Bochs/bochs/cpu/stack16.cc

243 lines
7.5 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: stack16.cc,v 1.35 2008-03-22 21:29:41 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
// Make code more tidy with a few macros.
#if BX_SUPPORT_X86_64==0
#define RSP ESP
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_RX(bxInstruction_c *i)
{
push_16(BX_READ_16BIT_REG(i->opcodeReg()));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_CS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_DS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_ES(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_FS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_GS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_SS(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_DS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit16u ds = pop_16();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], ds);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_ES(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit16u es = pop_16();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], es);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_FS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit16u fs = pop_16();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], fs);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_GS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit16u gs = pop_16();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], gs);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_SS(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit16u ss = pop_16();
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], ss);
BX_CPU_THIS_PTR speculative_rsp = 0;
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
BX_CPU_THIS_PTR inhibit_mask |=
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
BX_CPU_THIS_PTR async_event = 1;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_RX(bxInstruction_c *i)
{
BX_WRITE_16BIT_REG(i->opcodeReg(), pop_16());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwM(bxInstruction_c *i)
{
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
Bit16u val16 = pop_16();
// Note: there is one little weirdism here. It is possible to use
// SP in the modrm addressing. If used, the value of SP after the
// pop is used to calculate the address.
//if (i->rm()==4 && i->sibBase()==4) {
BX_CPU_CALL_METHODR (i->ResolveModrm, (i));
//}
write_virtual_word(i->seg(), RMAddr(i), val16);
BX_CPU_THIS_PTR speculative_rsp = 0;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Iw(bxInstruction_c *i)
{
push_16(i->Iw());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwM(bxInstruction_c *i)
{
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit16u op1_16 = read_virtual_word(i->seg(), RMAddr(i));
push_16(op1_16);
}
#if BX_CPU_LEVEL >= 3
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHAD16(bxInstruction_c *i)
{
Bit32u temp_ESP = ESP;
Bit16u temp_SP = SP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 2), AX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 4), CX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 6), DX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 8), BX);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 10), temp_SP);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 12), BP);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 14), SI);
write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 16), DI);
ESP -= 16;
}
else
{
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 2), AX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 4), CX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 6), DX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 8), BX);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 10), temp_SP);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 12), BP);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 14), SI);
write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 16), DI);
SP -= 16;
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPAD16(bxInstruction_c *i)
{
Bit16u di, si, bp, bx, dx, cx, ax;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
Bit32u temp_ESP = ESP;
di = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 0));
si = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 2));
bp = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 4));
bx = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 8));
dx = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 10));
cx = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 12));
ax = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 14));
ESP += 16;
}
else
{
Bit16u temp_SP = SP;
di = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 0));
si = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 2));
bp = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 4));
bx = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 8));
dx = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 10));
cx = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 12));
ax = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 14));
SP += 16;
}
DI = di;
SI = si;
BP = bp;
BX = bx;
DX = dx;
CX = cx;
AX = ax;
}
#endif