ you can convert a 64-bit float into a 64-bit signed integer,
// but it will not convert a 64-bit float into a 64-bit unsigned integer.
// This macro works around that.
#define F2I(x) ((Bit64u)(Bit64s) (x))
#define I2F(x) ((double)(Bit64s) (x))
//DEBUG configuration:
//Set up Logging.
#define LOG_THIS bx_pit.
//A single instance.
bx_pit_c bx_pit;
#if BX_USE_PIT_SMF
#define this (&bx_pit)
#endif
//Workaround for environments where OUT is defined.
#ifdef OUT
# undef OUT
#endif
//Generic MAX and MIN Functions
#define BX_MAX(a,b) ( ((a)>(b))?(a):(b) )
#define BX_MIN(a,b) ( ((a)>(b))?(b):(a) )
//USEC_ALPHA is multiplier for the past.
//USEC_ALPHA_B is 1-USEC_ALPHA, or multiplier for the present.
#define USEC_ALPHA ((double)(.8))
#define USEC_ALPHA_B ((double)(((double)1)-USEC_ALPHA))
#define USEC_ALPHA2 ((double)(.5))
#define USEC_ALPHA2_B ((double)(((double)1)-USEC_ALPHA2))
#define ALPHA_LOWER(old,new) ((Bit64u)((old<new)?((USEC_ALPHA*(I2F(old)))+(USEC_ALPHA_B*(I2F(new)))):((USEC_ALPHA2*(I2F(old)))+(USEC_ALPHA2_B*(I2F(new))))))
//PIT tick to usec conversion functions:
//Direct conversions:
#define TICKS_TO_USEC(a) ( ((a)*USEC_PER_SECOND)/TICKS_PER_SECOND )
#define USEC_TO_TICKS(a) ( ((a)*TICKS_PER_SECOND)/USEC_PER_SECOND )
bx_pit_c::bx_pit_c( void )
{
put("PIT");
settype(PITLOG);
s.speaker_data_on=0;
/* 8254 PIT (Programmable Interval Timer) */
BX_PIT_THIS s.timer_handle[1] = BX_NULL_TIMER_HANDLE;
BX_PIT_THIS s.timer_handle[2] = BX_NULL_TIMER_HANDLE;
BX_PIT_THIS s.timer_handle[0] = BX_NULL_TIMER_HANDLE;
}
bx_pit_c::~bx_pit_c( void )
{
}
int
bx_pit_c::init( void )
{
DEV_register_irq(0, "8254 PIT");
DEV_register_ioread_handler(this, read_handler, 0x0040, "8254 PIT", 1);
DEV_register_ioread_handler(this, read_handler, 0x0041, "8254 PIT", 1);
DEV_register_ioread_handler(this, read_handler, 0x0042, "8254 PIT", 1);
DEV_register_ioread_handler(this, read_handler, 0x0043, "8254 PIT", 1);
DEV_register_ioread_handler(this, read_handler, 0x0061, "8254 PIT", 1);
DEV_register_iowrite_handler(this, write_handler, 0x0040, "8254 PIT", 1);
DEV_register_iowrite_handler(this, write_handler, 0x0041, "8254 PIT", 1);
DEV_register_iowrite_handler(this, write_handler, 0x0042, "8254 PIT", 1);
DEV_register_iowrite_handler(this, write_handler, 0x0043, "8254 PIT", 1);
DEV_register_iowrite_handler(this, write_handler, 0x0061, "8254 PIT", 1);
BX_DEBUG(("pit: starting init"));
BX_PIT_THIS s.speaker_data_on = 0;
BX_PIT_THIS s.refresh_clock_div2 = 0;
BX_PIT_THIS s.timer.init();
Bit64u my_time_usec = bx_virt_timer.time_usec();
if (BX_PIT_THIS s.timer_handle[0] == BX_NULL_TIMER_HANDLE) {
BX_PIT_THIS s.timer_handle[0] = bx_virt_timer.register_timer(this, timer_handler, (unsigned) 100 , 1, 1, "pit_wrap");
}
BX_DEBUG(("pit: RESETting timer."));
bx_virt_timer.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_virt_timer.activate_timer(BX_PIT_THIS s.timer_handle[0],
(Bit32u)BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
BX_PIT_THIS s.last_usec=my_time_usec;
BX_PIT_THIS s.total_ticks=0;
BX_PIT_THIS s.total_usec=0;
BX_DEBUG(("pit: finished init"));
BX_DEBUG(("s.last_usec="FMT_LL"d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%d",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
return(1);
}
void
bx_pit_c::reset(unsigned type)
{
}
void
bx_pit_c::timer_handler(void *this_ptr) {
bx_pit_c * class_ptr = (bx_pit_c *) this_ptr;
class_ptr->handle_timer();
}
void
bx_pit_c::handle_timer() {
Bit64u my_time_usec = bx_virt_timer.time_usec();
Bit64u time_passed = my_time_usec-BX_PIT_THIS s.last_usec;
Bit32u time_passed32 = (Bit32u)time_passed;
BX_DEBUG(("pit: entering timer handler"));
if(time_passed32) {
periodic(time_passed32);
}
BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed;
if(time_passed ||
(BX_PIT_THIS s.last_next_event_time
!= BX_PIT_THIS s.timer.get_next_event_time())
) {
BX_DEBUG(("pit: RESETting timer."));
bx_virt_timer.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_virt_timer.activate_timer(BX_PIT_THIS s.timer_handle[0],
(Bit32u)BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
}
BX_DEBUG(("s.last_usec="FMT_LL"d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_pit_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
Bit32u
bx_pit_c::read( Bit32u address, unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
BX_DEBUG(("pit: entering read handler"));
handle_timer();
Bit64u my_time_usec = bx_virt_timer.time_usec();
if (bx_dbg.pit)
BX_INFO(("pit: io read from port %04x", (unsigned) address));
switch (address) {
case 0x40: /* timer 0 - system ticks */
return(BX_PIT_THIS s.timer.read(0));
break;
case 0x41: /* timer 1 read */
return(BX_PIT_THIS s.timer.read(1));
break;
case 0x42: /* timer 2 read */
return(BX_PIT_THIS s.timer.read(2));
break;
case 0x43: /* timer 1 read */
return(BX_PIT_THIS s.timer.read(3));
break;
case 0x61:
/* AT, port 61h */
BX_PIT_THIS s.refresh_clock_div2 = (bx_bool)((my_time_usec / 15) & 1);
return( (BX_PIT_THIS s.timer.read_OUT(2)<<5) |
(BX_PIT_THIS s.refresh_clock_div2<<4) |
(BX_PIT_THIS s.speaker_data_on<<1) |
(BX_PIT_THIS s.timer.read_GATE(2)?1:0) );
break;
default:
BX_PANIC(("pit: unsupported io read from port %04x", address));
}
return(0); /* keep compiler happy */
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_pit_c::write_handler(void *this_ptr, Bit32u address, Bit32u dvalue, unsigned io_len)
{
#if !BX_USE_PIT_SMF
bx_pit_c *class_ptr = (bx_pit_c *) this_ptr;
class_ptr->write(address, dvalue, io_len);
}
void
bx_pit_c::write( Bit32u address, Bit32u dvalue,
unsigned int io_len )
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PIT_SMF
Bit8u value;
Bit64u my_time_usec = bx_virt_timer.time_usec();
Bit64u time_passed = my_time_usec-BX_PIT_THIS s.last_usec;
Bit32u time_passed32 = (Bit32u)time_passed;
BX_DEBUG(("pit: entering write handler"));
if(time_passed32) {
periodic(time_passed32);
}
BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed;
value = (Bit8u ) dvalue;
if (bx_dbg.pit)
BX_INFO(("pit: write to port %04x = %02x",
(unsigned) address, (unsigned) value));
switch (address) {
case 0x40: /* timer 0: write count register */
BX_PIT_THIS s.timer.write(0,value);
break;
case 0x41: /* timer 1: write count register */
BX_PIT_THIS s.timer.write( 1,value );
break;
case 0x42: /* timer 2: write count register */
BX_PIT_THIS s.timer.write( 2,value );
break;
case 0x43: /* timer 0-2 mode control */
BX_PIT_THIS s.timer.write( 3,value );
break;
case 0x61:
BX_PIT_THIS s.speaker_data_on = (value >> 1) & 0x01;
if ( BX_PIT_THIS s.speaker_data_on ) {
DEV_speaker_beep_on((float)(1193180.0 / this->get_timer(2)));
} else {
DEV_speaker_beep_off();
}
/*??? only on AT+ */
BX_PIT_THIS s.timer.set_GATE(2, value & 0x01);
#if BX_CPU_LEVEL < 2
/* ??? XT: */
bx_kbd_port61h_write(value);
#endif
break;
default:
BX_PANIC(("pit: unsupported io write to port %04x = %02x",
(unsigned) address, (unsigned) value));
}
if ((BX_PIT_THIS s.timer.read_OUT(0))==1) {
DEV_pic_raise_irq(0);
} else {
DEV_pic_lower_irq(0);
}
if(time_passed ||
(BX_PIT_THIS s.last_next_event_time
!= BX_PIT_THIS s.timer.get_next_event_time())
) {
BX_DEBUG(("pit: RESETting timer."));
bx_virt_timer.deactivate_timer(BX_PIT_THIS s.timer_handle[0]);
BX_DEBUG(("deactivated timer."));
if(BX_PIT_THIS s.timer.get_next_event_time()) {
bx_virt_timer.activate_timer(BX_PIT_THIS s.timer_handle[0],
(Bit32u)BX_MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())),
0);
BX_DEBUG(("activated timer."));
}
BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time();
}
BX_DEBUG(("s.last_usec="FMT_LL"d",BX_PIT_THIS s.last_usec));
BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0]));
BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time()));
BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time));
}
#if 0
void
bx_kbd_port61h_write(Bit8u value)
{
// PcError("KBD_PORT61H_WRITE(): not implemented yet");
UNUSED( value );
}
#endif
bx_bool
bx_pit_c::periodic( Bit32u usec_delta )
{
bx_bool prev_timer0_out = BX_PIT_THIS s.timer.read_OUT(0);
bx_bool want_interrupt = 0;
Bit32u ticks_delta = 0;
#ifdef BX_SCHEDULED_DIE_TIME
if (bx_pc_system.time_ticks() > BX_SCHEDULED_DIE_TIME) {
BX_ERROR (("ticks exceeded scheduled die time, quitting"));
BX_EXIT (2);
}
#endif
BX_PIT_THIS s.total_usec += usec_delta;
ticks_delta=(Bit32u)((USEC_TO_TICKS((Bit64u)(BX_PIT_THIS s.total_usec)))-BX_PIT_THIS s.total_ticks);
BX_PIT_THIS s.total_ticks += ticks_delta;
while ((BX_PIT_THIS s.total_ticks >= TICKS_PER_SECOND) && (BX_PIT_THIS s.total_usec >= USEC_PER_SECOND)) {
BX_PIT_THIS s.total_ticks -= TICKS_PER_SECOND;
BX_PIT_THIS s.total_usec -= USEC_PER_SECOND;
}
while(ticks_delta>0) {
Bit32u maxchange=BX_PIT_THIS s.timer.get_next_event_time();
Bit32u timedelta=maxchange;
if((maxchange==0) || (maxchange>ticks_delta)) {
timedelta=ticks_delta;
}
BX_PIT_THIS s.timer.clock_all(timedelta);
if ( (prev_timer0_out==0) ) {
if ((BX_PIT_THIS s.timer.read_OUT(0))==1) {
DEV_pic_raise_irq(0);
prev_timer0_out=1;
}
} else {
if ((BX_PIT_THIS s.timer.read_OUT(0))==0) {
DEV_pic_lower_irq(0);
prev_timer0_out=0;
}
}
prev_timer0_out=BX_PIT_THIS s.timer.read_OUT(0);
ticks_delta-=timedelta;
}
return(want_interrupt);
}
#endif // #if BX_USE_NEW_PIT