Bochs/bochs/iodev/serial.cc

692 lines
21 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: serial.cc,v 1.13 2001-10-03 13:10:38 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// Peter Grehan (grehan@iprg.nokia.com) coded most of this
// serial emulation. Here's some notes from his implementation:
// New files. Implement a single 8250, and allow terminal input/output
// to stdout on FreeBSD. 16550/16550a/16552 should be easy: just add code
// to handle a FIFO. I only did what was needed to get console output.
// define USE_TTY_HACK to connect an xterm or similar (depends on tty.c)
// to the serial port /AM
#include "bochs.h"
#define LOG_THIS bx_serial.
#if USE_RAW_SERIAL
#include <signal.h>
#endif
#ifdef WIN32
#ifndef __MINGW32__
// +++
//#include <winsock2.h>
#include <winsock.h>
#endif
#endif
#if defined(__FreeBSD__) || defined(__OpenBSD__)
// #define SERIAL_ENABLE
#endif
#ifdef SERIAL_ENABLE
extern "C" {
#include <termios.h>
};
#endif
bx_serial_c bx_serial;
#if BX_USE_SER_SMF
#define this (&bx_serial)
#endif
#ifdef SERIAL_ENABLE
static struct termios term_orig, term_new;
#endif
static int tty_id;
bx_serial_c::bx_serial_c(void)
{
put("SER");
settype(SERLOG);
#ifdef SERIAL_ENABLE
tty_id = open("/dev/ttyqf",O_RDWR|O_NONBLOCK,600);
BX_DEBUG(("tty_id: %d",tty_id));
tcgetattr(tty_id, &term_orig);
bcopy((caddr_t) &term_orig, (caddr_t) &term_new, sizeof(struct termios));
cfmakeraw(&term_new);
term_new.c_oflag |= OPOST | ONLCR; // Enable NL to CR-NL translation
#ifndef TRUE_CTLC
// ctl-C will exit Bochs, or trap to the debugger
term_new.c_iflag &= ~IGNBRK;
term_new.c_iflag |= BRKINT;
term_new.c_lflag |= ISIG;
#else
// ctl-C will be delivered to the serial port
term_new.c_iflag |= IGNBRK;
term_new.c_iflag &= ~BRKINT;
#endif /* !def TRUE_CTLC */
//term_new.c_iflag |= IXOFF;
//tcsetattr(tty_id, TCSAFLUSH, &term_new);
#endif /* def SERIAL_ENABLE */
// nothing for now
#if USE_RAW_SERIAL
this->raw = new serial_raw("/dev/cua0", SIGUSR1);
#endif // USE_RAW_SERIAL
}
bx_serial_c::~bx_serial_c(void)
{
#ifdef SERIAL_ENABLE
tcsetattr(tty_id, TCSAFLUSH, &term_orig);
#endif
// nothing for now
}
void
bx_serial_c::init(bx_devices_c *d)
{
BX_SER_THIS devices = d;
BX_SER_THIS devices->register_irq(4, "Serial Port 1");
#if defined (USE_TTY_HACK)
tty_id = tty_alloc("Bx Serial Console, Your Window to the 8250");
if (tty_id > 0)
BX_INFO(("TTY Allocated fd = %d", tty_get_fd(tty_id)));
else
BX_INFO(("TTY allocation failed"));
#else
//BX_INFO(("TTY not used, serial port is not connected"));
#endif
/*
* Put the UART registers into their RESET state
*/
for (unsigned i=0; i<BX_SERIAL_CONFDEV; i++) {
/* internal state */
BX_SER_THIS s[i].rx_empty = 1;
BX_SER_THIS s[i].tx_empty = 1;
BX_SER_THIS s[i].rx_interrupt = 0;
BX_SER_THIS s[i].tx_interrupt = 0;
BX_SER_THIS s[i].tx_timer_index =
bx_pc_system.register_timer(this, tx_timer_handler, 0,
0,0); // one-shot, inactive
BX_SER_THIS s[i].rx_timer_index =
bx_pc_system.register_timer(this, rx_timer_handler, 0,
0,0); // one-shot, inactive
BX_SER_THIS s[i].rx_pollstate = BX_SER_RXIDLE;
/* int enable: b0000 0000 */
BX_SER_THIS s[i].int_enable.rxdata_enable = 0;
BX_SER_THIS s[i].int_enable.txhold_enable = 0;
BX_SER_THIS s[i].int_enable.rxlstat_enable = 0;
BX_SER_THIS s[i].int_enable.modstat_enable = 0;
/* int ID: b0000 0001 */
BX_SER_THIS s[i].int_ident.ipending = 1;
BX_SER_THIS s[i].int_ident.int_ID = 0;
BX_SER_THIS s[i].int_ident.fifo_enabled = 0;
/* FIFO control: b0000 0000 */
BX_SER_THIS s[i].fifo_cntl.enable = 0;
BX_SER_THIS s[i].fifo_cntl.rxreset = 0;
BX_SER_THIS s[i].fifo_cntl.txreset = 0;
BX_SER_THIS s[i].fifo_cntl.dmamode = 0;
BX_SER_THIS s[i].fifo_cntl.rxtrigger = 0;
/* Line Control reg: b0000 0000 */
BX_SER_THIS s[i].line_cntl.wordlen_sel = 0;
BX_SER_THIS s[i].line_cntl.stopbits = 0;
BX_SER_THIS s[i].line_cntl.parity_enable = 0;
BX_SER_THIS s[i].line_cntl.evenparity_sel = 0;
BX_SER_THIS s[i].line_cntl.stick_parity = 0;
BX_SER_THIS s[i].line_cntl.break_cntl = 0;
BX_SER_THIS s[i].line_cntl.dlab = 0;
/* Modem Control reg: b0000 0000 */
BX_SER_THIS s[i].modem_cntl.dtr = 0;
BX_SER_THIS s[i].modem_cntl.rts = 0;
BX_SER_THIS s[i].modem_cntl.out1 = 0;
BX_SER_THIS s[i].modem_cntl.out2 = 0;
BX_SER_THIS s[i].modem_cntl.local_loopback = 0;
/* Line Status register: b0110 0000 */
BX_SER_THIS s[i].line_status.rxdata_ready = 0;
BX_SER_THIS s[i].line_status.overrun_error = 0;
BX_SER_THIS s[i].line_status.parity_error = 0;
BX_SER_THIS s[i].line_status.framing_error = 0;
BX_SER_THIS s[i].line_status.break_int = 0;
BX_SER_THIS s[i].line_status.txhold_empty = 1;
BX_SER_THIS s[i].line_status.txtransm_empty = 1;
BX_SER_THIS s[i].line_status.fifo_error = 0;
/* Modem Status register: bXXXX 0000 */
BX_SER_THIS s[i].modem_status.delta_cts = 0;
BX_SER_THIS s[i].modem_status.delta_dsr = 0;
BX_SER_THIS s[i].modem_status.ri_trailedge = 0;
BX_SER_THIS s[i].modem_status.delta_dcd = 0;
BX_SER_THIS s[i].modem_status.cts = 0;
BX_SER_THIS s[i].modem_status.dsr = 0;
BX_SER_THIS s[i].modem_status.ri = 0;
BX_SER_THIS s[i].modem_status.dcd = 0;
BX_SER_THIS s[i].scratch = 0; /* scratch register */
BX_SER_THIS s[i].divisor_lsb = 0; /* divisor-lsb register */
BX_SER_THIS s[i].divisor_msb = 0; /* divisor-msb register */
}
for (unsigned addr=0x03F8; addr<=0x03FF; addr++) {
BX_DEBUG(("register read/write: 0x%x",addr));
BX_SER_THIS devices->register_io_read_handler(this,
read_handler,
addr, "Serial Port 1");
BX_SER_THIS devices->register_io_write_handler(this,
write_handler,
addr, "Serial Port 1");
}
BX_INFO(( "com0 at 0x3f8/8 irq 4" ));
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u
bx_serial_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_SER_SMF
bx_serial_c *class_ptr = (bx_serial_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
Bit32u
bx_serial_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_SER_SMF
//UNUSED(address);
Bit8u val;
/* SERIAL PORT 1 */
if (io_len > 1)
BX_PANIC(("serial: io read from port %04x, bad len=%u",
(unsigned) address,
(unsigned) io_len));
BX_DEBUG(("register read from address 0x%x - ", (unsigned) address));
switch (address) {
case 0x03F8: /* receive buffer, or divisor latch LSB if DLAB set */
if (BX_SER_THIS s[0].line_cntl.dlab) {
val = BX_SER_THIS s[0].divisor_lsb;
} else {
val = BX_SER_THIS s[0].rxbuffer;
BX_SER_THIS s[0].line_status.rxdata_ready = 0;
BX_SER_THIS s[0].rx_empty = 1;
/* If there are no more ints pending, clear the irq */
if ((BX_SER_THIS s[0].rx_interrupt == 1) &&
(BX_SER_THIS s[0].tx_interrupt == 0)) {
BX_SER_THIS devices->pic->untrigger_irq(4);
}
BX_SER_THIS s[0].rx_interrupt = 0;
}
break;
case 0x03F9: /* interrupt enable register, or div. latch MSB */
if (BX_SER_THIS s[0].line_cntl.dlab) {
val = BX_SER_THIS s[0].divisor_msb;
} else {
val = BX_SER_THIS s[0].int_enable.rxdata_enable |
(BX_SER_THIS s[0].int_enable.txhold_enable << 1) |
(BX_SER_THIS s[0].int_enable.rxlstat_enable << 2) |
(BX_SER_THIS s[0].int_enable.modstat_enable << 3);
}
break;
case 0x03FA: /* interrupt ID register */
/*
* Set the interrupt ID based on interrupt source
*/
if (BX_SER_THIS s[0].rx_interrupt) {
BX_SER_THIS s[0].int_ident.int_ID = 0x2;
BX_SER_THIS s[0].int_ident.ipending = 0;
} else if (BX_SER_THIS s[0].tx_interrupt) {
BX_SER_THIS s[0].int_ident.int_ID = 0x1;
BX_SER_THIS s[0].int_ident.ipending = 0;
} else {
BX_SER_THIS s[0].int_ident.int_ID = 0x0;
BX_SER_THIS s[0].int_ident.ipending = 1;
}
BX_SER_THIS s[0].tx_interrupt = 0;
/* no more ints pending, clear the irq */
if (BX_SER_THIS s[0].int_ident.int_ID == 0x1) {
BX_SER_THIS devices->pic->untrigger_irq(4);
}
val = BX_SER_THIS s[0].int_ident.ipending |
(BX_SER_THIS s[0].int_ident.int_ID << 1) |
(BX_SER_THIS s[0].int_ident.fifo_enabled << 6);
break;
case 0x03FB: /* Line control register */
val = BX_SER_THIS s[0].line_cntl.wordlen_sel |
(BX_SER_THIS s[0].line_cntl.stopbits << 2) |
(BX_SER_THIS s[0].line_cntl.parity_enable << 3) |
(BX_SER_THIS s[0].line_cntl.evenparity_sel << 4) |
(BX_SER_THIS s[0].line_cntl.stick_parity << 5) |
(BX_SER_THIS s[0].line_cntl.break_cntl << 6) |
(BX_SER_THIS s[0].line_cntl.dlab << 7);
break;
case 0x03FC: /* MODEM control register */
val = BX_SER_THIS s[0].modem_cntl.dtr |
(BX_SER_THIS s[0].modem_cntl.rts << 1) |
(BX_SER_THIS s[0].modem_cntl.out1 << 2) |
(BX_SER_THIS s[0].modem_cntl.out2 << 3) |
(BX_SER_THIS s[0].modem_cntl.local_loopback);
break;
case 0x03FD: /* Line status register */
val = BX_SER_THIS s[0].line_status.rxdata_ready |
(BX_SER_THIS s[0].line_status.overrun_error << 1) |
(BX_SER_THIS s[0].line_status.parity_error << 2) |
(BX_SER_THIS s[0].line_status.framing_error << 3) |
(BX_SER_THIS s[0].line_status.break_int << 4) |
(BX_SER_THIS s[0].line_status.txhold_empty << 5) |
(BX_SER_THIS s[0].line_status.txtransm_empty << 6) |
(BX_SER_THIS s[0].line_status.fifo_error << 7);
BX_SER_THIS s[0].line_status.break_int = 0;
break;
case 0x03FE: /* MODEM status register */
val = BX_SER_THIS s[0].modem_status.delta_cts |
(BX_SER_THIS s[0].modem_status.delta_dsr << 1) |
(BX_SER_THIS s[0].modem_status.ri_trailedge << 2) |
(BX_SER_THIS s[0].modem_status.delta_dcd << 3) |
(BX_SER_THIS s[0].modem_status.cts << 4) |
(BX_SER_THIS s[0].modem_status.dsr << 5) |
(BX_SER_THIS s[0].modem_status.ri << 6) |
(BX_SER_THIS s[0].modem_status.dcd << 7);
break;
case 0x03FF: /* scratch register */
val = BX_SER_THIS s[0].scratch = 0;
break;
default:
val = 0; // keep compiler happy
BX_PANIC(("unsupported serial io read from address=%0x%x!",
(unsigned) address));
break;
}
BX_DEBUG(("val = 0x%x", (unsigned) val));
return(val);
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void
bx_serial_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_SER_SMF
bx_serial_c *class_ptr = (bx_serial_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void
bx_serial_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_SER_SMF
BX_DEBUG(("write: 0x%x <- %d",address,value));
/* SERIAL PORT 1 */
if (io_len > 1)
BX_PANIC(("serial: io write to address %08x len=%u",
(unsigned) address, (unsigned) io_len));
BX_DEBUG(("serial: write to address: 0x%x = 0x%x",
(unsigned) address, (unsigned) value));
switch (address) {
case 0x03F8: /* transmit buffer, or divisor latch LSB if DLAB set */
if (BX_SER_THIS s[0].line_cntl.dlab) {
BX_SER_THIS s[0].divisor_lsb = value;
if (value != 0) {
BX_SER_THIS s[0].baudrate = (int) (BX_PC_CLOCK_XTL /
(16 * ((BX_SER_THIS s[0].divisor_msb << 8) |
BX_SER_THIS s[0].divisor_lsb)));
#if USE_RAW_SERIAL
BX_SER_THIS raw->set_baudrate(BX_SER_THIS s[0].baudrate);
#endif // USE_RAW_SERIAL
}
} else {
if (BX_SER_THIS s[0].tx_empty) {
BX_SER_THIS s[0].tx_empty = 0;
BX_SER_THIS s[0].line_status.txtransm_empty = 0;
BX_SER_THIS s[0].line_status.txhold_empty = 0;
/* If there are no more ints pending, clear the irq */
if ((BX_SER_THIS s[0].tx_interrupt == 1) &&
(BX_SER_THIS s[0].rx_interrupt == 0)) {
BX_SER_THIS devices->pic->untrigger_irq(4);
}
BX_SER_THIS s[0].tx_interrupt = 0;
BX_SER_THIS s[0].txbuffer = value;
bx_pc_system.activate_timer(BX_SER_THIS s[0].tx_timer_index
,
(int) (1000000.0 / (BX_SER_THIS s[0].baudrate / 8)),
0); /* not continuous */
} else {
BX_ERROR(("serial: write to tx hold register when not empty"));
}
}
break;
case 0x03F9: /* interrupt enable register, or div. latch MSB */
if (BX_SER_THIS s[0].line_cntl.dlab) {
BX_SER_THIS s[0].divisor_msb = value;
if (BX_SER_THIS s[0].divisor_msb != 0 && value != 0) {
BX_SER_THIS s[0].baudrate = (int) (BX_PC_CLOCK_XTL /
(16 * ((BX_SER_THIS s[0].divisor_msb << 8) |
BX_SER_THIS s[0].divisor_lsb)));
#if USE_RAW_SERIAL
BX_SER_THIS raw->set_baudrate(BX_SER_THIS s[0].baudrate);
#endif // USE_RAW_SERIAL
}
} else {
BX_SER_THIS s[0].int_enable.rxdata_enable = value & 0x01;
BX_SER_THIS s[0].int_enable.txhold_enable = (value & 0x02) >> 1;
BX_SER_THIS s[0].int_enable.rxlstat_enable = (value & 0x04) >> 2;
BX_SER_THIS s[0].int_enable.modstat_enable = (value & 0x08) >> 3;
}
break;
case 0x03FA: /* FIFO control register */
/* Ignore until FIFO mode is supported... */
break;
case 0x03FB: /* Line control register */
#if !USE_RAW_SERIAL
if ((value & 0x3) != 0x3) {
/* ignore this: this is set by FreeBSD when the console
code wants to set DLAB */
}
#endif // !USE_RAW_SERIAL
#if USE_RAW_SERIAL
if (BX_SER_THIS s[0].line_cntl.wordlen_sel != (value & 0x3)) {
BX_SER_THIS raw->set_data_bits((value & 0x3) + 5);
}
if (BX_SER_THIS s[0].line_cntl.stopbits != (value & 0x4) >> 2) {
BX_SER_THIS raw->set_stop_bits((value & 0x4 >> 2) ? 2 : 1);
}
if (BX_SER_THIS s[0].line_cntl.parity_enable != (value & 0x8) >> 3 ||
BX_SER_THIS s[0].line_cntl.evenparity_sel != (value & 0x10) >> 4 ||
BX_SER_THIS s[0].line_cntl.stick_parity != (value & 0x20) >> 5) {
if (((value & 0x20) >> 5) &&
((value & 0x8) >> 3))
BX_PANIC(("[serial] sticky parity set and parity enabled"));
BX_SER_THIS raw->set_parity_mode(((value & 0x8) >> 3),
((value & 0x10) >> 4) ? P_EVEN : P_ODD);
}
if (BX_SER_THIS s[0].line_cntl.break_cntl && !((value & 0x40) >> 6)) {
BX_SER_THIS raw->transmit(C_BREAK);
}
#endif // USE_RAW_SERIAL
BX_SER_THIS s[0].line_cntl.wordlen_sel = value & 0x3;
/* These are ignored, but set them up so they can be read back */
BX_SER_THIS s[0].line_cntl.stopbits = (value & 0x4) >> 2;
BX_SER_THIS s[0].line_cntl.parity_enable = (value & 0x8) >> 3;
BX_SER_THIS s[0].line_cntl.evenparity_sel = (value & 0x10) >> 4;
BX_SER_THIS s[0].line_cntl.stick_parity = (value & 0x20) >> 5;
BX_SER_THIS s[0].line_cntl.break_cntl = (value & 0x40) >> 6;
/* used when doing future writes */
if (BX_SER_THIS s[0].line_cntl.dlab &&
!((value & 0x80) >> 7)) {
// Start the receive polling process if not already started
// and there is a valid baudrate. Poll every 4 bit times
if (BX_SER_THIS s[0].rx_pollstate == BX_SER_RXIDLE &&
BX_SER_THIS s[0].baudrate != 0) {
BX_SER_THIS s[0].rx_pollstate = BX_SER_RXPOLL;
bx_pc_system.activate_timer(BX_SER_THIS s[0].rx_timer_index,
(int) (1000000.0 / (BX_SER_THIS s[0].baudrate / 4)),
0); /* not continuous */
}
BX_DEBUG(("baud rate set - %d", BX_SER_THIS s[0].baudrate));
}
BX_SER_THIS s[0].line_cntl.dlab = (value & 0x80) >> 7;
break;
case 0x03FC: /* MODEM control register */
if ((value & 0x01) == 0) {
#if USE_RAW_SERIAL
BX_SER_THIS raw->send_hangup();
#endif
}
BX_SER_THIS s[0].modem_cntl.dtr = value & 0x01;
BX_SER_THIS s[0].modem_cntl.rts = (value & 0x02) >> 1;
BX_SER_THIS s[0].modem_cntl.out1 = (value & 0x04) >> 2;
BX_SER_THIS s[0].modem_cntl.out2 = (value & 0x08) >> 3;
BX_SER_THIS s[0].modem_cntl.local_loopback = (value & 0x10) >> 4;
if (BX_SER_THIS s[0].modem_cntl.local_loopback) {
BX_SER_THIS s[0].modem_status.cts = BX_SER_THIS s[0].modem_cntl.rts;
BX_SER_THIS s[0].modem_status.dsr = BX_SER_THIS s[0].modem_cntl.dtr;
BX_SER_THIS s[0].modem_status.ri = BX_SER_THIS s[0].modem_cntl.out1;
BX_SER_THIS s[0].modem_status.dcd = BX_SER_THIS s[0].modem_cntl.out2;
} else {
/* set these to 0 for the time being */
BX_SER_THIS s[0].modem_status.cts = 0;
BX_SER_THIS s[0].modem_status.dsr = 0;
BX_SER_THIS s[0].modem_status.ri = 0;
BX_SER_THIS s[0].modem_status.dcd = 0;
}
break;
case 0x03FD: /* Line status register */
/* XXX ignore ? */
BX_PANIC(("serial: write to line status register"));
break;
case 0x03FE: /* MODEM status register */
/* XXX ignore ? */
BX_PANIC(("serial: write to MODEM status register"));
break;
case 0x03FF: /* scratch register */
BX_SER_THIS s[0].scratch = value;
break;
default:
BX_PANIC(("unsupported serial io write to address=0x%x, value = 0x%x!",
(unsigned) address, (unsigned) value));
break;
}
}
void
bx_serial_c::tx_timer_handler(void *this_ptr)
{
bx_serial_c *class_ptr = (bx_serial_c *) this_ptr;
class_ptr->tx_timer();
}
void
bx_serial_c::tx_timer(void)
{
int gen_int = 0;
BX_SER_THIS s[0].tx_empty = 1;
BX_SER_THIS s[0].line_status.txtransm_empty = 1;
BX_SER_THIS s[0].line_status.txhold_empty = 1;
if (BX_SER_THIS s[0].int_enable.txhold_enable) {
gen_int = 1;
BX_SER_THIS s[0].tx_interrupt = 1;
}
if (BX_SER_THIS s[0].modem_cntl.local_loopback) {
BX_SER_THIS s[0].rxbuffer = BX_SER_THIS s[0].txbuffer;
BX_SER_THIS s[0].line_status.rxdata_ready = 1;
BX_SER_THIS s[0].rx_empty = 0;
if (BX_SER_THIS s[0].int_enable.rxdata_enable) {
gen_int = 1;
BX_SER_THIS s[0].rx_interrupt = 1;
}
} else {
#if defined (USE_TTY_HACK)
tty(tty_id, 0, & BX_SER_THIS s[0].txbuffer);
#elif USE_RAW_SERIAL
if (!BX_SER_THIS raw->ready_transmit())
BX_PANIC(("[serial] Not ready to transmit"));
BX_SER_THIS raw->transmit(BX_SER_THIS s[0].txbuffer);
#endif
#if defined(SERIAL_ENABLE)
{ char *s = (char *)(BX_SER_THIS s[0].txbuffer);
BX_DEBUG(("write: '%c'",(bx_ptr_t) & s));
}
write(tty_id, (bx_ptr_t) & BX_SER_THIS s[0].txbuffer, 1);
#endif
}
if (gen_int) {
BX_SER_THIS devices->pic->trigger_irq(4);
}
}
void
bx_serial_c::rx_timer_handler(void *this_ptr)
{
bx_serial_c *class_ptr = (bx_serial_c *) this_ptr;
class_ptr->rx_timer();
}
void
bx_serial_c::rx_timer(void)
{
#if BX_HAVE_SELECT
#if BX_WITH_BEOS == 0
struct timeval tval;
fd_set fds;
#endif
#endif
int bdrate = BX_SER_THIS s[0].baudrate / 8;
unsigned char chbuf = 0;
#if BX_HAVE_SELECT
#if BX_WITH_BEOS == 0
tval.tv_sec = 0;
tval.tv_usec = 0;
// MacOS: I'm not sure what to do with this, since I don't know
// what an fd_set is or what FD_SET() or select() do. They aren't
// declared in the CodeWarrior standard library headers. I'm just
// leaving it commented out for the moment.
FD_SET(tty_id, &fds);
if (BX_SER_THIS s[0].line_status.rxdata_ready == 0) {
#if defined (USE_TTY_HACK)
if (tty_prefetch_char(tty_id)) {
tty(tty_id, 1, &chbuf);
#elif USE_RAW_SERIAL
Boolean rdy;
uint16 data;
if ((rdy = BX_SER_THIS raw->ready_receive())) {
data = BX_SER_THIS raw->receive();
if (data == C_BREAK) {
BX_DEBUG(("[serial] Got BREAK"));
BX_SER_THIS s[0].line_status.break_int = 1;
rdy = 0;
}
}
if (rdy) {
chbuf = data;
#elif defined(SERIAL_ENABLE)
if (select(1, &fds, NULL, NULL, &tval) == 1) {
(void) read(tty_id, &chbuf, 1);
BX_DEBUG(("read: '%c'",chbuf));
#else
if (0) {
#endif
if (!BX_SER_THIS s[0].modem_cntl.local_loopback) {
BX_SER_THIS s[0].rxbuffer = chbuf;
BX_SER_THIS s[0].line_status.rxdata_ready = 1;
BX_SER_THIS s[0].rx_empty = 0;
if (BX_SER_THIS s[0].int_enable.rxdata_enable) {
BX_SER_THIS s[0].rx_interrupt = 1;
BX_SER_THIS devices->pic->trigger_irq(4);
}
}
} else {
bdrate = (int) (1000000.0 / 100); // Poll frequency is 100ms
}
} else {
// Poll at 4x baud rate to see if the next-char can
// be read
bdrate *= 4;
}
#endif
#endif
bx_pc_system.activate_timer(BX_SER_THIS s[0].rx_timer_index,
(int) (1000000.0 / bdrate),
0); /* not continuous */
}