Bochs/bochs/cpu/bit.cc
Kevin Lawton b742ccec7e Changed eflags accessors for get_?F() to use (val32 & (1<<N)) instead
of (1 & (val32>>N)), and added a getB_?F() accessor for special
  cases which need a strict binary value (exactly 0 or 1).  Most
  code only needed a value for logical comparison.  I modified the
  special cases which do need a binary number for shifting and
  comparison between flags, to use the special getB_?F() accessor.

Cleaned up memory.cc functions a little, now that all accesses
  are within a single page.

Fixed a (not very likely encountered) bug in fetchdecode.cc (and
  fetchdecode64.cc) where a 2-byte opcode starting with a prefix
  starts at the last offset on a page.  There were no checks
  on the segment overrides for a boundary condition.  I added them.

The eflags enhancements added just a tiny bit of performance.
2002-09-22 18:22:24 +00:00

1780 lines
40 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: bit.cc,v 1.12 2002-09-22 18:22:24 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier merging cpu64 and cpu code.
#define RAX EAX
#define RBX EBX
#define RCX ECX
#define RDX EDX
#define RSP ESP
#define RSI ESI
#define RDI EDI
#define RBP EBP
#endif
void
BX_CPU_C::SETO_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETO: not available on < 386"));
#else
Bit8u result_8;
if (get_OF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNO_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNO: not available on < 386"));
#else
Bit8u result_8;
if (get_OF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETB_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETB: not available on < 386"));
#else
Bit8u result_8;
if (get_CF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNB_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNB: not available on < 386"));
#else
Bit8u result_8;
if (get_CF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETZ_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETZ: not available on < 386"));
#else
Bit8u result_8;
if (get_ZF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNZ_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNZ: not available on < 386"));
#else
Bit8u result_8;
if (get_ZF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETBE_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETBE: not available on < 386"));
#else
Bit8u result_8;
if (get_CF() || get_ZF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNBE_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNBE: not available on < 386"));
#else
Bit8u result_8;
if ((get_CF()==0) && (get_ZF()==0))
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETS_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETS: not available on < 386"));
#else
Bit8u result_8;
if (get_SF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNS_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNL: not available on < 386"));
#else
Bit8u result_8;
if (get_SF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETP_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETP: not available on < 386"));
#else
Bit8u result_8;
if (get_PF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNP_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNP: not available on < 386"));
#else
Bit8u result_8;
if (get_PF() == 0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETL_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETL: not available on < 386"));
#else
Bit8u result_8;
if (getB_SF() != getB_OF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNL_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNL: not available on < 386"));
#else
Bit8u result_8;
if (getB_SF() == getB_OF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETLE_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETLE: not available on < 386"));
#else
Bit8u result_8;
if (get_ZF() || (getB_SF()!=getB_OF()))
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::SETNLE_Eb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNLE: not available on < 386"));
#else
Bit8u result_8;
if ((get_ZF()==0) && (getB_SF()==getB_OF()))
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
}
#endif
}
void
BX_CPU_C::BSF_GvEv(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BSF_GvEv(): not supported on < 386"));
#else
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, op2_64;
/* op2_64 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op2_64);
}
if (op2_64 == 0) {
set_ZF(1);
/* op1_64 undefined */
return;
}
op1_64 = 0;
while ( (op2_64 & 0x01) == 0 ) {
op1_64++;
op2_64 >>= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32;
/* op2_32 is a register or memory reference */
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
if (op2_32 == 0) {
set_ZF(1);
/* op1_32 undefined */
return;
}
op1_32 = 0;
while ( (op2_32 & 0x01) == 0 ) {
op1_32++;
op2_32 >>= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16;
/* op2_16 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
if (op2_16 == 0) {
set_ZF(1);
/* op1_16 undefined */
return;
}
op1_16 = 0;
while ( (op2_16 & 0x01) == 0 ) {
op1_16++;
op2_16 >>= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
}
#endif
}
void
BX_CPU_C::BSR_GvEv(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BSR_GvEv(): not supported on < 386"));
#else
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, op2_64;
/* op2_64 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op2_64);
}
if (op2_64 == 0) {
set_ZF(1);
/* op1_64 undefined */
return;
}
op1_64 = 63;
while ( (op2_64 & BX_CONST64(0x8000000000000000)) == 0 ) {
op1_64--;
op2_64 <<= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32;
/* op2_32 is a register or memory reference */
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
if (op2_32 == 0) {
set_ZF(1);
/* op1_32 undefined */
return;
}
op1_32 = 31;
while ( (op2_32 & 0x80000000) == 0 ) {
op1_32--;
op2_32 <<= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16;
/* op2_16 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
if (op2_16 == 0) {
set_ZF(1);
/* op1_16 undefined */
return;
}
op1_16 = 15;
while ( (op2_16 & 0x8000) == 0 ) {
op1_16--;
op2_16 <<= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
}
#endif
}
void
BX_CPU_C::BSWAP_EAX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u eax, b0, b1, b2, b3;
eax = EAX;
b0 = eax & 0xff; eax >>= 8;
b1 = eax & 0xff; eax >>= 8;
b2 = eax & 0xff; eax >>= 8;
b3 = eax;
RAX = (b0<<24) | (b1<<16) | (b2<<8) | b3; // zero extended
#else
BX_PANIC(("BSWAP_EAX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_ECX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u ecx, b0, b1, b2, b3;
ecx = ECX;
b0 = ecx & 0xff; ecx >>= 8;
b1 = ecx & 0xff; ecx >>= 8;
b2 = ecx & 0xff; ecx >>= 8;
b3 = ecx;
RCX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_ECX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_EDX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u edx, b0, b1, b2, b3;
edx = EDX;
b0 = edx & 0xff; edx >>= 8;
b1 = edx & 0xff; edx >>= 8;
b2 = edx & 0xff; edx >>= 8;
b3 = edx;
RDX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EDX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_EBX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u ebx, b0, b1, b2, b3;
ebx = EBX;
b0 = ebx & 0xff; ebx >>= 8;
b1 = ebx & 0xff; ebx >>= 8;
b2 = ebx & 0xff; ebx >>= 8;
b3 = ebx;
RBX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EBX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_ESP(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u esp, b0, b1, b2, b3;
esp = ESP;
b0 = esp & 0xff; esp >>= 8;
b1 = esp & 0xff; esp >>= 8;
b2 = esp & 0xff; esp >>= 8;
b3 = esp;
RSP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_ESP: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_EBP(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u ebp, b0, b1, b2, b3;
ebp = EBP;
b0 = ebp & 0xff; ebp >>= 8;
b1 = ebp & 0xff; ebp >>= 8;
b2 = ebp & 0xff; ebp >>= 8;
b3 = ebp;
RBP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EBP: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_ESI(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u esi, b0, b1, b2, b3;
esi = ESI;
b0 = esi & 0xff; esi >>= 8;
b1 = esi & 0xff; esi >>= 8;
b2 = esi & 0xff; esi >>= 8;
b3 = esi;
RSI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_ESI: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_EDI(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u edi, b0, b1, b2, b3;
edi = EDI;
b0 = edi & 0xff; edi >>= 8;
b1 = edi & 0xff; edi >>= 8;
b2 = edi & 0xff; edi >>= 8;
b3 = edi;
RDI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EDI: not implemented CPU <= 3"));
#endif
}
#if BX_SUPPORT_X86_64
void
BX_CPU_C::BSWAP_RAX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rax, b0, b1, b2, b3, b4, b5, b6, b7;
rax = RAX;
b0 = rax & 0xff; rax >>= 8;
b1 = rax & 0xff; rax >>= 8;
b2 = rax & 0xff; rax >>= 8;
b3 = rax & 0xff; rax >>= 8;
b4 = rax & 0xff; rax >>= 8;
b5 = rax & 0xff; rax >>= 8;
b6 = rax & 0xff; rax >>= 8;
b7 = rax;
RAX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b4<<16) | (b4<<8) | b7;
#else
BX_PANIC(("BSWAP_RAX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_RCX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rcx, b0, b1, b2, b3, b4, b5, b6, b7;
rcx = RCX;
b0 = rcx & 0xff; rcx >>= 8;
b1 = rcx & 0xff; rcx >>= 8;
b2 = rcx & 0xff; rcx >>= 8;
b3 = rcx & 0xff; rcx >>= 8;
b4 = rcx & 0xff; rcx >>= 8;
b5 = rcx & 0xff; rcx >>= 8;
b6 = rcx & 0xff; rcx >>= 8;
b7 = rcx;
RCX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
#else
BX_PANIC(("BSWAP_ECX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_RDX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rdx, b0, b1, b2, b3, b4, b5, b6, b7;
rdx = RDX;
b0 = rdx & 0xff; rdx >>= 8;
b1 = rdx & 0xff; rdx >>= 8;
b2 = rdx & 0xff; rdx >>= 8;
b3 = rdx & 0xff; rdx >>= 8;
b4 = rdx & 0xff; rdx >>= 8;
b5 = rdx & 0xff; rdx >>= 8;
b6 = rdx & 0xff; rdx >>= 8;
b7 = rdx;
RDX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
#else
BX_PANIC(("BSWAP_EDX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_RBX(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rbx, b0, b1, b2, b3, b4, b5, b6, b7;
rbx = RBX;
b0 = rbx & 0xff; rbx >>= 8;
b1 = rbx & 0xff; rbx >>= 8;
b2 = rbx & 0xff; rbx >>= 8;
b3 = rbx & 0xff; rbx >>= 8;
b4 = rbx & 0xff; rbx >>= 8;
b5 = rbx & 0xff; rbx >>= 8;
b6 = rbx & 0xff; rbx >>= 8;
b7 = rbx;
RBX = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
#else
BX_PANIC(("BSWAP_EBX: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_RSP(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rsp, b0, b1, b2, b3, b4, b5, b6, b7;
rsp = RSP;
b0 = rsp & 0xff; rsp >>= 8;
b1 = rsp & 0xff; rsp >>= 8;
b2 = rsp & 0xff; rsp >>= 8;
b3 = rsp & 0xff; rsp >>= 8;
b4 = rsp & 0xff; rsp >>= 8;
b5 = rsp & 0xff; rsp >>= 8;
b6 = rsp & 0xff; rsp >>= 8;
b7 = rsp;
RSP = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
#else
BX_PANIC(("BSWAP_ESP: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_RBP(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rbp, b0, b1, b2, b3, b4, b5, b6, b7;
rbp = RBP;
b0 = rbp & 0xff; rbp >>= 8;
b1 = rbp & 0xff; rbp >>= 8;
b2 = rbp & 0xff; rbp >>= 8;
b3 = rbp & 0xff; rbp >>= 8;
b4 = rbp & 0xff; rbp >>= 8;
b5 = rbp & 0xff; rbp >>= 8;
b6 = rbp & 0xff; rbp >>= 8;
b7 = rbp;
RBP = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
#else
BX_PANIC(("BSWAP_EBP: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_RSI(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rsi, b0, b1, b2, b3, b4, b5, b6, b7;
rsi = RSI;
b0 = rsi & 0xff; rsi >>= 8;
b1 = rsi & 0xff; rsi >>= 8;
b2 = rsi & 0xff; rsi >>= 8;
b3 = rsi & 0xff; rsi >>= 8;
b4 = rsi & 0xff; rsi >>= 8;
b5 = rsi & 0xff; rsi >>= 8;
b6 = rsi & 0xff; rsi >>= 8;
b7 = rsi;
RSI = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
#else
BX_PANIC(("BSWAP_ESI: not implemented CPU <= 3"));
#endif
}
void
BX_CPU_C::BSWAP_RDI(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit64u rdi, b0, b1, b2, b3, b4, b5, b6, b7;
rdi = RDI;
b0 = rdi & 0xff; rdi >>= 8;
b1 = rdi & 0xff; rdi >>= 8;
b2 = rdi & 0xff; rdi >>= 8;
b3 = rdi & 0xff; rdi >>= 8;
b4 = rdi & 0xff; rdi >>= 8;
b5 = rdi & 0xff; rdi >>= 8;
b6 = rdi & 0xff; rdi >>= 8;
b7 = rdi;
RDI = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
#else
BX_PANIC(("BSWAP_EDI: not implemented CPU <= 3"));
#endif
}
#endif // #if BX_SUPPORT_X86_64
void
BX_CPU_C::BT_EvGv(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BT_EvGv: not available on <386"));
#else
bx_address op1_addr;
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, op2_64;
Bit64s displacement64;
Bit64u index;
/* op2_64 is a register, op2_addr is an index of a register */
op2_64 = BX_READ_64BIT_REG(i->nnn());
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
op2_64 &= 0x3f;
set_CF((op1_64 >> op2_64) & 0x01);
return;
}
index = op2_64 & 0x3f;
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = RMAddr(i) + 8 * displacement64;
/* pointer, segment address pair */
read_virtual_qword(i->seg(), op1_addr, &op1_64);
set_CF((op1_64 >> index) & 0x01);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
return;
}
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = RMAddr(i) + 4 * displacement32;
/* pointer, segment address pair */
read_virtual_dword(i->seg(), op1_addr, &op1_32);
set_CF((op1_32 >> index) & 0x01);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, index;
Bit32s displacement32;
/* op2_16 is a register, op2_addr is an index of a register */
op2_16 = BX_READ_16BIT_REG(i->nnn());
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
return;
}
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = RMAddr(i) + 2 * displacement32;
/* pointer, segment address pair */
read_virtual_word(i->seg(), op1_addr, &op1_16);
set_CF((op1_16 >> index) & 0x01);
}
#endif
}
void
BX_CPU_C::BTS_EvGv(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTS_EvGv: not available on <386"));
#else
bx_address op1_addr;
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, op2_64, index;
Bit64s displacement64;
Bit64u bit_i;
/* op2_64 is a register, op2_addr is an index of a register */
op2_64 = BX_READ_64BIT_REG(i->nnn());
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
op2_64 &= 0x3f;
set_CF((op1_64 >> op2_64) & 0x01);
op1_64 |= (((Bit64u) 1) << op2_64);
/* now write diff back to destination */
BX_WRITE_64BIT_REG(i->rm(), op1_64);
return;
}
index = op2_64 & 0x3f;
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = RMAddr(i) + 8 * displacement64;
/* pointer, segment address pair */
read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64);
bit_i = (op1_64 >> index) & 0x01;
op1_64 |= (((Bit64u) 1) << index);
Write_RMW_virtual_qword(op1_64);
set_CF(bit_i);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, bit_i, index;
Bit32s displacement32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 |= (((Bit32u) 1) << op2_32);
/* now write diff back to destination */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
return;
}
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = RMAddr(i) + 4 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32);
bit_i = (op1_32 >> index) & 0x01;
op1_32 |= (((Bit32u) 1) << index);
Write_RMW_virtual_dword(op1_32);
set_CF(bit_i);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, bit_i, index;
Bit32s displacement32;
/* op2_16 is a register, op2_addr is an index of a register */
op2_16 = BX_READ_16BIT_REG(i->nnn());
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
op1_16 |= (((Bit16u) 1) << op2_16);
/* now write diff back to destination */
BX_WRITE_16BIT_REG(i->rm(), op1_16);
return;
}
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = RMAddr(i) + 2 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), op1_addr, &op1_16);
bit_i = (op1_16 >> index) & 0x01;
op1_16 |= (((Bit16u) 1) << index);
Write_RMW_virtual_word(op1_16);
set_CF(bit_i);
}
#endif
}
void
BX_CPU_C::BTR_EvGv(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTR_EvGv: not available on <386"));
#else
bx_address op1_addr;
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, op2_64, index;
Bit64s displacement64;
Bit64u temp_cf;
/* op2_64 is a register, op2_addr is an index of a register */
op2_64 = BX_READ_64BIT_REG(i->nnn());
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
op2_64 &= 0x3f;
set_CF((op1_64 >> op2_64) & 0x01);
op1_64 &= ~(((Bit64u) 1) << op2_64);
/* now write diff back to destination */
BX_WRITE_64BIT_REG(i->rm(), op1_64);
return;
}
index = op2_64 & 0x3f;
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = RMAddr(i) + 8 * displacement64;
/* pointer, segment address pair */
read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64);
temp_cf = (op1_64 >> index) & 0x01;
op1_64 &= ~(((Bit64u) 1) << index);
/* now write back to destination */
Write_RMW_virtual_qword(op1_64);
set_CF(temp_cf);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, index, temp_cf;
Bit32s displacement32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 &= ~(((Bit32u) 1) << op2_32);
/* now write diff back to destination */
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
return;
}
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = RMAddr(i) + 4 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32);
temp_cf = (op1_32 >> index) & 0x01;
op1_32 &= ~(((Bit32u) 1) << index);
/* now write back to destination */
Write_RMW_virtual_dword(op1_32);
set_CF(temp_cf);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, index, temp_cf;
Bit32s displacement32;
/* op2_16 is a register, op2_addr is an index of a register */
op2_16 = BX_READ_16BIT_REG(i->nnn());
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
op1_16 &= ~(((Bit16u) 1) << op2_16);
/* now write diff back to destination */
BX_WRITE_16BIT_REG(i->rm(), op1_16);
return;
}
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = RMAddr(i) + 2 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), op1_addr, &op1_16);
temp_cf = (op1_16 >> index) & 0x01;
op1_16 &= ~(((Bit16u) 1) << index);
/* now write back to destination */
Write_RMW_virtual_word(op1_16);
set_CF(temp_cf);
}
#endif
}
void
BX_CPU_C::BTC_EvGv(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTC_EvGv: not available on <386"));
#else
bx_address op1_addr;
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, op2_64;
Bit64s displacement64;
Bit64u temp_CF, index;
op2_64 = BX_READ_64BIT_REG(i->nnn());
index = op2_64 & 0x3f;
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
op1_addr = 0; // keep compiler happy
}
else {
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = RMAddr(i) + 8 * displacement64;
read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64);
}
temp_CF = (op1_64 >> index) & 0x01;
// old code not as efficient???
op1_64 &= ~(((Bit64u) 1) << index); /* clear out bit */
op1_64 |= (((Bit64u) !temp_CF) << index); /* set to complement */
//op1_64 ^= (((Bit64u) 1) << index); /* toggle bit wrong??? */
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), op1_64);
}
else {
Write_RMW_virtual_qword(op1_64);
}
set_CF(temp_CF);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, index_32, temp_CF;
Bit32s displacement32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
index_32 = op2_32 & 0x1f;
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
op1_addr = 0; // keep compiler happy
}
else {
displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32;
op1_addr = RMAddr(i) + 4 * displacement32;
read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32);
}
temp_CF = (op1_32 >> index_32) & 0x01;
op1_32 &= ~(((Bit32u) 1) << index_32); /* clear out bit */
op1_32 |= (((Bit32u) !temp_CF) << index_32); /* set to complement */
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
else {
Write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, index_16, temp_CF;
Bit16s displacement16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
index_16 = op2_16 & 0x0f;
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
op1_addr = 0; // keep compiler happy
}
else {
displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
op1_addr = RMAddr(i) + 2 * displacement16;
read_RMW_virtual_word(i->seg(), op1_addr, &op1_16);
}
temp_CF = (op1_16 >> index_16) & 0x01;
op1_16 &= ~(((Bit16u) 1) << index_16); /* clear out bit */
op1_16 |= (((Bit16u) !temp_CF) << index_16); /* set to complement */
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), op1_16);
}
else {
Write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}
void
BX_CPU_C::BT_EvIb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BT_EvIb: not available on <386"));
#else
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64;
Bit8u op2_8;
op2_8 = i->Ib() & 0x3f;
op2_8 %= 64;
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op1_64);
}
set_CF((op1_64 >> op2_8) & 0x01);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
set_CF((op1_32 >> op2_8) & 0x01);
}
else { /* 16 bit operand size mode */
Bit16u op1_16;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
set_CF((op1_16 >> op2_8) & 0x01);
}
#endif
}
void
BX_CPU_C::BTS_EvIb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTS_EvIb: not available on <386"));
#else
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 64;
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64);
}
temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 |= (((Bit64u) 1) << op2_8);
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), op1_64);
}
else {
Write_RMW_virtual_qword(op1_64);
}
set_CF(temp_CF);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 |= (((Bit32u) 1) << op2_8);
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
else {
Write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 |= (((Bit16u) 1) << op2_8);
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), op1_16);
}
else {
Write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}
void
BX_CPU_C::BTC_EvIb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTC_EvIb: not available on <386"));
#else
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 64;
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64);
}
temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 &= ~(((Bit64u) 1) << op2_8); /* clear out bit */
op1_64 |= (((Bit64u) !temp_CF) << op2_8); /* set to complement */
//op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), op1_64);
}
else {
Write_RMW_virtual_qword(op1_64);
}
set_CF(temp_CF);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(((Bit32u) 1) << op2_8); /* clear out bit */
op1_32 |= (((Bit32u) !temp_CF) << op2_8); /* set to complement */
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
else {
Write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 &= ~(((Bit16u) 1) << op2_8); /* clear out bit */
op1_16 |= (((Bit16u) !temp_CF) << op2_8); /* set to complement */
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), op1_16);
}
else {
Write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}
void
BX_CPU_C::BTR_EvIb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTR_EvIb: not available on <386"));
#else
#if BX_SUPPORT_X86_64
if (i->os64L()) { /* 64 bit operand size mode */
/* for 64 bit operand size mode */
Bit64u op1_64, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 64;
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64);
}
temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 &= ~(((Bit64u) 1) << op2_8);
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), op1_64);
}
else {
Write_RMW_virtual_qword(op1_64);
}
set_CF(temp_CF);
}
else
#endif // #if BX_SUPPORT_X86_64
if (i->os32L()) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(((Bit32u) 1) << op2_8);
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
}
else {
Write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib();
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 &= ~(((Bit16u) 1) << op2_8);
/* now write diff back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), op1_16);
}
else {
Write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}