Bochs/bochs/debug/dbg_main.cc
2002-03-20 04:09:26 +00:00

4617 lines
134 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: dbg_main.cc,v 1.41 2002-03-20 04:09:26 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// define shortcuts to get register from the default CPU
#define EBP (BX_CPU(dbg_cpu)->gen_reg[5].erx)
#define EIP (BX_CPU(dbg_cpu)->eip)
#define ESP (BX_CPU(dbg_cpu)->gen_reg[4].erx)
#define SP (BX_CPU(dbg_cpu)->gen_reg[4].word.rx)
extern "C" {
#include <signal.h>
}
#include "bochs.h"
#define LOG_THIS genlog->
#if HAVE_LIBREADLINE
extern "C" {
#include <stdio.h>
#include <readline/readline.h>
#if HAVE_READLINE_HISTORY_H
#include <readline/history.h>
#endif
}
#endif
static unsigned doit = 0;
#define SIM_NAME0 "bochs"
#ifndef SIM_NAME1_STR
#define SIM_NAME1_STR "sim1"
#endif
#define SIM_NAME(x) ((x == 0) ? SIM_NAME0 : SIM_NAME1_STR)
// default CPU in the debugger. For commands like "dump_cpu" it will
// use the default instead of always dumping all cpus.
Bit32u dbg_cpu = 0;
static void bx_dbg_usage(void);
static char bx_debug_rc_fname[BX_MAX_PATH];
static char tmp_buf[512];
static char *tmp_buf_ptr;
static char *argv0 = NULL;
#if BX_NUM_SIMULATORS >= 2
#define BX_DBG_IO_JOURNAL_SIZE 1024
#define BX_DBG_UCMEM_JOURNAL_SIZE 1024
#define BX_DBG_ASYNC_JOURNAL_SIZE 1024
#define BX_DBG_MASTER_MODE 10
#define BX_DBG_SLAVE_MODE 11
// #define BX_DBG_DEFAULT_ICOUNT_QUANTUM 50
#define BX_DBG_DEFAULT_ICOUNT_QUANTUM 3 /* mch */
static unsigned bx_dbg_cosimulateN(bx_dbg_icount_t count);
static int bx_dbg_compare_sim_iaddr(void);
static Boolean bx_dbg_compare_sim_cpu(void);
static Boolean bx_dbg_compare_sim_memory(void);
static void bx_dbg_journal_a20_event(unsigned val);
#endif
static struct {
#if BX_NUM_SIMULATORS >= 2
// some fields used only for cosimulation
unsigned icount_quantum;
unsigned master_slave_mode;
unsigned master, slave;
struct {
struct {
Bit8u op;
Bit8u len;
Bit16u addr;
Bit32u value;
} element[BX_DBG_IO_JOURNAL_SIZE];
unsigned size;
unsigned head, tail;
} IO_journal;
struct {
struct {
Bit8u op;
Bit8u len;
Bit32u addr;
Bit32u value;
} element[BX_DBG_UCMEM_JOURNAL_SIZE];
unsigned size;
unsigned head, tail;
} UCmem_journal;
// need to handle DMA stuff in here...
#define BX_DBG_ASYNC_JOURNAL_NONE 0
#define BX_DBG_ASYNC_JOURNAL_A20 1
#define BX_DBG_ASYNC_JOURNAL_IAC 2
#define BX_DBG_ASYNC_JOURNAL_NMI 3
#define BX_DBG_ASYNC_JOURNAL_RESET 4
// Asynchronous events at the boundaries they are *taken* by the master simulator.
// These are replayed back to the slave at the same boundaries.
struct {
struct {
unsigned what; // A20, INTR, NMI, RESET, IAC, ...
bx_dbg_icount_t icount;
union {
struct {
unsigned val;
} a20, nmi, reset, iac;
// perhaps other more complex types here
} u;
} element[BX_DBG_ASYNC_JOURNAL_SIZE];
unsigned size;
unsigned head, tail;
} async_journal;
struct {
Boolean iaddr;
Boolean cpu;
Boolean memory;
} compare_at_sync;
Boolean fast_forward_mode;
#endif // #if BX_NUM_SIMULATORS >= 2
// some fields used for single CPU debugger
Boolean auto_disassemble;
unsigned disassemble_size;
char default_display_format;
char default_unit_size;
Bit32u default_addr;
unsigned next_bpoint_id;
// last icount known to be in sync
#if BX_DBG_ICOUNT_SIZE == 32
Bit32u last_sync_icount;
#else // BX_DBG_ICOUNT_SIZE == 64
Bit64u last_sync_icount;
#endif
} bx_debugger;
// cosim commands for handling of comparison of simulator
// environments when both simulators have reached a common
// point (synchronized).
// cosim compare_at_sync iaddr (default is on)
// cosim compare_at_sync cpu (default is off)
// cosim compare_at_sync memory (default is off)
// cosim compare iaddr
// cosim compare cpu
// cosim compare memory
typedef struct {
FILE *fp;
char fname[BX_MAX_PATH];
unsigned lineno;
} bx_infile_stack_entry_t;
bx_infile_stack_entry_t bx_infile_stack[BX_INFILE_DEPTH];
int bx_infile_stack_index = 0;
static int bx_nest_infile(char *path);
static void bx_debug_ctrlc_handler(int signum);
static void bx_unnest_infile(void);
static void bx_get_command(void);
static void bx_dbg_print_guard_results();
static void bx_dbg_breakpoint_changed(void);
bx_dbg_callback_t bx_dbg_callback[BX_NUM_SIMULATORS];
bx_guard_t bx_guard;
// DMA stuff
void bx_dbg_post_dma_reports(void);
#define BX_BATCH_DMA_BUFSIZE 512
static struct {
unsigned this_many; // batch this many max before posting events
unsigned Qsize; // this many have been batched
struct {
Bit32u addr; // address of DMA op
unsigned len; // number of bytes in op
unsigned what; // BX_READ or BX_WRITE
Bit32u val; // value of DMA op
bx_dbg_icount_t icount; // icount at this dma op
} Q[BX_BATCH_DMA_BUFSIZE];
} bx_dbg_batch_dma;
// some buffers for disassembly
#if BX_DISASM
static Bit8u bx_disasm_ibuf[32];
static char bx_disasm_tbuf[512];
#endif
int
bx_dbg_main(int argc, char *argv[])
{
int i, bochs_argc=0, sim1_argc=0, sim2_argc=0;
char **bochs_argv = NULL;
char **sim1_argv = NULL;
char **sim2_argv = NULL;
argc = 1;
bx_dbg_batch_dma.this_many = 1;
bx_dbg_batch_dma.Qsize = 0;
// initialize callback functions, and guard environment
memset(bx_dbg_callback, 0, sizeof(bx_dbg_callback));
memset(&bx_guard, 0, sizeof(bx_guard));
bx_guard.async.irq = 1;
bx_guard.async.dma = 1;
memset(&bx_debugger, 0, sizeof(bx_debugger));
#if BX_NUM_SIMULATORS >= 2
bx_debugger.icount_quantum = BX_DBG_DEFAULT_ICOUNT_QUANTUM;
bx_debugger.IO_journal.size = 0;
bx_debugger.IO_journal.head = 0;
bx_debugger.IO_journal.tail = 0;
bx_debugger.UCmem_journal.size = 0;
bx_debugger.UCmem_journal.head = 0;
bx_debugger.UCmem_journal.tail = 0;
bx_debugger.async_journal.size = 0;
bx_debugger.async_journal.head = 0;
bx_debugger.async_journal.tail = 0;
bx_debugger.master = 0;
bx_debugger.slave = 1;
bx_debugger.compare_at_sync.iaddr = 1;
bx_debugger.fast_forward_mode = 0;
#endif
bx_debugger.auto_disassemble = 1;
bx_debugger.disassemble_size = 32;
bx_debugger.default_display_format = 'x';
bx_debugger.default_unit_size = 'w';
bx_debugger.default_addr = 0;
bx_debugger.next_bpoint_id = 1;
bx_debugger.last_sync_icount = 0;
argv0 = strdup(argv[0]);
bx_debug_rc_fname[0] = '\0';
bochs_argv = (char **) &argv[0];
sim1_argv = bochs_argv; // start out with something reasonable
sim2_argv = bochs_argv; // start out with something reasonable
bochs_argc = 1;
sim1_argc = 1;
sim2_argc = 1;
// process "-rc pathname" option, if it exists
i = 1;
if ( (argc >= 2) && !strcmp(argv[1], "-rc") ) {
if ( argc == 2 ) {
BX_ERROR(( "%s: -rc option used, but no path specified.",
argv[0] ));
bx_dbg_usage();
exit(1);
}
strncpy(bx_debug_rc_fname, argv[2], BX_MAX_PATH-1);
i += 2; // skip past "-rc" and filename
bochs_argv = (char **) &argv[2];
}
// process options to bochs framework
for (; i<argc; i++) {
if (strcmp(argv[i], "-sim1") == 0) {
break;
}
else if (strcmp(argv[i], "-sim2") == 0) {
break;
}
bochs_argc++;
}
if (i<argc) { // more args to process
// process options to each CPU simulator
if (strcmp(argv[i], "-sim1") == 0) {
process_sim1:
sim1_argv = (char **) &argv[i];
i++;
for (; i<argc; i++) {
if (strcmp(argv[i], "-sim2") == 0)
goto process_sim2;
sim1_argc++;
}
}
else if (strcmp(argv[i], "-sim2") == 0) {
process_sim2:
sim2_argv = (char **) &argv[i];
i++;
for (; i<argc; i++) {
if (strcmp(argv[i], "-sim1") == 0)
goto process_sim1;
sim2_argc++;
}
}
}
bx_infile_stack_index = 0;
bx_infile_stack[0].fp = stdin;
strncpy(bx_infile_stack[0].fname, argv[0], BX_MAX_PATH);
bx_infile_stack[0].fname[BX_MAX_PATH-1] = 0;
bx_infile_stack[0].lineno = 0;
if (bx_debug_rc_fname[0] == '\0') {
BX_INFO(("Warning: no rc file specified.", argv[0]));
}
else {
BX_INFO (("%s: using rc file '%s'.", argv[0], bx_debug_rc_fname));
// if there's an error, the user will know about it before proceeding
(void) bx_nest_infile(bx_debug_rc_fname);
}
#if BX_DISASM
memset(bx_disasm_ibuf, 0, sizeof(bx_disasm_ibuf));
#endif
BX_SIM1_INIT(&bx_dbg_callback[0], sim1_argc, sim1_argv);
#if BX_NUM_SIMULATORS > 1
BX_SIM2_INIT(&bx_dbg_callback[1], sim2_argc, sim2_argv);
#endif
// parse any remaining args in the usual way
bx_parse_cmdline (1, bochs_argc, bochs_argv);
// initialize hardware
bx_init_hardware(); // doesn't this duplicate things?
SIM->set_init_done (1);
#if BX_NUM_SIMULATORS >= 2
bx_debugger.compare_at_sync.cpu = 0;
bx_debugger.compare_at_sync.memory = 0;
#endif
// call init routines for each CPU+mem simulator
// initialize for SMP. one memory, multiple processors.
#if BX_SUPPORT_APIC
memset(apic_index, 0, sizeof(apic_index[0]) * APIC_MAX_ID);
#endif
#if BX_SMP_PROCESSORS==1
BX_MEM(0)->init_memory(bx_options.memory.Osize->get () * 1024*1024);
BX_MEM(0)->load_ROM(bx_options.rom.Opath->getptr (), bx_options.rom.Oaddress->get ());
BX_MEM(0)->load_ROM(bx_options.vgarom.Opath->getptr (), 0xc0000);
BX_CPU(0)->init (BX_MEM(0));
BX_CPU(0)->reset(BX_RESET_HARDWARE);
#else
// SMP initialization
bx_mem_array[0] = new BX_MEM_C ();
bx_mem_array[0]->init_memory(bx_options.memory.Osize->get () * 1024*1024);
bx_mem_array[0]->load_ROM(bx_options.rom.Opath->getptr (), bx_options.rom.Oaddress->get ());
bx_mem_array[0]->load_ROM(bx_options.vgarom.Opath->getptr (), 0xc0000);
for (int i=0; i<BX_SMP_PROCESSORS; i++) {
BX_CPU(i) = new BX_CPU_C ();
BX_CPU(i)->init (BX_MEM(0));
// assign apic ID from the index of this loop
// if !BX_SUPPORT_APIC, this will not compile.
BX_CPU(i)->local_apic.set_id (i);
BX_CPU(i)->reset(BX_RESET_HARDWARE);
}
#endif
#if BX_NUM_SIMULATORS > 1
#error cosimulation not supported until SMP stuff settles
BX_MEM(1) = new BX_MEM_C ();
BX_CPU(1) = new BX_CPU_C (BX_MEM(1));
BX_CPU(1)->reset(BX_RESET_HARDWARE);
BX_MEM(1)->init_memory(bx_options.memory.Osize->get () * 1024*1024);
BX_MEM(1)->load_ROM(bx_options.rom.path->getptr (), bx_options.rom.address->get ());
BX_MEM(1)->load_ROM(bx_options.vgarom.path->getptr (), 0xc0000);
#endif
// (mch) Moved from main.cc
bx_devices.init(BX_MEM(0));
bx_gui.init_signal_handlers ();
bx_pc_system.start_timers();
// setup Ctrl-C handler
signal(SIGINT, bx_debug_ctrlc_handler);
// Print disassembly of the first instruction... you wouldn't think it
// would have to be so hard. First initialize guard_found, since it is used
// in the disassembly code to decide what instruction to print.
for (i=0; i<BX_SMP_PROCESSORS; i++) {
BX_CPU(i)->guard_found.cs =
BX_CPU(i)->sregs[BX_SEG_REG_CS].selector.value;
BX_CPU(i)->guard_found.eip =
BX_CPU(i)->prev_eip;
BX_CPU(i)->guard_found.laddr =
BX_CPU(i)->sregs[BX_SEG_REG_CS].cache.u.segment.base
+ BX_CPU(i)->prev_eip;
BX_CPU(i)->guard_found.is_32bit_code =
BX_CPU(i)->sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
}
// finally, call the usual function to print the disassembly
fprintf (stderr, "Next at t=%lld\n", bx_pc_system.time_ticks ());
bx_dbg_disassemble_current (-1, 0); // all cpus, don't print time
bx_dbg_user_input_loop();
bx_dbg_exit(0);
return(0); // keep compiler happy
}
void
bx_dbg_usage(void)
{
fprintf (stderr, "usage: %s [-rc path] [-sim1 ... ] [-sim2 ... ]\n", argv0);
}
void
bx_dbg_user_input_loop(void)
{
int reti;
unsigned include_cmd_len = strlen(BX_INCLUDE_CMD);
while ( 1 ) {
bx_get_command();
if ( (*tmp_buf_ptr == '\n') || (*tmp_buf_ptr == 0) ) {
if (bx_infile_stack_index == 0)
fprintf(stderr, "\n");
}
else if ( (strncmp(tmp_buf_ptr, BX_INCLUDE_CMD, include_cmd_len) == 0) &&
(tmp_buf_ptr[include_cmd_len] == ' ' ||
tmp_buf_ptr[include_cmd_len] == '\t') ) {
char *ptr;
int len;
ptr = tmp_buf_ptr + include_cmd_len+1;
while ( *ptr==' ' || *ptr=='\t' )
ptr++;
len = strlen(ptr);
if (len == 0) {
fprintf(stderr, "%s: no filename given to 'source' command.\n", argv0);
if (bx_infile_stack_index > 0) {
fprintf(stderr, "%s: ERROR in source file causes exit.\n", argv0);
bx_dbg_exit(1);
}
continue;
}
ptr[len-1] = 0; // get rid of newline
reti = bx_nest_infile(ptr);
if ((reti==0) && (bx_infile_stack_index > 0)) {
fprintf(stderr, "%s: ERROR in source file causes exit.\n", argv0);
bx_dbg_exit(1);
}
}
else {
// Give a chance to the command line extensions, to
// consume the command. If they return 0, then
// we need to process the command. A return of 1
// means, the extensions have handled the command
if ( bx_dbg_extensions(tmp_buf_ptr)==0 ) {
// process command here
bx_add_lex_input(tmp_buf_ptr);
bxparse();
}
}
}
}
void
bx_get_command(void)
{
char *charptr_ret;
bx_infile_stack[bx_infile_stack_index].lineno++;
char prompt[256];
if (bx_infile_stack_index == 0) {
sprintf(prompt, "<bochs:%d> ", bx_infile_stack[bx_infile_stack_index].lineno);
}
#if HAVE_LIBREADLINE
if (bx_infile_stack_index == 0) {
charptr_ret = readline (prompt);
// beware, returns NULL on end of file
if (charptr_ret && strlen(charptr_ret) > 0) {
add_history (charptr_ret);
strcpy (tmp_buf, charptr_ret);
strcat (tmp_buf, "\n");
free (charptr_ret);
charptr_ret = &tmp_buf[0];
}
} else {
charptr_ret = fgets(tmp_buf, 512,
bx_infile_stack[bx_infile_stack_index].fp);
}
#else
if (bx_infile_stack_index == 0)
fprintf (stderr, "%s", prompt);
charptr_ret = fgets(tmp_buf, 512,
bx_infile_stack[bx_infile_stack_index].fp);
#endif
if (charptr_ret == NULL) {
// see if error was due to EOF condition
if (feof(bx_infile_stack[bx_infile_stack_index].fp)) {
if (bx_infile_stack_index > 0) {
// nested level of include files, pop back to previous one
bx_unnest_infile();
}
else {
// not nested, sitting at stdin prompt, user wants out
bx_dbg_quit_command();
}
// call recursively
bx_get_command();
return;
}
// error was not EOF, see if it was from a Ctrl-C
if (bx_guard.interrupt_requested) {
tmp_buf[0] = '\n';
tmp_buf[1] = 0;
tmp_buf_ptr = &tmp_buf[0];
bx_guard.interrupt_requested = 0;
return;
}
fprintf(stderr, "fgets() returned ERROR.\n");
fprintf(stderr, "intr request was %u\n", bx_guard.interrupt_requested);
bx_dbg_exit(1);
}
tmp_buf_ptr = &tmp_buf[0];
// look for first non-whitespace character
while ( ((*tmp_buf_ptr == ' ') || (*tmp_buf_ptr == '\t')) &&
(*tmp_buf_ptr != '\n') && (*tmp_buf_ptr != 0) ) {
tmp_buf_ptr++;
}
return;
}
int
bx_nest_infile(char *path)
{
FILE *tmp_fp;
tmp_fp = fopen(path, "r");
if (!tmp_fp) {
fprintf(stderr, "%s: can not open file '%s' for reading.\n",
argv0, path);
return(0);
}
if ( (bx_infile_stack_index+1) >= BX_INFILE_DEPTH ) {
fprintf(stderr, "%s: source files nested too deeply\n", argv0);
return(0);
}
bx_infile_stack_index++;
bx_infile_stack[bx_infile_stack_index].fp = tmp_fp;
strncpy(bx_infile_stack[bx_infile_stack_index].fname, path, BX_MAX_PATH);
bx_infile_stack[bx_infile_stack_index].fname[BX_MAX_PATH-1] = 0;
bx_infile_stack[bx_infile_stack_index].lineno = 0;
return(1);
}
void
bx_unnest_infile(void)
{
if (bx_infile_stack_index <= 0) {
fprintf(stderr, "%s: ERROR: unnest_infile(): nesting level = 0.\n",
argv0);
bx_dbg_exit(1);
}
fclose(bx_infile_stack[bx_infile_stack_index].fp);
bx_infile_stack_index--;
}
int
bxwrap(void)
{
fprintf(stderr, "%s: ERROR: bxwrap() called.\n", argv0);
bx_dbg_exit(1);
return(0); // keep compiler quiet
}
void
bxerror(char *s)
{
fprintf(stderr, "%s:%d: %s at '%s'\n",
bx_infile_stack[bx_infile_stack_index].fname,
bx_infile_stack[bx_infile_stack_index].lineno,
s, bxtext);
if (bx_infile_stack_index > 0) {
fprintf(stderr, "%s: ERROR in source file causes exit.\n", argv0);
bx_dbg_exit(1);
}
}
void
bx_debug_ctrlc_handler(int signum)
{
UNUSED(signum);
BX_INFO(("Ctrl-C detected in signal handler."));
signal(SIGINT, bx_debug_ctrlc_handler);
bx_guard.interrupt_requested = 1;
}
void
bx_dbg_exit(int code)
{
BX_DEBUG(( "dbg: before sim1_exit" ));
for (int cpu=0; cpu < BX_SMP_PROCESSORS; cpu++) {
if (BX_CPU(cpu)) BX_CPU(cpu)->atexit();
}
#if BX_NUM_SIMULATORS >= 2
fprintf(stderr, "before sim2_exit\n");
if (BX_CPU(1)) BX_CPU(1)->atexit();
#endif
bx_atexit();
exit(code);
}
//
// comands invoked from parser
//
void
bx_dbg_quit_command(void)
{
BX_INFO(("dbg: Quit"));
bx_dbg_exit(0);
}
void
bx_dbg_trace_on_command(void)
{
BX_CPU(dbg_cpu)->trace = 1;
fprintf (stderr, "Tracing enabled for %s\n", BX_CPU(dbg_cpu)->name);
}
void
bx_dbg_trace_off_command(void)
{
BX_CPU(dbg_cpu)->trace = 0;
fprintf (stderr, "Tracing disabled for %s\n", BX_CPU(dbg_cpu)->name);
}
void
bx_dbg_trace_reg_on_command(void)
{
BX_CPU(dbg_cpu)->trace_reg = 1;
fprintf (stderr, "Register-Tracing enabled for %s\n", BX_CPU(dbg_cpu)->name);
}
void
bx_dbg_trace_reg_off_command(void)
{
BX_CPU(dbg_cpu)->trace_reg = 0;
fprintf (stderr, "Register-Tracing disabled for %s\n", BX_CPU(dbg_cpu)->name);
}
void
bx_dbg_ptime_command(void)
{
fprintf(stderr, "ptime: %lld\n", bx_pc_system.time_ticks());
#if BX_NUM_SIMULATORS >= 2
fprintf(stderr,
#if BX_DBG_ICOUNT_SIZE == 32
"Last synchronized icount was %lu\n",
(unsigned long) bx_debugger.last_sync_icount
#else // BX_DBG_ICOUNT_SIZE == 64
"Last synchronized icount was %Lu\n",
(unsigned long long) bx_debugger.last_sync_icount
#endif /* BX_DBG_ICOUNT_SIZE == 32 */
);
#endif /* BX_NUM_SIMULATORS >= 2 */
}
int timebp_timer = -1;
Bit64u timebp_queue[MAX_CONCURRENT_BPS];
int timebp_queue_size = 0;
void
bx_dbg_timebp_command(Boolean absolute, Bit64u time)
{
Bit64u diff = (absolute) ? time - bx_pc_system.time_ticks() : time;
Bit64u abs_time = (absolute) ? time : time + bx_pc_system.time_ticks();
if (diff < 0) {
fprintf(stderr, "Request for time break point in the past. I can't let you do that.\n");
return;
}
if (timebp_queue_size == MAX_CONCURRENT_BPS) {
fprintf(stderr, "Too many time break points\n");
return;
}
if (timebp_timer >= 0) {
if (timebp_queue_size == 0 || abs_time < timebp_queue[0]) {
/* first in queue */
for (int i = timebp_queue_size; i >= 0; i--)
timebp_queue[i+1] = timebp_queue[i];
timebp_queue[0] = abs_time;
timebp_queue_size++;
bx_pc_system.activate_timer_ticks(timebp_timer, diff, 1);
} else {
/* not first, insert at suitable place */
for (int i = 1; i < timebp_queue_size; i++) {
if (timebp_queue[i] == abs_time) {
fprintf(stderr, "Time breakpoint not inserted (duplicate)\n");
return;
} else if (abs_time < timebp_queue[i]) {
for (int j = timebp_queue_size; j >= i; j++)
timebp_queue[j+1] = timebp_queue[j];
timebp_queue[i] = abs_time;
goto inserted;
}
}
/* last */
timebp_queue[timebp_queue_size] = abs_time;
inserted:
timebp_queue_size++;
}
} else {
timebp_queue_size = 1;
timebp_queue[0] = abs_time;
timebp_timer = bx_pc_system.register_timer_ticks(&bx_pc_system, bx_pc_system_c::timebp_handler, diff, 0, 1);
}
fprintf(stderr, "Time breakpoint inserted. Delta = %d\n", diff);
}
void
bx_dbg_diff_memory(void)
{
#if BX_NUM_SIMULATORS < 2
printf("diff-memory supported only in cosimulation mode\n");
#else
int num_pages = bx_options.memory.Osize->get () * 1024 / 4;
for (int i = 0; i < num_pages; i++) {
BX_CPU(dbg_cpu)->dbg_dirty_pages[i] = 1;
}
if (bx_dbg_compare_sim_memory())
printf("[diff-memory] Diff detected\n");
else
printf("[diff-memory] No diff detected\n");
#endif /* NUM_SIMULATORS < 2 */
}
void
bx_dbg_sync_memory(Boolean set)
{
#if BX_NUM_SIMULATORS < 2
printf("sync-memory supported only in cosimulation mode\n");
#else
bx_debugger.compare_at_sync.memory = set;
printf("Memory sync %s\n", (set) ? "enabled" : "disabled");
#endif
}
void
bx_dbg_sync_cpu(Boolean set)
{
#if BX_NUM_SIMULATORS < 2
printf("sync-cpu supported only in cosimulation mode\n");
#else
bx_debugger.compare_at_sync.cpu = set;
printf("Register file sync %s\n", (set) ? "enabled" : "disabled");
#endif
}
void
bx_dbg_fast_forward(Bit32u num)
{
#if BX_NUM_SIMULATORS < 2
printf("fast-forward supported only in cosimulation mode\n");
#else
printf("Entering fast-forward mode\n");
// Bit32u save_icount_quantum = bx_debugger.icount_quantum;
// bx_debugger.icount_quantum = num;
bx_guard.interrupt_requested = 0;
bx_debugger.fast_forward_mode = 1;
for (Bit32u e = 0; e < num; e += bx_debugger.icount_quantum)
if (!bx_dbg_cosimulateN(bx_debugger.icount_quantum))
break;
bx_debugger.fast_forward_mode = 0;
// bx_debugger.icount_quantum = save_icount_quantum;
bx_vga.timer_handler(&bx_vga);
printf("Copying CPU...\n");
bx_dbg_cpu_t cpu;
if (!BX_CPU(0)->dbg_get_cpu(&cpu) || !BX_CPU(1)->dbg_set_cpu(&cpu))
printf("Error copying CPU data!\n");
printf("Copying memory...\n");
int num_pages = bx_options.memory.Osize->get () * 1024 / 4;
for (int i = 0; i < num_pages; i++) {
if (BX_CPU(0)->dbg_dirty_pages[i]) {
Bit32u page_start = i * 1024 * 4;
printf("Copying page %08x\n", page_start);
extern Bit8u* SIM1_GET_PHYS_PTR(Bit32u page_start);
Bit8u* sim0_page_vec = bx_mem0.vector + page_start;
Bit8u* sim1_page_vec = SIM1_GET_PHYS_PTR(page_start);
memcpy(sim1_page_vec, sim0_page_vec, 1024 * 4);
}
}
printf("Taking async events...\n");
printf("Exiting fast-forward mode\n");
#endif
}
static Bit32u
conv_4xBit8u_to_Bit32u (Bit8u* buf)
{
Bit32u ret = 0;
for (int i = 0; i < 4; i++) {
ret |= (buf[i] << (8 * i));
}
return ret;
}
/*
(mch) Print various info for logical address.
*/
void
bx_dbg_info_address(Bit32u seg_reg_num, Bit32u offset)
{
#if BX_NUM_SIMULATORS < 2
printf("addr-info only supported in cosim configuration.\n");
#else
for (int sim = 0; sim < 2; sim++)
{
/* Find page table base address */
bx_dbg_cpu_t regs;
BX_CPU(sim)->dbg_get_cpu(&regs);
Bit32u base = regs.cr3 & ~0xfff;
Bit8u buf[4];
Bit32u directory_addr = base + (offset >> 22) * 4;
Bit32u directory;
if (BX_CPU(sim)->mem->dbg_fetch_mem(directory_addr, 4, buf)) {
directory = conv_4xBit8u_to_Bit32u(buf);
Bit32u table_addr = (directory & ~0xfff) + ((offset >> 12) & 0x3ff) * 4;
Bit32u table;
printf("[%s] ", SIM_NAME(sim));
printf("PDE: %08x (", directory);
printf("%s, %s, %s, %s, %s)",
(directory & 1) ? "Present" : "Not present",
(directory & 2) ? "Read/Write" : "Read-only",
(directory & 4) ? "User" : "Supervisor",
(directory & (1 << 5)) ? "Accessed" : "-",
(directory & (1 << 6)) ? "Dirty" : "-");
if (directory & 1) {
if (BX_CPU(sim)->mem->dbg_fetch_mem(table_addr, 4, buf)) {
table = conv_4xBit8u_to_Bit32u(buf);
printf(", PTE: %08x (", table);
printf("%s, %s, %s, %s, %s)\n",
(table & 1) ? "Present" : "Not present",
(table & 2) ? "Read/Write" : "Read-only",
(table & 4) ? "User" : "Supervisor",
(table & (1 << 5)) ? "Accessed" : "-",
(table & (1 << 6)) ? "Dirty" : "-");
} else {
printf("[%s] Could not read from physical address %08x\n",
SIM_NAME(sim), directory_addr);
return;
}
} else {
printf("\n");
}
} else {
printf("[%s] Could not read from physical address %08x\n",
SIM_NAME(sim), directory_addr);
return;
}
}
#endif
}
void
bx_dbg_record_command(char* path_quoted)
{
// skip beginning double quote
if (path_quoted[0] == '"')
path_quoted++;
// null out ending quote
int len = strlen(path_quoted);
if (path_quoted[len - 1] == '"')
path_quoted[len - 1] = '\0';
bx_dbg.record_io = fopen(path_quoted, "w");
if (bx_dbg.record_io)
fprintf(stderr, "IO record file '%s' opened\n", path_quoted);
else
fprintf(stderr, "Error opening '%s' for writing\n", path_quoted);
}
static FILE* playback_file = 0;
struct playback_entry_t
{
char command[100];
Bit32u argument;
void trigger ();
};
static playback_entry_t playback_entry;
static Bit64u last_playback_time = 0;
static int playback_timer_index = -1;
void
bx_dbg_playback_command(char* path_quoted)
{
// skip beginning double quote
if (path_quoted[0] == '"')
path_quoted++;
// null out ending quote
int len = strlen(path_quoted);
if (path_quoted[len - 1] == '"')
path_quoted[len - 1] = '\0';
playback_file = fopen(path_quoted, "r");
if (playback_file) {
fprintf(stderr, "Playback from '%s'\n", path_quoted);
last_playback_time = 0;
fprintf(stderr, "playback times relative from %lld\n", bx_pc_system.time_ticks());
enter_playback_entry();
} else
fprintf(stderr, "Error opening '%s' for reading\n", path_quoted);
}
// BW added. toggles vm86 mode switch breakpoint
//dummy not used and may be null
void
bx_dbg_modebp_command(char* dummy)
{
BX_CPU(dbg_cpu)->debug_vm == BX_CPU(dbg_cpu)->eflags.vm;
BX_CPU(dbg_cpu)->mode_break = !BX_CPU(dbg_cpu)->mode_break;
fprintf(stderr," mode switch break %s\n",
BX_CPU(dbg_cpu)->mode_break ? "enabled" : "disabled");
}
// where
// stack trace: ebp -> old ebp
// return eip at ebp + 4
void
bx_dbg_where_command()
{
if (!BX_CPU(dbg_cpu)->protected_mode()) {
fprintf(stderr, "'where' only supported in protected mode\n");
return;
}
if (BX_CPU(dbg_cpu)->sregs[BX_SREG_SS].cache.u.segment.base != 0) {
fprintf(stderr, "non-zero stack base\n");
return;
}
Bit32u bp = EBP;
Bit32u ip = EIP;
fprintf(stderr, "(%d) 0x%08x\n", 0, ip);
for (int i = 1; i < 50; i++) {
// Up
Boolean paddr_valid;
Bit32u paddr;
Bit8u buf[4];
// bp = [bp];
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(bp, &paddr, &paddr_valid);
if (paddr_valid) {
if (BX_MEM(0)->dbg_fetch_mem(paddr, 4, buf)) {
bp = conv_4xBit8u_to_Bit32u(buf);
} else {
fprintf(stderr, "(%d) Physical memory read error (BP)\n", i);
break;
}
} else {
fprintf(stderr, "(%d) Could not translate linear address (BP)\n", i);
break;
}
// ip = [bp + 4];
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(bp + 4, &paddr, &paddr_valid);
if (paddr_valid) {
if (BX_MEM(0)->dbg_fetch_mem(paddr, 4, buf)) {
ip = conv_4xBit8u_to_Bit32u(buf);
} else {
fprintf(stderr, "(%d) Physical memory read error (IP)\n", i);
break;
}
} else {
fprintf(stderr, "(%d) Could not translate linear address (IP)\n", i);
break;
}
// Print
fprintf(stderr, "(%d) 0x%08x\n", i, ip);
}
}
void
bx_dbg_print_string_command(Bit32u start_addr)
{
fprintf(stderr, "0x%08x: ", start_addr);
for (int i = 0; ; i++) {
Bit32u paddr;
Bit32u paddr_valid;
Bit8u buf[1];
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(start_addr+i, &paddr, &paddr_valid);
if (paddr_valid) {
if (BX_MEM(0)->dbg_fetch_mem(paddr, 1, buf)) {
if (buf[0] == 0)
break;
if (isgraph(buf[0]) || buf[0] == 0x20)
fprintf(stderr, "%c", buf[0]);
else
fprintf(stderr, "\\%d", buf[0]);
} else {
fprintf(stderr, "<read error>");
break;
}
} else {
fprintf(stderr, "<no translation>");
break;
}
}
fprintf(stderr, "\n");
}
static Bit32u last_cr3;
static int last_pe = 0;
static int last_vm = 0;
unsigned int dbg_show_mask = 0;
// 0x80 print mode
// 0x40 print interrupts
// 0x20 print calls
//BW added. toggles show symbolic info (calls to begin with)
// 0x1 call
// 0x2 return
// 0x4 int
// 0x8 iret
// 0x10 interrupts (includes iret)
static void dbg_dump_table(Boolean);
void bx_dbg_show_command(char* arg)
{
if(arg) {
if (!strcmp(arg,"\"mode\"")){
dbg_show_mask = 0x80;
} else if (!strcmp(arg,"\"int\"")){
dbg_show_mask = 0xc0;
} else if(!strcmp(arg,"\"call\"")){
dbg_show_mask = 0xe0;
} else if(!strcmp(arg,"\"ret\"")){
dbg_show_mask = 0xe0;
} else if(!strcmp(arg,"\"off\"")){
dbg_show_mask = 0x0;
} else if(!strcmp(arg,"\"tab\"")){
dbg_dump_table(1);
return;
} else if(!strcmp(arg,"\"c\"")){
dbg_dump_table(0);
return;
} else if(!strcmp(arg,"\"dbg-all\"")){
bx_dbg.floppy = 1;
bx_dbg.keyboard = 1;
bx_dbg.video = 1;
bx_dbg.disk = 1;
bx_dbg.pit = 1;
bx_dbg.pic = 1;
bx_dbg.bios = 1;
bx_dbg.cmos = 1;
bx_dbg.a20 = 1;
bx_dbg.interrupts = 1;
bx_dbg.exceptions = 1;
bx_dbg.unsupported = 1;
bx_dbg.temp = 1;
bx_dbg.reset = 1;
bx_dbg.mouse = 1;
bx_dbg.io = 1;
bx_dbg.debugger = 1;
bx_dbg.xms = 1;
bx_dbg.v8086 = 1;
bx_dbg.paging = 1;
bx_dbg.creg = 1;
bx_dbg.dreg = 1;
bx_dbg.dma = 1;
bx_dbg.unsupported_io = 1;
/* bx_dbg.record_io = 1; this is a pointer .. somewhere */
printf("Turned on all bx_dbg flags\n");
return;
} else if(!strcmp(arg,"\"none\"")){
bx_dbg.floppy = 0;
bx_dbg.keyboard = 0;
bx_dbg.video = 0;
bx_dbg.disk = 0;
bx_dbg.pit = 0;
bx_dbg.pic = 0;
bx_dbg.bios = 0;
bx_dbg.cmos = 0;
bx_dbg.a20 = 0;
bx_dbg.interrupts = 0;
bx_dbg.exceptions = 0;
bx_dbg.unsupported = 0;
bx_dbg.temp = 0;
bx_dbg.reset = 0;
bx_dbg.mouse = 0;
bx_dbg.io = 0;
bx_dbg.debugger = 0;
bx_dbg.xms = 0;
bx_dbg.v8086 = 0;
bx_dbg.paging = 0;
bx_dbg.creg = 0;
bx_dbg.dreg = 0;
bx_dbg.dma = 0;
bx_dbg.unsupported_io = 0;
/* bx_dbg.record_io = 0; this is a pointer .. somewhere */
printf("Turned off all bx_dbg flags\n");
return;
} else if(!strcmp(arg,"\"vga\"")){
bx_vga.timer ();
return;
} else {
printf("Unrecognized arg: %s ('mode' 'int' 'call' 'ret' 'dbg-all' are valid)\n",arg);
return;
}
} else {
fprintf(stderr," show mask is 0x%x\n", dbg_show_mask);
return;
}
// enable trace if any print is active
if(dbg_show_mask & 0xe0)
dbg_show_mask |= 0x1f;
fprintf(stderr," show mask is 0x%x, cleared show_flag\n", dbg_show_mask);
BX_CPU(dbg_cpu)->show_flag = 0;
last_cr3 = BX_CPU(dbg_cpu)->cr3;
last_pe = BX_CPU(dbg_cpu)->cr0.pe;
last_vm = BX_CPU(dbg_cpu)->eflags.vm;
fprintf(stderr,"%10lld: address %04x:%08x %08x\n\n",
bx_pc_system.time_ticks(),
BX_CPU(dbg_cpu)->guard_found.cs,
BX_CPU(dbg_cpu)->guard_found.eip,
BX_CPU(dbg_cpu)->guard_found.laddr);
}
void
playback_function(void* this_ptr)
{
((playback_entry_t*)this_ptr)->trigger();
}
void
enter_playback_entry()
{
static const int playback_buf_size = 100;
char playback_buf[playback_buf_size];
if (!fgets(playback_buf, playback_buf_size, playback_file))
return;
Bit64u time;
Bit32u argument;
if (sscanf(playback_buf, "%s %lld %x", playback_entry.command, &time, &playback_entry.argument) != 3) {
fprintf(stderr, "Parse error in playback string '%s'\n", playback_buf);
return;
}
Bit64u diff = time - last_playback_time;
last_playback_time = time;
if (diff < 0) {
BX_PANIC(("Negative diff in playback"));
} else if (diff == 0) {
playback_entry.trigger();
} else {
if (playback_timer_index >= 0)
bx_pc_system.activate_timer_ticks(playback_timer_index, diff, 0);
else
playback_timer_index = bx_pc_system.register_timer_ticks(&playback_entry, playback_function, diff, 0, 1);
}
}
void
playback_entry_t::trigger ()
{
if (!strcmp("gen_scancode", command)) {
bx_devices.keyboard->gen_scancode(argument);
} else {
fprintf(stderr, "Unknown playback command '%s'\n", command);
return;
}
enter_playback_entry();
}
void
bx_dbg_print_stack_command(int nwords)
{
// Get linear address for stack top
Bit32u sp = (BX_CPU(dbg_cpu)->sregs[BX_SREG_SS].cache.u.segment.d_b) ? ESP : SP;
Bit32u linear_sp = sp + BX_CPU(dbg_cpu)->sregs[BX_SREG_SS].cache.u.segment.base;
Bit8u buf[8];
for (int i = 0; i < nwords; i++) {
Bit32u paddr;
Boolean paddr_valid;
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(sp, &paddr, &paddr_valid);
if (paddr_valid) {
if (BX_MEM(0)->dbg_fetch_mem(paddr, 2, buf))
fprintf(stderr, " %08x [%08x] %04x\n", linear_sp, paddr, (int)buf[0] | ((int)buf[1] << 8));
else
fprintf(stderr, " %08x [%08x] <read error>\n", paddr, linear_sp);
} else {
fprintf(stderr, " %08x <could not translate>\n", linear_sp);
}
sp += 2;
linear_sp += 2;
}
}
#if !BX_HAVE_HASH_MAP
static char *BX_HAVE_HASH_MAP_ERR = "context not implemented because BX_HAVE_HASH_MAP=0\n";
char*
bx_dbg_symbolic_address(Bit32u context, Bit32u eip, Bit32u base)
{
static Boolean first = true;
if (first) {
fprintf (stderr, BX_HAVE_HASH_MAP_ERR);
first = false;
}
return "unknown context";
}
void
bx_dbg_symbol_command(char* filename, Boolean global, Bit32u offset)
{
fprintf (stderr, BX_HAVE_HASH_MAP_ERR);
}
#else /* if BX_HAVE_HASH_MAP == 1 */
/* Haven't figured out how to port this code to OSF1 cxx compiler.
Until a more portable solution is found, at least make it easy
to disable the template code: just set BX_HAVE_HASH_MAP=0
in config.h */
#include <hash_map.h>
#include <set.h>
struct symbol_entry_t
{
symbol_entry_t (Bit32u _start = 0, char* _name = 0)
{
start = _start;
name = _name;
}
char* name;
Bit32u start;
};
struct lt_symbol_entry_t
{
bool operator()(const symbol_entry_t* s1, const symbol_entry_t* s2) const
{
return s1->start < s2->start;
}
};
struct context_t
{
context_t (Bit32u);
static context_t* get_context(Bit32u);
symbol_entry_t* get_symbol_entry(Bit32u);
void add_symbol(symbol_entry_t*);
private:
static hash_map<int,context_t*>* map;
set<symbol_entry_t*,lt_symbol_entry_t>* syms;
Bit32u id;
};
hash_map<int,context_t*>* context_t::map = new hash_map<int,context_t*>;
context_t::context_t (Bit32u _id)
{
id = _id;
syms = new set<symbol_entry_t*, lt_symbol_entry_t>;
(*map)[id] = this;
}
context_t*
context_t::get_context(Bit32u i)
{
return (*map)[i];
}
symbol_entry_t*
context_t::get_symbol_entry(Bit32u ip)
{
symbol_entry_t probe;
probe.start = ip;
set<symbol_entry_t*>::iterator iter = syms->upper_bound(&probe);
if (iter == syms->end())
return 0;
else if (iter == syms->begin())
return 0;
else {
iter--;
return *iter;
}
}
void
context_t::add_symbol(symbol_entry_t* sym)
{
syms->insert(sym);
}
char*
bx_dbg_symbolic_address(Bit32u context, Bit32u eip, Bit32u base)
{
static char buf[80];
if (base != 0) {
snprintf (buf, 80, "non-zero base");
return buf;
}
// Look up this context
context_t* cntx = context_t::get_context(context);
if (!cntx) {
// Try global context
cntx = context_t::get_context(0);
if (!cntx) {
snprintf (buf, 80, "unknown context");
return buf;
}
}
symbol_entry_t* entr = cntx->get_symbol_entry(eip);
if (!entr) {
snprintf (buf, 80, "no symbol");
return buf;
}
snprintf (buf, 80, "%s+%x", entr->name, eip - entr->start);
return buf;
}
void
bx_dbg_symbol_command(char* filename, Boolean global, Bit32u offset)
{
if (filename[0] == '"')
filename++;
int len = strlen(filename);
if (filename[len - 1] == '"')
filename[len - 1] = '\0';
// Install symbols in correct context (page table)
// The file format should be
// address symbol (example '00002afe _StartLoseNT')
context_t* cntx = (global)
? context_t::get_context(0)
: context_t::get_context((BX_CPU(dbg_cpu)->cr3) >> 12);
if (!cntx)
cntx = (global)
? new context_t(0)
: new context_t((BX_CPU(dbg_cpu)->cr3) >> 12);
FILE* fp = fopen(filename, "r");
if (!fp) {
fprintf(stderr, "Could not open symbol file '%s'\n", filename);
return;
}
char buf[200];
while (fgets(buf, 200, fp)) {
// Parse
char* sym_name = buf;
for (int i = 0; i < 200 && buf[i]; i++) {
if (buf[i] == ' ') {
buf[i] = '\0';
sym_name = buf + i + 1;
break;
}
}
if (sym_name == buf) {
fprintf(stderr, "Syntax error '%s'\n", buf);
break;
}
Bit32u addr = strtoul(buf, 0, 16);
if (sym_name[strlen(sym_name)-1] == '\n')
sym_name[strlen(sym_name)-1] = '\0';
symbol_entry_t* sym = new symbol_entry_t(addr + offset, strdup(sym_name));
cntx->add_symbol(sym);
}
}
#endif
int num_write_watchpoints = 0;
int num_read_watchpoints = 0;
Bit32u write_watchpoint[MAX_WRITE_WATCHPOINTS];
Bit32u read_watchpoint[MAX_READ_WATCHPOINTS];
Boolean watchpoint_continue = 0;
void
bx_dbg_watch(int read, Bit32u address)
{
if (read == -1) {
// print watch point info
int i;
for (i = 0; i < num_read_watchpoints; i++) {
Bit8u buf[2];
if (BX_MEM(0)->dbg_fetch_mem(read_watchpoint[i], 2, buf))
fprintf(stderr, "read %08x (%04x)\n", read_watchpoint[i], (int)buf[0] | ((int)buf[1] << 8));
else
fprintf(stderr, "read %08x (read error)\n", read_watchpoint[i]);
}
for (i = 0; i < num_write_watchpoints; i++) {
Bit8u buf[2];
if (BX_MEM(0)->dbg_fetch_mem(write_watchpoint[i], 2, buf))
fprintf(stderr, "write %08x (%04x)\n", write_watchpoint[i], (int)buf[0] | ((int)buf[1] << 8));
else
fprintf(stderr, "write %08x (read error)\n", write_watchpoint[i]);
}
} else {
if (read) {
if (num_read_watchpoints == MAX_READ_WATCHPOINTS) {
fprintf(stderr, "Too many read watchpoints\n");
return;
}
read_watchpoint[num_read_watchpoints++] = address;
fprintf(stderr, "Read watchpoint at %08x inserted\n", address);
} else {
if (num_write_watchpoints == MAX_WRITE_WATCHPOINTS) {
fprintf(stderr, "Too many write watchpoints\n");
return;
}
write_watchpoint[num_write_watchpoints++] = address;
fprintf(stderr, "Write watchpoint at %08x inserted\n", address);
}
}
}
void
bx_dbg_unwatch(int read, Bit32u address)
{
if (read == -1) {
// unwatch all
num_read_watchpoints = num_write_watchpoints = 0;
fprintf(stderr, "All watchpoints removed\n");
} else {
if (read) {
fprintf(stderr, "Watchpoint remove not implemented\n");
} else {
fprintf(stderr, "Watchpoint remove not implemented\n");
}
}
}
void
bx_dbg_continue_command(void)
{
// continue executing, until a guard found
one_more:
#if BX_NUM_SIMULATORS >= 2
bx_guard.interrupt_requested = 0;
bx_guard.special_unwind_stack = 0;
while (1) {
if ( !bx_dbg_cosimulateN(bx_debugger.icount_quantum) )
break;
}
#else
bx_guard.icount = 0;
// I must guard for ICOUNT or one CPU could run forever without giving
// the others a chance.
bx_guard.guard_for |= BX_DBG_GUARD_ICOUNT;
bx_guard.guard_for |= BX_DBG_GUARD_CTRL_C; // stop on Ctrl-C
bx_guard.interrupt_requested = 0;
bx_guard.special_unwind_stack = 0;
int stop = 0;
int which = -1;
while (!stop) {
// the quantum is an arbitrary number of cycles to run in each
// processor. In SMP mode, when this limit is reached, the
// cpu_loop exits so that another processor can be simulated
// for a few cycles. With a single processor, the quantum
// setting should have no effect, although a low setting does
// lead to poor performance because cpu_loop is returning and
// getting called again, over and over.
int quantum = 25;
int cpu;
for (cpu=0; cpu < BX_SMP_PROCESSORS; cpu++) {
BX_CPU(cpu)->guard_found.guard_found = 0;
BX_CPU(cpu)->guard_found.icount = 0;
bx_guard.icount = quantum;
BX_CPU(cpu)->cpu_loop (-1);
/// check out BX_CPU(cpu)->guard_found.icount
//fprintf (stderr, "dbg_cont: after cpu_loop guard_found.icount=%d\n", BX_CPU(cpu)->guard_found.icount);
// set stop flag if a guard found other than icount or halted
unsigned long found = BX_CPU(cpu)->guard_found.guard_found;
stop_reason_t reason = (stop_reason_t) BX_CPU(cpu)->stop_reason;
if (found & BX_DBG_GUARD_ICOUNT) {
// I expected this guard, don't stop
} else if (found!=0) {
stop = 1;
which = cpu;
} else if (reason != STOP_NO_REASON && reason != STOP_CPU_HALTED) {
stop = 1;
which = cpu;
}
// even if stop==1, finish cycling through all processors.
// "which" remembers which cpu set the stop flag. If multiple
// cpus set stop, too bad.
}
// increment time tick only after all processors have had their chance.
#if BX_SMP_PROCESSORS==1
// all ticks are handled inside the cpu loop
#else
// We must tick by the number of instructions that were
// ACTUALLY executed, not the number that we asked it to
// execute. Even this is tricky with SMP because one might
// have hit a breakpoint, while others executed the whole
// quantum.
int max_executed = 0;
for (cpu=0; cpu<BX_SMP_PROCESSORS; cpu++) {
if (BX_CPU(cpu)->guard_found.icount > max_executed)
max_executed = BX_CPU(cpu)->guard_found.icount;
}
// potential deadlock if all processors are halted. Then
// max_executed will be 0, tick will be incremented by zero, and
// there will never be a timed event to wake them up. To avoid this,
// always tick by a minimum of 1.
if (max_executed < 1) max_executed=1;
BX_TICKN(max_executed);
#endif /* BX_SMP_PROCESSORS>1 */
}
#endif /* BX_NUM_SIMULATORS */
// (mch) hack
bx_vga.timer_handler(&bx_vga);
BX_INSTR_DEBUG_PROMPT();
bx_dbg_print_guard_results();
if (watchpoint_continue && (BX_CPU(which)->stop_reason == STOP_READ_WATCH_POINT ||
BX_CPU(which)->stop_reason == STOP_WRITE_WATCH_POINT))
goto one_more;
}
void
bx_dbg_stepN_command(bx_dbg_icount_t count)
{
if (count == 0) {
fprintf(stderr, "Error: stepN: count=0\n");
return;
}
#if BX_NUM_SIMULATORS >= 2
bx_guard.interrupt_requested = 0;
bx_guard.special_unwind_stack = 0;
bx_dbg_cosimulateN(count);
#else
// single CPU
bx_guard.guard_for |= BX_DBG_GUARD_ICOUNT; // looking for icount
bx_guard.guard_for |= BX_DBG_GUARD_CTRL_C; // or Ctrl-C
// for now, step each CPU one BX_DBG_DEFAULT_ICOUNT_QUANTUM at a time
//BX_INFO(("Stepping each CPU a total of %d cycles", count));
for (unsigned cycle=0; cycle < count; cycle++) {
for (unsigned cpu=0; cpu < BX_SMP_PROCESSORS; cpu++) {
//BX_INFO(("Stepping %s", BX_CPU(cpu)->name));
bx_guard.icount = 1;
bx_guard.interrupt_requested = 0;
BX_CPU(cpu)->guard_found.guard_found = 0;
BX_CPU(cpu)->guard_found.icount = 0;
BX_CPU(cpu)->cpu_loop(-1);
}
#if BX_SMP_PROCESSORS==1
// ticks are handled inside the cpu loop
#else
BX_TICK1 ();
#endif
}
//BX_INFO(("Stepped each CPU a total of %d cycles", count));
#endif
BX_INSTR_DEBUG_PROMPT();
bx_dbg_print_guard_results();
}
#if BX_NUM_SIMULATORS >= 2
unsigned
bx_dbg_cosimulateN(bx_dbg_icount_t count)
{
// execute both master & slave for count instructions,
// handling asynchronous events, etc.
// returns 0 = didn't get through all count instructions
// either a guard was hit, or a divergence occurred
// 1 = got through all count instructions
unsigned master, slave;
bx_dbg_icount_t master_icount, slave_icount;
Boolean bail_out = 0;
unsigned ret = 0;
Boolean save_INTR;
Boolean pre_A20, post_A20;
unsigned async_head;
bx_dbg_icount_t async_icount, curr_icount;
if (count == 0) {
fprintf(stderr, "Error: cosimulateN: count=0\n");
bx_dbg_exit(1);
}
bx_guard.guard_for |= BX_DBG_GUARD_ICOUNT; // stop at icount
bx_guard.guard_for &= ~BX_DBG_GUARD_CTRL_C; // ignore Ctrl-C
one_time_slice:
// take minimum of requested count and maximum count quantum
if (count > bx_debugger.icount_quantum)
bx_guard.icount = bx_debugger.icount_quantum;
else
bx_guard.icount = count;
// for now, assume...
master = bx_debugger.master;
slave = bx_debugger.slave;
// run master simulator
bx_debugger.master_slave_mode = BX_DBG_MASTER_MODE;
if (bx_guard.interrupt_requested) {
bail_out = 1;
fprintf(stderr, "ctrlc typed\n");
}
bx_guard_found[master].guard_found = 0;
bx_guard_found[master].icount = 0;
if (doit) fprintf(stderr, "requesting run of master for %u\n",
(unsigned) bx_guard.icount);
// save A20 value before master run
pre_A20 = bx_pc_system.get_enable_a20();
BX_MEM(master)->cpu_loop(-1);
post_A20 = bx_pc_system.get_enable_a20(); // A20 after master run
master_icount = bx_guard_found[master].icount;
slave_icount = 0;
if (master_icount)
bx_pc_system.tickn(master_icount);
save_INTR = bx_pc_system.INTR; // value after master run
bx_pc_system.INTR = 0; // in case slave uses directly
// Change A20 for slave run to model what it was at beginning of
// master run, only if it needs to be changed.
if (pre_A20 != post_A20) {
bx_pc_system.set_enable_a20(pre_A20);
if (BX_MEM(slave)->set_A20)
BX_MEM(slave)->set_A20(pre_A20);
}
// if guard was anything except for icount, we should terminate
// after synchronizing slave to master
if (bx_guard_found[master].guard_found & ~BX_DBG_GUARD_ICOUNT)
bail_out = 1;
// Synchronize slave to master. Account for Ctrl-C's typed during execution of
// slave.
bx_debugger.master_slave_mode = BX_DBG_SLAVE_MODE;
do {
// run slave for remaining instructions to catch up to master
curr_icount = master_icount - slave_icount;
if (bx_debugger.async_journal.size) {
// If there were asynchronous events which occurred while the
// master was running, have to run the slave up to each of these
// points individually, and force it to take them on exactly the
// same boundaries.
async_head = bx_debugger.async_journal.head;
async_icount = bx_debugger.async_journal.element[async_head].icount;
curr_icount = async_icount; // only run to next async event
}
else {
async_head = 0; // keep compiler happy
async_icount = 0; // keep compiler happy
}
bx_guard_found[slave].guard_found = 0;
bx_guard_found[slave].icount = 0;
bx_guard.icount = curr_icount;
if (curr_icount) {
// Async event may be before completion of any instructions,
// for example taking of interrupt.
if (doit) fprintf(stderr, "requesting run of slave for %u\n",
(unsigned) bx_guard.icount);
if (bx_debugger.fast_forward_mode) {
bx_guard_found[slave].icount = curr_icount;
bx_guard_found[slave].guard_found = BX_DBG_GUARD_ICOUNT;
} else {
BX_MEM(slave)->cpu_loop(-1);
}
}
slave_icount += bx_guard_found[slave].icount;
if (bx_guard_found[slave].guard_found & ~BX_DBG_GUARD_ICOUNT) {
bail_out = 1;
// If user type Ctrl-C we're done after synchronizing. If not,
// then we have reached a true guard, and it's time to bail.
if (bx_guard_found[slave].guard_found &
~(BX_DBG_GUARD_ICOUNT | BX_DBG_GUARD_CTRL_C))
break;
}
if (bx_debugger.async_journal.size) {
// sanity check: slave should be at async point
if (bx_guard_found[slave].icount != async_icount) {
fprintf(stderr, "Error: comsimulateN: async: slave not at sync point.\n");
bx_dbg_exit(1);
}
switch (bx_debugger.async_journal.element[async_head].what) {
case BX_DBG_ASYNC_JOURNAL_IAC:
if (!bx_debugger.fast_forward_mode) {
if (doit)
fprintf(stderr, "slave: forcing interrupt %u\n",
bx_debugger.async_journal.element[async_head].u.iac.val);
BX_MEM(slave)->dbg_force_interrupt(
bx_debugger.async_journal.element[async_head].u.iac.val);
}
break;
case BX_DBG_ASYNC_JOURNAL_A20:
bx_pc_system.set_enable_a20(
bx_debugger.async_journal.element[async_head].u.a20.val);
if (BX_MEM(slave)->set_A20)
BX_MEM(slave)->set_A20(
bx_debugger.async_journal.element[async_head].u.a20.val);
break;
case BX_DBG_ASYNC_JOURNAL_NMI:
case BX_DBG_ASYNC_JOURNAL_RESET:
default:
fprintf(stderr, "Error: cosimulateN: unimplemented async event.\n");
}
// async event processed, dequeue it
bx_debugger.async_journal.size--;
bx_debugger.async_journal.head++;
}
} while (slave_icount < master_icount);
bx_pc_system.INTR = save_INTR; // restore INTR to value after master run
// At this point, both simulators should be at the same point. Either
// they have finished executing for the desired count, or at least for
// a time quantum. Check to see if the environments are in sync.
int iaddr_res;
if (!bx_debugger.fast_forward_mode) {
if (bx_debugger.compare_at_sync.iaddr && (iaddr_res = bx_dbg_compare_sim_iaddr())) {
if (iaddr_res == 1)
bail_out = 1;
} else if (bx_debugger.compare_at_sync.cpu && bx_dbg_compare_sim_cpu())
bail_out = 1;
else if (bx_debugger.compare_at_sync.memory && bx_dbg_compare_sim_memory())
bail_out = 1;
}
if (bail_out) {
#ifdef DEBUGGER_ERROR
extern void DEBUGGER_ERROR(void);
DEBUGGER_ERROR();
#endif
ret = 0; // didn't complete, stopped
}
else {
count -= master_icount;
// last icount known to be in sync
bx_debugger.last_sync_icount += master_icount;
if (count)
goto one_time_slice;
ret = 1; // completed OK
}
bx_guard.guard_for &= ~BX_DBG_GUARD_ICOUNT;
return(ret);
}
#endif // #if BX_NUM_SIMULATORS >= 2
#if BX_NUM_SIMULATORS >= 2
int
bx_dbg_compare_sim_iaddr(void)
{
// returns 0 = same, 1 = different, 2 = false diff
if (BX_CPU(dbg_cpu)->guard_found.laddr != bx_guard_found[1].laddr) {
#ifdef FALSE_DIFF_DETECT
extern int FALSE_DIFF_DETECT();
if (FALSE_DIFF_DETECT())
return 2;
#endif
fprintf(stderr,
#if BX_DBG_ICOUNT_SIZE == 32
"*** Iaddr divergence ***: last know synchronized icount was %lu\n",
(unsigned long) bx_debugger.last_sync_icount
#else // BX_DBG_ICOUNT_SIZE == 64
"*** Iaddr divergence ***: last know synchronized icount was %Lu\n",
(unsigned long long) bx_debugger.last_sync_icount
#endif
);
// fprintf(stderr, "Divergence: sim[0].laddr=%x, sim[1].laddr=%x\n",
// (unsigned) BX_CPU(dbg_cpu)->guard_found.laddr,
// (unsigned) bx_guard_found[1].laddr);
return(1); // different
}
return(0); // same
}
Boolean
bx_dbg_compare_sim_cpu(void)
{
// (mch) Get cpu structures from both simulators
// Compare the structures (except the descriptor parts of the
// segment registers
bx_dbg_cpu_t regs[2];
BX_MEM(0)->dbg_get_cpu(regs + 0);
BX_MEM(1)->dbg_get_cpu(regs + 1);
Boolean ret = 0;
Boolean warn = 0;
// (mch) Yes I know these are macros. The would have been
// inner functions if g++ had supported it.
#define TEST_REG(reg, reg_name) do { \
if (regs[0].reg != regs[1].reg) { \
printf("COSIM ERROR: [%s] %s: 0x%08x %s: 0x%08x\n", reg_name, SIM_NAME0, regs[0].reg, SIM_NAME1_STR, regs[1].reg); \
ret = 1; \
} \
} while(0)
#define TEST_REG_WARN(reg, reg_name, mask) do { \
if ((regs[0].reg & mask) != (regs[1].reg & mask)) { \
printf("COSIM WARNING: [%s] %s: 0x%08x %s: 0x%08x\n", reg_name, SIM_NAME0, (regs[0].reg & mask), SIM_NAME1_STR, (regs[1].reg & mask)); \
warn = 1; \
} \
} while(0)
TEST_REG(eax, "eax");
TEST_REG(ebx, "ebx");
TEST_REG(ecx, "ecx");
TEST_REG(edx, "edx");
TEST_REG(ebp, "ebp");
TEST_REG(esi, "esi");
TEST_REG(edi, "edi");
TEST_REG(esp, "esp");
TEST_REG_WARN(eflags, "eflags & CF", 0x1);
#define EFLAGS_MASK (~((1 << 11) | (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 0)))
regs[0].eflags &= EFLAGS_MASK;
regs[1].eflags &= EFLAGS_MASK;
TEST_REG(eflags, "eflags");
TEST_REG(eip, "eip");
#define TEST_SEG_REG(reg, reg_name) do { \
if (regs[0].reg.sel != regs[1].reg.sel || regs[0].reg.valid != regs[1].reg.valid) { \
printf("COSIM ERROR: [%s] %s: 0x%04x (%d) %s: 0x%04x (%d)\n", reg_name, SIM_NAME0, regs[0].reg.sel, regs[0].reg.valid, SIM_NAME1_STR, regs[1].reg.sel, regs[1].reg.valid); \
ret = 1; \
} \
} while(0)
TEST_SEG_REG(cs, "cs");
TEST_SEG_REG(ss, "ss");
TEST_SEG_REG(ds, "ds");
TEST_SEG_REG(es, "es");
TEST_SEG_REG(fs, "fs");
TEST_SEG_REG(gs, "gs");
TEST_SEG_REG(ldtr, "ldtr");
TEST_SEG_REG(tr, "tr");
if (regs[0].gdtr.base != regs[1].gdtr.base || regs[0].gdtr.limit != regs[1].gdtr.limit) {
printf("COSIM ERROR: [gdtr] %s: 0x%08x:0x%04x %s 0x%08x:0x%04x\n",
SIM_NAME0, regs[0].gdtr.base, regs[0].gdtr.limit, SIM_NAME1_STR, regs[1].gdtr.base, regs[1].gdtr.limit);
ret = 1;
}
if (regs[0].idtr.base != regs[1].idtr.base || regs[0].idtr.limit != regs[1].idtr.limit) {
printf("COSIM ERROR: [idtr] %s: 0x%08x:0x%04x %s 0x%08x:0x%04x\n",
SIM_NAME0, regs[0].idtr.base, regs[0].idtr.limit, SIM_NAME1_STR, regs[1].idtr.base, regs[1].idtr.limit);
ret = 1;
}
// drX ignored
// trX ignored
TEST_REG(cr0, "cr0");
TEST_REG(cr1, "cr1");
TEST_REG(cr2, "cr2");
TEST_REG(cr3, "cr3");
TEST_REG(cr4, "cr4");
if (regs[0].inhibit_mask != regs[1].inhibit_mask) {
printf("COSIM ERROR [inhibit_mask] %s: %d %s: %d\n",
SIM_NAME0, regs[0].inhibit_mask, SIM_NAME1_STR, regs[1].inhibit_mask);
ret = 1;
}
if (ret) {
fprintf(stderr,
#if BX_DBG_ICOUNT_SIZE == 32
"*** CPU divergence ***: last know synchronized icount was %lu\n",
(unsigned long) bx_debugger.last_sync_icount
#else // BX_DBG_ICOUNT_SIZE == 64
"*** CPU divergence ***: last know synchronized icount was %Lu\n",
(unsigned long long) bx_debugger.last_sync_icount
#endif
);
} else if (warn) {
fprintf(stderr,
#if BX_DBG_ICOUNT_SIZE == 32
"=== CPU divergence ===: last know synchronized icount was %lu\n",
(unsigned long) bx_debugger.last_sync_icount
#else // BX_DBG_ICOUNT_SIZE == 64
"=== CPU divergence ===: last know synchronized icount was %Lu\n",
(unsigned long long) bx_debugger.last_sync_icount
#endif
);
#ifdef DEBUGGER_ERROR
extern void DEBUGGER_ERROR(void);
DEBUGGER_ERROR();
#endif
}
return ret;
}
void
clear_dirty_bits (void)
{
int num_pages = bx_options.memory.Osize->get () * 1024 / 4;
for (int i = 0; i < num_pages; i++) {
BX_MEM(0)->dbg_dirty_pages[i] = 0;
BX_MEM(1)->dbg_dirty_pages[i] = 0;
}
}
Boolean always_check_page[128 * 1024 / 4];
void
bx_dbg_always_check(Bit32u page_start, Boolean on)
{
always_check_page[page_start / (4 * 1024)] = on;
printf("Forced check on page %08x %s\n",
page_start, on ? "enabled" : "disabled");
}
Boolean
bx_dbg_compare_sim_memory(void)
{
Boolean ret = 0;
int num_pages = bx_options.memory.Osize->get () * 1024 / 4;
for (int i = 0; i < num_pages; i++) {
Boolean sim0_dirty = BX_MEM(0)->dbg_dirty_pages[i];
Boolean sim1_dirty = BX_MEM(1)->dbg_dirty_pages[i];
Bit32u page_start = i * 1024 * 4;
if ((sim0_dirty != sim1_dirty) || sim0_dirty || always_check_page[i]) {
// Page has been written, compare
// (mch) I'm quite aware of how hackish this is. I don't care.
extern Bit8u* SIM1_GET_PHYS_PTR(Bit32u page_start);
Bit8u* sim0_page_vec = bx_mem0.vector + page_start;
Bit8u* sim1_page_vec = SIM1_GET_PHYS_PTR(page_start);
if (memcmp(sim0_page_vec, sim1_page_vec, 1024 * 4)) {
printf("COSIM ERROR Physical page %08x differs in content\n", page_start);
for (int j = 0; j < 1024 * 4; j++) {
if (sim0_page_vec[j] != sim1_page_vec[j]) {
printf("%08x %s: %02x %s: %02x\n",
page_start+j, SIM_NAME0, sim0_page_vec[j], SIM_NAME1_STR, sim1_page_vec[j]);
}
}
ret = 1;
}
}
}
if (ret) {
fprintf(stderr,
#if BX_DBG_ICOUNT_SIZE == 32
"*** Memory divergence ***: last know synchronized icount was %lu\n",
(unsigned long) bx_debugger.last_sync_icount
#else // BX_DBG_ICOUNT_SIZE == 64
"*** Memory divergence ***: last know synchronized icount was %Lu\n",
(unsigned long long) bx_debugger.last_sync_icount
#endif
);
}
clear_dirty_bits();
return ret;
}
#endif
void bx_dbg_disassemble_current (int which_cpu, int print_time)
{
Bit32u phy;
Boolean valid;
if (which_cpu < 0) {
// iterate over all of them.
for (int i=0; i<BX_SMP_PROCESSORS; i++)
bx_dbg_disassemble_current (i, print_time);
return;
}
BX_CPU(which_cpu)->dbg_xlate_linear2phy(BX_CPU(which_cpu)->guard_found.laddr, &phy, &valid);
if (valid) {
unsigned ilen;
BX_CPU(which_cpu)->mem->dbg_fetch_mem(phy, 16, bx_disasm_ibuf);
ilen = bx_disassemble.disasm(BX_CPU(which_cpu)->guard_found.is_32bit_code,
bx_disasm_ibuf, bx_disasm_tbuf);
// Note: it would be nice to display only the modified registers here, the easy
// way out I have thought of would be to keep a prev_eax, prev_ebx, etc copies
// in each cpu description (see cpu/cpu.h) and update/compare those "prev" values
// from here. (eks)
if( BX_CPU(dbg_cpu)->trace_reg )
fprintf( stderr,
"eax: %08X\tecx: %08X\tedx: %08X\tebx: %08X\tesp: %08X\tebp: %08X\tesi: %08X\tedi: %08X\ncf=%u af=%u zf=%u sf=%u of=%u pf=%u tf=%u if=%u df=%u iopl=%u nt=%u rf=%u vm=%u\n",
BX_CPU(which_cpu)->gen_reg[0],
BX_CPU(which_cpu)->gen_reg[1],
BX_CPU(which_cpu)->gen_reg[2],
BX_CPU(which_cpu)->gen_reg[3],
BX_CPU(which_cpu)->gen_reg[4],
BX_CPU(which_cpu)->gen_reg[5],
BX_CPU(which_cpu)->gen_reg[6],
BX_CPU(which_cpu)->gen_reg[7],
!!BX_CPU(which_cpu)->get_CF(),
!!BX_CPU(which_cpu)->get_AF(),
!!BX_CPU(which_cpu)->get_ZF(),
!!BX_CPU(which_cpu)->get_SF(),
!!BX_CPU(which_cpu)->get_OF(),
!!BX_CPU(which_cpu)->get_PF(),
BX_CPU(which_cpu)->eflags.tf,
BX_CPU(which_cpu)->eflags.if_,
BX_CPU(which_cpu)->eflags.df,
BX_CPU(which_cpu)->eflags.iopl,
BX_CPU(which_cpu)->eflags.nt,
BX_CPU(which_cpu)->eflags.rf,
BX_CPU(which_cpu)->eflags.vm
);
if (print_time)
fprintf (stderr, "(%u).[%lld] ", which_cpu, bx_pc_system.time_ticks());
else
fprintf (stderr, "(%u) ", which_cpu);
if (BX_CPU(which_cpu)->guard_found.is_32bit_code) {
fprintf(stderr, "%04x:%08x (%s): ",
(unsigned) BX_CPU(which_cpu)->guard_found.cs,
(unsigned) BX_CPU(which_cpu)->guard_found.eip,
bx_dbg_symbolic_address((BX_CPU(which_cpu)->cr3) >> 12, BX_CPU(which_cpu)->guard_found.eip, BX_CPU(which_cpu)->sregs[BX_SREG_CS].cache.u.segment.base));
}
else {
fprintf(stderr, "%04x:%04x: ",
(unsigned) BX_CPU(which_cpu)->guard_found.cs,
(unsigned) BX_CPU(which_cpu)->guard_found.eip);
}
for (unsigned j=0; j<ilen; j++)
fprintf(stderr, "%02x", (unsigned) bx_disasm_ibuf[j]);
fprintf(stderr, ": %s\n", bx_disasm_tbuf);
}
else {
fprintf(stderr, "(%u).[%lld] ??? (physical address not available)\n", which_cpu, bx_pc_system.time_ticks());
}
}
void
bx_dbg_print_guard_results(void)
{
unsigned i;
unsigned sim;
for (sim=0; sim<BX_SMP_PROCESSORS; sim++) {
unsigned long found = BX_CPU(sim)->guard_found.guard_found;
if (found & BX_DBG_GUARD_ICOUNT) {
}
else if (found & BX_DBG_GUARD_CTRL_C) {
}
#if BX_DBG_SUPPORT_VIR_BPOINT
else if (found & BX_DBG_GUARD_IADDR_VIR) {
i = BX_CPU(sim)->guard_found.iaddr_index;
fprintf(stderr, "(%u) Breakpoint %u, 0x%x (0x%x:0x%x)\n",
sim,
bx_guard.iaddr.vir[i].bpoint_id,
BX_CPU(sim)->guard_found.laddr,
BX_CPU(sim)->guard_found.cs,
BX_CPU(sim)->guard_found.eip);
}
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
else if (found & BX_DBG_GUARD_IADDR_LIN) {
i = BX_CPU(sim)->guard_found.iaddr_index;
fprintf(stderr, "(%u) Breakpoint %u, 0x%x in ?? ()\n",
sim,
bx_guard.iaddr.lin[i].bpoint_id,
BX_CPU(sim)->guard_found.laddr);
}
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
else if (found & BX_DBG_GUARD_IADDR_PHY) {
i = BX_CPU(sim)->guard_found.iaddr_index;
fprintf(stderr, "(%u) Breakpoint %u, 0x%x in ?? ()\n",
sim,
bx_guard.iaddr.phy[i].bpoint_id,
BX_CPU(sim)->guard_found.laddr);
}
#endif
else if (BX_CPU(sim)->stop_reason == STOP_CPU_HALTED) {
/* returned early because processor is in halt state */
}
else if (BX_CPU(sim)->stop_reason == STOP_MAGIC_BREAK_POINT) {
fprintf(stderr, "(%u) Magic breakpoint\n", sim);
} else if (BX_CPU(sim)->stop_reason == STOP_TIME_BREAK_POINT) {
fprintf(stderr, "(%u) Caught time breakpoint\n", sim);
} else if (BX_CPU(sim)->stop_reason == STOP_MODE_BREAK_POINT) {
fprintf(stderr, "(%u) Caught vm mode switch breakpoint to %s mode\n",
sim, BX_CPU(sim)->eflags.vm ? "virtual 86" : "protected");
} else if (BX_CPU(sim)->stop_reason == STOP_READ_WATCH_POINT) {
fprintf(stderr, "(%u) Caught read watch point\n", sim);
} else if (BX_CPU(sim)->stop_reason == STOP_WRITE_WATCH_POINT) {
fprintf(stderr, "(%u) Caught write watch point\n", sim);
}
else {
fprintf(stderr, "Error: (%u) print_guard_results: guard_found ? (stop reason %u)\n",
sim, BX_CPU(sim)->stop_reason);
}
#if BX_DISASM
if (bx_debugger.auto_disassemble) {
if (sim==0) {
// print this only once
fprintf (stderr, "Next at t=%lld\n", bx_pc_system.time_ticks ());
}
bx_dbg_disassemble_current (sim, 0); // one cpu, don't print time
}
#endif // #if BX_DISASM
}
}
void
bx_dbg_breakpoint_changed(void)
{
#if BX_DBG_SUPPORT_VIR_BPOINT
if (bx_guard.iaddr.num_virtual)
bx_guard.guard_for |= BX_DBG_GUARD_IADDR_VIR;
else
bx_guard.guard_for &= ~BX_DBG_GUARD_IADDR_VIR;
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
if (bx_guard.iaddr.num_linear)
bx_guard.guard_for |= BX_DBG_GUARD_IADDR_LIN;
else
bx_guard.guard_for &= ~BX_DBG_GUARD_IADDR_LIN;
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
if (bx_guard.iaddr.num_physical)
bx_guard.guard_for |= BX_DBG_GUARD_IADDR_PHY;
else
bx_guard.guard_for &= ~BX_DBG_GUARD_IADDR_PHY;
#endif
}
void
bx_dbg_del_breakpoint_command(unsigned handle)
{
unsigned i;
#if BX_DBG_SUPPORT_VIR_BPOINT
// see if breakpoint is a virtual breakpoint
for (i=0; i<bx_guard.iaddr.num_virtual; i++) {
if (bx_guard.iaddr.vir[i].bpoint_id == handle) {
// found breakpoint, delete it by shifting remaining entries left
for (unsigned j=i; j<(bx_guard.iaddr.num_virtual-1); j++) {
bx_guard.iaddr.vir[j] = bx_guard.iaddr.vir[j+1];
}
bx_guard.iaddr.num_virtual--;
goto done;
}
}
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
// see if breakpoint is a linear breakpoint
for (i=0; i<bx_guard.iaddr.num_linear; i++) {
if (bx_guard.iaddr.lin[i].bpoint_id == handle) {
// found breakpoint, delete it by shifting remaining entries left
for (unsigned j=i; j<(bx_guard.iaddr.num_linear-1); j++) {
bx_guard.iaddr.lin[j] = bx_guard.iaddr.lin[j+1];
}
bx_guard.iaddr.num_linear--;
goto done;
}
}
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
// see if breakpoint is a physical breakpoint
for (i=0; i<bx_guard.iaddr.num_physical; i++) {
if (bx_guard.iaddr.phy[i].bpoint_id == handle) {
// found breakpoint, delete it by shifting remaining entries left
for (unsigned j=i; j<(bx_guard.iaddr.num_physical-1); j++) {
bx_guard.iaddr.phy[j] = bx_guard.iaddr.phy[j+1];
}
bx_guard.iaddr.num_physical--;
goto done;
}
}
#endif
fprintf(stderr, "Error: breakpoint %u not found.\n", handle);
return;
done:
bx_dbg_breakpoint_changed();
}
void
bx_dbg_vbreakpoint_command(Boolean specific, Bit32u cs, Bit32u eip)
{
#if BX_DBG_SUPPORT_VIR_BPOINT
if (specific == 0) {
fprintf(stderr, "Error: vbreak without address not implemented yet.\n");
return;
}
if (bx_guard.iaddr.num_virtual >= BX_DBG_MAX_VIR_BPOINTS) {
fprintf(stderr, "Error: no more virtual breakpoint slots left.\n");
fprintf(stderr, "Error: see BX_DBG_MAX_VIR_BPOINTS.\n");
return;
}
bx_guard.iaddr.vir[bx_guard.iaddr.num_virtual].cs = cs;
bx_guard.iaddr.vir[bx_guard.iaddr.num_virtual].eip = eip;
bx_guard.iaddr.vir[bx_guard.iaddr.num_virtual].bpoint_id = bx_debugger.next_bpoint_id++;
bx_guard.iaddr.num_virtual++;
bx_guard.guard_for |= BX_DBG_GUARD_IADDR_VIR;
#else
fprintf(stderr, "Error: virtual breakpoint support not compiled in.\n");
fprintf(stderr, "Error: see BX_DBG_SUPPORT_VIR_BPOINT.\n");
#endif
}
void
bx_dbg_lbreakpoint_command(Boolean specific, Bit32u laddress)
{
#if BX_DBG_SUPPORT_LIN_BPOINT
if (specific == 0) {
fprintf(stderr, "Error: lbreak without address not implemented yet.\n");
return;
}
if (bx_guard.iaddr.num_linear >= BX_DBG_MAX_LIN_BPOINTS) {
fprintf(stderr, "Error: no more linear breakpoint slots left.\n");
fprintf(stderr, "Error: see BX_DBG_MAX_LIN_BPOINTS.\n");
return;
}
bx_guard.iaddr.lin[bx_guard.iaddr.num_linear].addr = laddress;
bx_guard.iaddr.lin[bx_guard.iaddr.num_linear].bpoint_id = bx_debugger.next_bpoint_id++;
bx_guard.iaddr.num_linear++;
bx_guard.guard_for |= BX_DBG_GUARD_IADDR_LIN;
#else
fprintf(stderr, "Error: linear breakpoint support not compiled in.\n");
fprintf(stderr, "Error: see BX_DBG_SUPPORT_LIN_BPOINT.\n");
#endif
}
void
bx_dbg_pbreakpoint_command(Boolean specific, Bit32u paddress)
{
#if BX_DBG_SUPPORT_PHY_BPOINT
if (specific == 0) {
fprintf(stderr, "Error: pbreak without address not implemented yet.\n");
return;
}
if (bx_guard.iaddr.num_physical >= BX_DBG_MAX_PHY_BPOINTS) {
fprintf(stderr, "Error: no more physical breakpoint slots left.\n");
fprintf(stderr, "Error: see BX_DBG_MAX_PHY_BPOINTS.\n");
return;
}
bx_guard.iaddr.phy[bx_guard.iaddr.num_physical].addr = paddress;
bx_guard.iaddr.phy[bx_guard.iaddr.num_physical].bpoint_id = bx_debugger.next_bpoint_id++;
bx_guard.iaddr.num_physical++;
bx_guard.guard_for |= BX_DBG_GUARD_IADDR_PHY;
#else
fprintf(stderr, "Error: physical breakpoint support not compiled in.\n");
fprintf(stderr, "Error: see BX_DBG_SUPPORT_PHY_BPOINT.\n");
#endif
}
void
bx_dbg_info_bpoints_command(void)
{
unsigned i;
// Num Type Disp Enb Address What
// 1 breakpoint keep y 0x00010664 in main at temp.c:7
fprintf(stderr, "Num Type Disp Enb Address\n");
#if BX_DBG_SUPPORT_VIR_BPOINT
for (i=0; i<bx_guard.iaddr.num_virtual; i++) {
fprintf(stderr, "%3u ", bx_guard.iaddr.vir[i].bpoint_id);
fprintf(stderr, "vbreakpoint ");
fprintf(stderr, "keep ");
fprintf(stderr, "y ");
fprintf(stderr, "0x%04x:0x%08x\n",
bx_guard.iaddr.vir[i].cs,
bx_guard.iaddr.vir[i].eip);
}
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
for (i=0; i<bx_guard.iaddr.num_linear; i++) {
fprintf(stderr, "%3u ", bx_guard.iaddr.lin[i].bpoint_id);
fprintf(stderr, "lbreakpoint ");
fprintf(stderr, "keep ");
fprintf(stderr, "y ");
fprintf(stderr, "0x%08x\n",
bx_guard.iaddr.lin[i].addr);
}
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
for (i=0; i<bx_guard.iaddr.num_physical; i++) {
fprintf(stderr, "%3u ", bx_guard.iaddr.phy[i].bpoint_id);
fprintf(stderr, "pbreakpoint ");
fprintf(stderr, "keep ");
fprintf(stderr, "y ");
fprintf(stderr, "0x%08x\n",
bx_guard.iaddr.phy[i].addr);
}
#endif
}
void
bx_dbg_set_command(char *p1, char *p2, char *p3)
{
fprintf(stderr, "Error: %s %s %s: command 'set' not implemented yet.\n",
p1, p2, p3);
}
void
bx_dbg_take_command(char *what, unsigned n)
{
if ( !strcmp(what, "dma") ) {
unsigned i;
if (n == 0) {
fprintf(stderr, "Error: take what n=0.\n");
return;
}
bx_dbg_post_dma_reports(); // in case there's some pending reports
bx_dbg_batch_dma.this_many = n;
for (i=0; i<n; i++) {
BX_CPU(0)->dbg_take_dma();
}
bx_dbg_batch_dma.this_many = 1; // reset to normal
bx_dbg_post_dma_reports(); // print reports and flush
if (bx_guard.report.dma)
fprintf(stderr, "done\n");
}
else if ( !strcmp(what, "irq") ) {
BX_CPU(0)->dbg_take_irq();
if (bx_guard.report.irq)
fprintf(stderr, "done\n");
}
else {
fprintf(stderr, "Error: Take '%s' not understood.\n", what);
}
}
void
bx_dbg_info_registers_command(int which_regs_mask)
{
Bit32u reg;
bx_dbg_cpu_t cpu;
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++) {
if (which_regs_mask & BX_INFO_CPU_REGS) {
memset(&cpu, 0, sizeof(cpu));
BX_CPU(i)->dbg_get_cpu(&cpu);
#if (BX_SMP_PROCESSORS > 1)
fprintf(stderr, "%s:\n", BX_CPU(i)->name, i);
#endif
reg = cpu.eax;
fprintf(stderr, "eax 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.ecx;
fprintf(stderr, "ecx 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.edx;
fprintf(stderr, "edx 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.ebx;
fprintf(stderr, "ebx 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.esp;
fprintf(stderr, "esp 0x%-8x\t0x%-8x\n", (unsigned) reg, (int) reg);
reg = cpu.ebp;
fprintf(stderr, "ebp 0x%-8x\t0x%-8x\n", (unsigned) reg, (int) reg);
reg = cpu.esi;
fprintf(stderr, "esi 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.edi;
fprintf(stderr, "edi 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.eip;
fprintf(stderr, "eip 0x%-8x\t0x%-8x\n", (unsigned) reg, (int) reg);
reg = cpu.eflags;
fprintf(stderr, "eflags 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.cs.sel;
fprintf(stderr, "cs 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.ss.sel;
fprintf(stderr, "ss 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.ds.sel;
fprintf(stderr, "ds 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.es.sel;
fprintf(stderr, "es 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.fs.sel;
fprintf(stderr, "fs 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
reg = cpu.gs.sel;
fprintf(stderr, "gs 0x%-8x\t%d\n", (unsigned) reg, (int) reg);
}
if (which_regs_mask & BX_INFO_FPU_REGS) {
BX_CPU(i)->fpu_print_regs ();
}
}
}
void
bx_dbg_info_program_command(void)
{
fprintf(stderr, " Using the running image of child process -1.\n");
fprintf(stderr, "Program stopped at 0x0.\n");
fprintf(stderr, "It stopped at breakpoint 0.\n");
}
void
bx_dbg_dump_cpu_command(void)
{
bx_dbg_cpu_t cpu;
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++ ) {
BX_CPU(i)->dbg_get_cpu(&cpu);
#if (BX_SMP_PROCESSORS >= 2)
fprintf(stderr, "CPU#%u\n", i);
#endif
fprintf(stderr, "eax:0x%x\n", (unsigned) cpu.eax);
fprintf(stderr, "ebx:0x%x\n", (unsigned) cpu.ebx);
fprintf(stderr, "ecx:0x%x\n", (unsigned) cpu.ecx);
fprintf(stderr, "edx:0x%x\n", (unsigned) cpu.edx);
fprintf(stderr, "ebp:0x%x\n", (unsigned) cpu.ebp);
fprintf(stderr, "esi:0x%x\n", (unsigned) cpu.esi);
fprintf(stderr, "edi:0x%x\n", (unsigned) cpu.edi);
fprintf(stderr, "esp:0x%x\n", (unsigned) cpu.esp);
fprintf(stderr, "eflags:0x%x\n", (unsigned) cpu.eflags);
fprintf(stderr, "eip:0x%x\n", (unsigned) cpu.eip);
fprintf(stderr, "cs:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.cs.sel, (unsigned) cpu.cs.des_l,
(unsigned) cpu.cs.des_h, (unsigned) cpu.cs.valid);
fprintf(stderr, "ss:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.ss.sel, (unsigned) cpu.ss.des_l,
(unsigned) cpu.ss.des_h, (unsigned) cpu.ss.valid);
fprintf(stderr, "ds:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.ds.sel, (unsigned) cpu.ds.des_l,
(unsigned) cpu.ds.des_h, (unsigned) cpu.ds.valid);
fprintf(stderr, "es:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.es.sel, (unsigned) cpu.es.des_l,
(unsigned) cpu.es.des_h, (unsigned) cpu.es.valid);
fprintf(stderr, "fs:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.fs.sel, (unsigned) cpu.fs.des_l,
(unsigned) cpu.fs.des_h, (unsigned) cpu.fs.valid);
fprintf(stderr, "gs:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.gs.sel, (unsigned) cpu.gs.des_l,
(unsigned) cpu.gs.des_h, (unsigned) cpu.gs.valid);
fprintf(stderr, "ldtr:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.ldtr.sel, (unsigned) cpu.ldtr.des_l,
(unsigned) cpu.ldtr.des_h, (unsigned) cpu.ldtr.valid);
fprintf(stderr, "tr:s=0x%x, dl=0x%x, dh=0x%x, valid=%u\n",
(unsigned) cpu.tr.sel, (unsigned) cpu.tr.des_l,
(unsigned) cpu.tr.des_h, (unsigned) cpu.tr.valid);
fprintf(stderr, "gdtr:base=0x%x, limit=0x%x\n",
(unsigned) cpu.gdtr.base, (unsigned) cpu.gdtr.limit);
fprintf(stderr, "idtr:base=0x%x, limit=0x%x\n",
(unsigned) cpu.idtr.base, (unsigned) cpu.idtr.limit);
fprintf(stderr, "dr0:0x%x\n", (unsigned) cpu.dr0);
fprintf(stderr, "dr1:0x%x\n", (unsigned) cpu.dr1);
fprintf(stderr, "dr2:0x%x\n", (unsigned) cpu.dr2);
fprintf(stderr, "dr3:0x%x\n", (unsigned) cpu.dr3);
fprintf(stderr, "dr6:0x%x\n", (unsigned) cpu.dr6);
fprintf(stderr, "dr7:0x%x\n", (unsigned) cpu.dr7);
fprintf(stderr, "tr3:0x%x\n", (unsigned) cpu.tr3);
fprintf(stderr, "tr4:0x%x\n", (unsigned) cpu.tr4);
fprintf(stderr, "tr5:0x%x\n", (unsigned) cpu.tr5);
fprintf(stderr, "tr6:0x%x\n", (unsigned) cpu.tr6);
fprintf(stderr, "tr7:0x%x\n", (unsigned) cpu.tr7);
fprintf(stderr, "cr0:0x%x\n", (unsigned) cpu.cr0);
fprintf(stderr, "cr1:0x%x\n", (unsigned) cpu.cr1);
fprintf(stderr, "cr2:0x%x\n", (unsigned) cpu.cr2);
fprintf(stderr, "cr3:0x%x\n", (unsigned) cpu.cr3);
fprintf(stderr, "cr4:0x%x\n", (unsigned) cpu.cr4);
fprintf(stderr, "inhibit_mask:%u\n", cpu.inhibit_mask);
}
#if BX_PCI_SUPPORT
if (bx_options.Oi440FXSupport->get ()) {
bx_devices.pci->print_i440fx_state();
}
#endif
fprintf(stderr, "done\n");
}
void
bx_dbg_examine_command(char *command, char *format, Boolean format_passed,
Bit32u addr, Boolean addr_passed, int simulator)
{
unsigned repeat_count, i;
char ch, display_format, unit_size;
Boolean iteration;
unsigned data_size;
Boolean paddr_valid;
Bit32u paddr;
Bit8u data8;
Bit16u data16;
Bit32u data32;
unsigned columns, per_line, offset;
unsigned char digit;
unsigned biti;
Boolean is_linear;
unsigned char databuf[8];
if (simulator == 0)
printf("[%s]:\n", SIM_NAME0);
else
printf("[%s]:\n", SIM_NAME1_STR);
// If command was the extended "xp" command, meaning eXamine Physical memory,
// then flag memory address as physical, rather than linear.
if (strcmp(command, "xp") == 0) {
is_linear = 0;
}
else {
is_linear = 1;
}
if (addr_passed==0)
addr = bx_debugger.default_addr;
if (format_passed==0) {
display_format = bx_debugger.default_display_format;
unit_size = bx_debugger.default_unit_size;
repeat_count = 1;
}
else {
if (format==NULL) {
fprintf(stderr, "dbg_examine: format NULL\n");
bx_dbg_exit(1);
}
if (strlen(format) < 2) {
fprintf(stderr, "dbg_examine: invalid format passed.\n");
bx_dbg_exit(1);
}
if (format[0] != '/') {
fprintf(stderr, "dbg_examine: '/' is not first char of format.\n");
bx_dbg_exit(1);
}
format++;
repeat_count = 0;
ch = *format;
iteration = 0;
while ( (ch>='0') && (ch<='9') ) {
iteration = 1;
repeat_count = 10*repeat_count + (ch-'0');
format++;
ch = *format;
}
if (iteration==0) {
// if no count given, use default
repeat_count = 1;
}
else if (repeat_count==0) {
// count give, but zero is an error
fprintf(stderr, "dbg_examine: repeat count given but is zero.\n");
return;
}
// set up the default display format and unit size parameters
display_format = bx_debugger.default_display_format;
unit_size = bx_debugger.default_unit_size;
for (i=0; i<=1; i++) {
if (ch==0) break; // bail on null character
switch (ch) {
case 'x': // hex
case 'd': // signed decimal
case 'u': // unsigned decimal
case 'o': // octal
case 't': // binary
case 'c': // chars
case 's': // null terminated string
case 'i': // machine instruction
display_format = ch;
break;
case 'b': // bytes
case 'h': // halfwords (two bytes)
case 'w': // words (4 bytes)
case 'g': // giant words (8 bytes)
unit_size = ch;
break;
default:
fprintf(stderr, "dbg_examine: invalid format passed.\n");
bx_dbg_exit(1);
break;
}
format++;
ch = *format;
}
// store current options as default
bx_debugger.default_display_format = display_format;
bx_debugger.default_unit_size = unit_size;
}
//fprintf(stderr, " repeat count was %u\n", repeat_count);
//fprintf(stderr, " display_format = '%c'\n", display_format);
//fprintf(stderr, " unit_size = '%c'\n", unit_size);
if ( (display_format == 'i') || (display_format == 's') ) {
fprintf(stderr, "error: dbg_examine: 'i' and 's' formats not supported.\n");
return;
}
if (unit_size == 'g') {
fprintf(stderr, "error: dbg_examine: 'g' (8-byte) unit size not supported.\n");
return;
}
data_size = 0;
per_line = 0;
offset = 0;
switch (unit_size) {
case 'b': data_size = 1; per_line = 8; break;
case 'h': data_size = 2; per_line = 8; break;
case 'w': data_size = 4; per_line = 4; break;
//case 'g': data_size = 8; per_line = 2; break;
}
columns = per_line + 1; // set current number columns past limit
for (i=1; i<=repeat_count; i++) {
if (columns > per_line) {
// if not 1st run, need a newline from last line
if (i!=1)
fprintf(stderr, "\n");
fprintf(stderr, "0x%x <bogus+%u>:", addr, offset);
columns = 1;
}
if (is_linear) {
BX_CPU(simulator)->dbg_xlate_linear2phy(addr, &paddr, &paddr_valid);
if (!paddr_valid) {
fprintf(stderr, "error: examine memory: no tranlation for linear-to-phy mem available.\n");
return;
}
}
else {
paddr = addr; // address is already physical address
}
BX_MEM(simulator)->dbg_fetch_mem(paddr, data_size, databuf);
//FIXME HanishKVC The char display for data to be properly integrated
// so that repeat_count, columns, etc. can be set or used properly.
// Also for data_size of 2 and 4 how to display the individual
// characters i.e in which order to be decided.
switch (data_size) {
case 1:
data8 = databuf[0];
switch (display_format) {
case 'x': fprintf(stderr, "\t0x%02x", (unsigned) data8); break;
case 'd': fprintf(stderr, "\t%d", (int) (Bit8s) data8); break;
case 'u': fprintf(stderr, "\t%u", (unsigned) data8); break;
case 'o': fprintf(stderr, "\t%o", (unsigned) data8); break;
case 't':
fputc('\t', stderr);
for (biti=7; ; biti--) {
digit = (data8 >> biti) & 0x01;
fputc(digit + '0', stderr);
if (biti==0) break;
}
break;
case 'c': fprintf(stderr, " %c",data8); break;
}
break;
case 2:
#ifdef BX_LITTLE_ENDIAN
data16 = * (Bit16u *) databuf;
#else
data16 = (databuf[1]<<8) | databuf[0];
#endif
switch (display_format) {
case 'x': fprintf(stderr, "\t0x%04x", (unsigned) data16); break;
case 'd': fprintf(stderr, "\t%d", (int) (Bit16s) data16); break;
case 'u': fprintf(stderr, "\t%u", (unsigned) data16); break;
case 'o': fprintf(stderr, "\t%o", (unsigned) data16); break;
case 't':
fputc('\t', stderr);
for (biti=15; ; biti--) {
digit = (data16 >> biti) & 0x01;
fputc(digit + '0', stderr);
if (biti==0) break;
}
break;
case 'c': fprintf(stderr, " %c %c",data16>>8,data16&0xff); break;
}
break;
case 4:
#ifdef BX_LITTLE_ENDIAN
data32 = * (Bit32u *) databuf;
#else
data32 = (databuf[3]<<24) | (databuf[2]<<16) |
(databuf[1]<<8) | databuf[0];
#endif
switch (display_format) {
case 'x': fprintf(stderr, "\t0x%08x", (unsigned) data32); break;
case 'd': fprintf(stderr, "\t%d", (int) (Bit32s) data32); break;
case 'u': fprintf(stderr, "\t%u", (unsigned) data32); break;
case 'o': fprintf(stderr, "\t%o", (unsigned) data32); break;
case 't':
fputc('\t', stderr);
for (biti=31; ; biti--) {
digit = (data32 >> biti) & 0x01;
fputc(digit + '0', stderr);
if (biti==0) break;
}
break;
case 'c':
fprintf(stderr, " %c %c",data32>>24,(data32>>16)&0xff);
fprintf(stderr, " %c %c",(data32>>8)&0xff,data32&0xff);
break;
}
break;
}
addr += data_size;
bx_debugger.default_addr = addr;
columns++;
offset += data_size;
}
fprintf(stderr, "\n");
}
void
bx_dbg_setpmem_command(Bit32u addr, unsigned len, Bit32u val)
{
Boolean is_OK;
Bit8u buf[4];
switch ( len ) {
case 1:
buf[0] = (Bit8u) val;
break;
case 2:
buf[0] = val & 0xff;
buf[1] = (val>>8) & 0xff;
break;
case 4:
buf[0] = val & 0xff; val >>= 8;
buf[1] = val & 0xff; val >>= 8;
buf[2] = val & 0xff; val >>= 8;
buf[3] = val & 0xff;
break;
default:
fprintf(stderr, "Error: setpmem: bad length value = %u\n", len);
return;
}
is_OK = BX_MEM(0)->dbg_set_mem(addr, len, buf);
if (!is_OK) {
fprintf(stderr, "Error: setpmem: could not set memory, out of physical bounds?\n");
}
}
void
bx_dbg_set_symbol_command(char *symbol, Bit32u val)
{
Boolean is_OK;
symbol++; // get past '$'
if ( !strcmp(symbol, "eax") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_EAX, val);
}
else if ( !strcmp(symbol, "ecx") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_ECX, val);
}
else if ( !strcmp(symbol, "edx") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_EDX, val);
}
else if ( !strcmp(symbol, "ebx") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_EBX, val);
}
else if ( !strcmp(symbol, "esp") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_ESP, val);
}
else if ( !strcmp(symbol, "ebp") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_EBP, val);
}
else if ( !strcmp(symbol, "esi") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_ESI, val);
}
else if ( !strcmp(symbol, "edi") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_EDI, val);
}
else if ( !strcmp(symbol, "eip") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_EIP, val);
}
else if ( !strcmp(symbol, "eflags") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_EFLAGS, val);
}
else if ( !strcmp(symbol, "cs") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_CS, val);
}
else if ( !strcmp(symbol, "ss") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_SS, val);
}
else if ( !strcmp(symbol, "ds") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_DS, val);
}
else if ( !strcmp(symbol, "es") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_ES, val);
}
else if ( !strcmp(symbol, "fs") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_FS, val);
}
else if ( !strcmp(symbol, "gs") ) {
is_OK = BX_CPU(dbg_cpu)->dbg_set_reg(BX_DBG_REG_GS, val);
}
else if ( !strcmp(symbol, "cpu") ) {
#if ((BX_SMP_PROCESSORS>1) && (BX_SUPPORT_APIC))
if ((val > BX_SMP_PROCESSORS)
|| (val >= APIC_MAX_ID)
|| (apic_index[val] == NULL)) {
fprintf (stderr, "invalid cpu id number %d\n", val);
return;
}
dbg_cpu = val;
#endif
}
else if ( !strcmp(symbol, "synchronous_dma") ) {
bx_guard.async.dma = !val;
return;
}
else if ( !strcmp(symbol, "synchronous_irq") ) {
bx_guard.async.irq = !val;
return;
}
else if ( !strcmp(symbol, "event_reports") ) {
bx_guard.report.irq = val;
bx_guard.report.a20 = val;
bx_guard.report.io = val;
bx_guard.report.ucmem = val;
bx_guard.report.dma = val;
return;
}
else if ( !strcmp(symbol, "auto_disassemble") ) {
bx_debugger.auto_disassemble = (val > 0);
return;
}
else if ( !strcmp(symbol, "disassemble_size") ) {
if ( (val!=16) && (val!=32) ) {
fprintf(stderr, "Error: disassemble_size must be 16 or 32.\n");
return;
}
bx_debugger.disassemble_size = val;
return;
}
else {
fprintf(stderr, "Error: set: unrecognized symbol.\n");
return;
}
if (!is_OK) {
fprintf(stderr, "Error: could not set register '%s'.\n", symbol);
}
}
void
bx_dbg_query_command(char *what)
{
unsigned pending;
if ( !strcmp(what, "pending") ) {
pending = BX_CPU(0)->dbg_query_pending();
if ( pending & BX_DBG_PENDING_DMA )
fprintf(stderr, "pending DMA\n");
if ( pending & BX_DBG_PENDING_IRQ )
fprintf(stderr, "pending IRQ\n");
if (!pending)
fprintf(stderr, "pending none\n");
fprintf(stderr, "done\n");
}
else {
fprintf(stderr, "Error: Query '%s' not understood.\n", what);
}
}
void
bx_dbg_set_cpu_command(void)
{
FILE *fp;
int reti;
char *rets;
Boolean retb;
unsigned long ul1, ul2, ul3, ul4;
bx_dbg_cpu_t cpu;
fp = bx_infile_stack[bx_infile_stack_index].fp;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "eax:0x%lx", &ul1); cpu.eax = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "ebx:0x%lx", &ul1); cpu.ebx = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "ecx:0x%lx", &ul1); cpu.ecx = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "edx:0x%lx", &ul1); cpu.edx = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "ebp:0x%lx", &ul1); cpu.ebp = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "esi:0x%lx", &ul1); cpu.esi = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "edi:0x%lx", &ul1); cpu.edi = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "esp:0x%lx", &ul1); cpu.esp = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "eflags:0x%lx", &ul1); cpu.eflags = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "eip:0x%lx", &ul1); cpu.eip = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "cs:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.cs.sel = (Bit16u) ul1;
cpu.cs.des_l = ul2;
cpu.cs.des_h = ul3;
cpu.cs.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "ss:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.ss.sel = (Bit16u) ul1;
cpu.ss.des_l = ul2;
cpu.ss.des_h = ul3;
cpu.ss.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "ds:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.ds.sel = (Bit16u) ul1;
cpu.ds.des_l = ul2;
cpu.ds.des_h = ul3;
cpu.ds.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "es:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.es.sel = (Bit16u) ul1;
cpu.es.des_l = ul2;
cpu.es.des_h = ul3;
cpu.es.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "fs:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.fs.sel = (Bit16u) ul1;
cpu.fs.des_l = ul2;
cpu.fs.des_h = ul3;
cpu.fs.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "gs:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.gs.sel = (Bit16u) ul1;
cpu.gs.des_l = ul2;
cpu.gs.des_h = ul3;
cpu.gs.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "ldtr:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.ldtr.sel = (Bit16u) ul1;
cpu.ldtr.des_l = ul2;
cpu.ldtr.des_h = ul3;
cpu.ldtr.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "tr:s=0x%lx, dl=0x%lx, dh=0x%lx, valid=%lu",
&ul1, &ul2, &ul3, &ul4);
cpu.tr.sel = (Bit16u) ul1;
cpu.tr.des_l = ul2;
cpu.tr.des_h = ul3;
cpu.tr.valid = ul4;
if (reti != 4) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "gdtr:base=0x%lx, limit=0x%lx",
&ul1, &ul2);
cpu.gdtr.base = ul1;
cpu.gdtr.limit = ul2;
if (reti != 2) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "idtr:base=0x%lx, limit=0x%lx",
&ul1, &ul2);
cpu.idtr.base = ul1;
cpu.idtr.limit = ul2;
if (reti != 2) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "dr0:0x%lx", &ul1); cpu.dr0 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "dr1:0x%lx", &ul1); cpu.dr1 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "dr2:0x%lx", &ul1); cpu.dr2 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "dr3:0x%lx", &ul1); cpu.dr3 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "dr6:0x%lx", &ul1); cpu.dr6 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "dr7:0x%lx", &ul1); cpu.dr7 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "tr3:0x%lx", &ul1); cpu.tr3 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "tr4:0x%lx", &ul1); cpu.tr4 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "tr5:0x%lx", &ul1); cpu.tr5 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "tr6:0x%lx", &ul1); cpu.tr6 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "tr7:0x%lx", &ul1); cpu.tr7 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "cr0:0x%lx", &ul1); cpu.cr0 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "cr1:0x%lx", &ul1); cpu.cr1 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "cr2:0x%lx", &ul1); cpu.cr2 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "cr3:0x%lx", &ul1); cpu.cr3 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "cr4:0x%lx", &ul1); cpu.cr4 = ul1;
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "inhibit_mask:%u", &cpu.inhibit_mask);
if (reti != 1) goto scanf_error;
rets = fgets(tmp_buf, 512, fp); if (!rets) goto eof_error;
reti = sscanf(tmp_buf, "done");
if (reti != 0) goto scanf_error;
retb = BX_CPU(0)->dbg_set_cpu(&cpu);
if (retb == 0)
fprintf(stderr, "Error: dbg_set_cpu encountered error\n");
else
fprintf(stderr, "OK\n");
return;
eof_error:
fprintf(stderr, "Error: EOF encountered in dbg_set_cpu input stream\n");
return;
scanf_error:
fprintf(stderr, "Error: scanf returned error in dbg_set_cpu input stream\n");
return;
}
void
bx_dbg_disassemble_command(bx_num_range range)
{
#if BX_DISASM
Boolean paddr_valid;
Bit32u paddr;
unsigned ilen;
if (range.to == EMPTY_ARG) {
// should set to cs:eip. FIXME
BX_INFO(("Error: type 'disassemble ADDR' or 'disassemble ADDR:ADDR'"));
return;
}
do {
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(range.from, &paddr, &paddr_valid);
if (paddr_valid) {
BX_MEM(0)->dbg_fetch_mem(paddr, 16, bx_disasm_ibuf);
ilen = bx_disassemble.disasm(bx_debugger.disassemble_size==32,
bx_disasm_ibuf, bx_disasm_tbuf);
fprintf(stderr, "%08x: ", (unsigned) range.from);
for (unsigned j=0; j<ilen; j++)
fprintf(stderr, "%02x", (unsigned) bx_disasm_ibuf[j]);
fprintf(stderr, ": %s\n", bx_disasm_tbuf);
}
else {
fprintf(stderr, "??? (physical address not available)\n");
ilen = 0; // keep compiler happy
range.from = range.to; // bail out
}
range.from += ilen;
} while (range.from < range.to);
#else
UNUSED(range);
#endif // #if BX_DISASM
}
//NOTE simple minded maths logic
void
bx_dbg_maths_command(char *command, int data1, int data2)
{
if(strcmp(command,"add") == 0)
{
fprintf(stderr," %x + %x = %x ", data1, data2, data1+data2);
}
else if(strcmp(command,"sub") == 0)
{
fprintf(stderr," %x - %x = %x ", data1, data2, data1-data2);
}
else if(strcmp(command,"mul") == 0)
{
fprintf(stderr," %x * %x = %x ", data1, data2, data1*data2);
}
else if(strcmp(command,"div") == 0)
{
fprintf(stderr," %x / %x = %x ", data1, data2, data1/data2);
}
fprintf(stderr,"\n");
}
//FIXME HanishKVC requires better error checking in POST FIX expression
//NOTE Uses POST FIX EXPRESSION handling for better maths
void
bx_dbg_maths_expression_command(char *expr)
{
int data1, data2, res;
int biti,digit;
char *next_token;
fprintf(stderr,"%s\n",expr);
expr++; // skip " in the string token passed
while(expr[0] == ' ')expr++; // skip any spaces following the "
next_token = strtok(expr," ");
if(next_token == NULL) return;
data1 = res = strtol(next_token,NULL,0);
do
{
switch(next_token[0])
{
case '+':
res = data1+data2;
fprintf(stderr," %x + %x = %x ",data1,data2,res);
data1 = res;
break;
case '-':
res = data1-data2;
fprintf(stderr," %x - %x = %x ",data1,data2,res);
data1 = res;
break;
case '*':
res = data1*data2;
fprintf(stderr," %x * %x = %x ",data1,data2,res);
data1 = res;
break;
case '/':
res = data1/data2;
fprintf(stderr," %x / %x = %x ",data1,data2,res);
data1 = res;
break;
case '&':
res = data1 & data2;
fprintf(stderr," %x & %x = %x ",data1,data2,res);
data1 = res;
break;
case '|':
res = data1 | data2;
fprintf(stderr," %x | %x = %x ",data1,data2,res);
data1 = res;
break;
case '~':
res = ~data1;
fprintf(stderr," ~ %x = %x ",data1,res);
data1 = res;
break;
default:
data2 = strtol(next_token,NULL,0);
break;
}
next_token = strtok(NULL," ");
if(next_token == NULL) break;
}while(1);
fprintf(stderr,"\n");
//FIXME HanishKVC If sizeof changes from a Byte addressed to
// Word addressed machine & so on then the logic
// below requires to be updated
fprintf(stderr," Binary of %x : ",res);
for(biti=(sizeof(int)*8)-1; ; biti--)
{
digit = (res >> biti) & 0x01;
fputc(digit + '0', stderr);
if(biti==0) break;
if((biti%4) == 0) fputc(' ',stderr);
}
fprintf(stderr,"\n");
}
void
bx_dbg_v2l_command(unsigned seg_no, Bit32u offset)
{
#if BX_NUM_SIMULATORS > 1
fprintf(stderr, "Error: v2l not supported for nsim > 1\n"
#else
bx_dbg_sreg_t sreg;
Bit32u laddr;
if (seg_no > 5) {
fprintf(stderr, "Error: seg_no out of bounds\n");
return;
}
BX_CPU(dbg_cpu)->dbg_get_sreg(&sreg, seg_no);
if (!sreg.valid) {
fprintf(stderr, "Error: segment valid bit cleared\n");
return;
}
laddr = (sreg.des_l>>16) |
((sreg.des_h<<16)&0x00ff0000) |
(sreg.des_h & 0xff000000);
laddr += offset;
fprintf(stderr, "laddr: 0x%x (%u)\n",
(unsigned) laddr, (unsigned) laddr);
#endif
}
void
bx_dbg_instrument_command(char *comm)
{
#if BX_INSTRUMENTATION
if ( !strcmp(comm, "start") ) {
BX_INSTR_START ();
}
else if ( !strcmp(comm, "stop") ) {
BX_INSTR_STOP ();
}
else if ( !strcmp(comm, "reset") ) {
BX_INSTR_RESET ();
}
else if ( !strcmp(comm, "print") ) {
BX_INSTR_PRINT ();
}
else {
fprintf(stderr, "Error: command instrument %s not implemented.\n", comm);
bx_dbg_exit(1);
}
#else
UNUSED(comm);
fprintf(stderr, "Error: instrumentation not enabled.\n");
#endif
}
void
bx_dbg_loader_command(char *path_quoted)
{
size_t len;
// skip beginning double quote
if (path_quoted[0] == '"')
path_quoted++;
// null out ending quote
len = strlen(path_quoted);
if (path_quoted[len - 1] == '"')
path_quoted[len - 1] = '\0';
#if BX_USE_LOADER
{
bx_loader_misc_t loader_misc;
BX_CPU(0)->loader(path_quoted, &loader_misc);
#if 0
fprintf(stderr, "dr0: 0x%08x\n", loader_misc.dr0);
fprintf(stderr, "dr1: 0x%08x\n", loader_misc.dr1);
fprintf(stderr, "dr2: 0x%08x\n", loader_misc.dr2);
fprintf(stderr, "dr3: 0x%08x\n", loader_misc.dr3);
fprintf(stderr, "dr6: 0x%08x\n", loader_misc.dr6);
fprintf(stderr, "dr7: 0x%08x\n", loader_misc.dr7);
#endif
bx_cpu.dr0 = loader_misc.dr0;
bx_cpu.dr1 = loader_misc.dr1;
bx_cpu.dr2 = loader_misc.dr2;
bx_cpu.dr3 = loader_misc.dr3;
bx_cpu.dr7 = loader_misc.dr7;
}
#else
fprintf(stderr, "Error: loader not implemented.\n");
#endif
}
void
bx_dbg_doit_command(unsigned n)
{
// generic command to add temporary hacks to
// for debugging purposes
UNUSED(n);
bx_dbg.interrupts = n;
bx_dbg.exceptions = n;
}
void
bx_dbg_crc_command(Bit32u addr1, Bit32u addr2)
{
Bit32u crc1, crc2;
if (addr1 >= addr2) {
fprintf(stderr, "Error: crc: invalid range.\n");
return;
}
if (!BX_MEM(0)->dbg_crc32(crc32, addr1, addr2, &crc1)) {
fprintf(stderr, "sim0: could not CRC memory\n");
return;
}
#if BX_NUM_SIMULATORS == 1
fprintf(stderr, "0x%lx\n", crc1);
#else
if (!BX_MEM(1)->dbg_crc32(crc32, addr1, addr2, &crc2)) {
fprintf(stderr, "sim1: could not CRC memory\n");
return;
}
if (crc1 == crc2) {
fprintf(stderr, "CRC same: 0x%x\n", (unsigned) crc1);
}
else {
fprintf(stderr, "CRC different: sim0=0x%x, sim1=0x%x\n",
(unsigned) crc1, (unsigned) crc2);
}
#endif
}
void
bx_dbg_info_dirty_command(void)
{
unsigned char *page_tbl = BX_MEM(0)->dbg_dirty_pages;
unsigned page_tbl_size = BX_MEM(0)->dbg_count_dirty_pages ();
for (unsigned i=0; i<page_tbl_size; i++) {
if (page_tbl[i]) {
fprintf(stderr, "0x%x\n", i);
page_tbl[i] = 0; // reset to clean
}
}
}
void bx_dbg_print_descriptor (FILE *fp, unsigned char desc[8], int verbose)
{
int lo = (desc[3] << 24) | (desc[2] << 16) | (desc[1] << 8) | (desc[0]);
int hi = (desc[7] << 24) | (desc[6] << 16) | (desc[5] << 8) | (desc[4]);
//fprintf (fp, "descriptor hi,lo = %08x,%08x\n", hi, lo);
int base = ((lo >> 16) & 0xffff)
| ((hi << 16) & 0xff0000)
| (hi & 0xff000000);
int limit = (lo & 0xffff);
int segment = (lo >> 16) & 0xffff;
int offset = (lo & 0xffff) | (hi & 0xffff0000);
int type = (hi >> 8) & 0x0f;
int dpl = (hi >> 13) & 0x03;
int s = (hi >> 12) & 0x01;
int present = (hi >> 15) & 0x01;
int avl = (hi >> 20) & 0x01;
int d_b = (hi >> 22) & 0x01;
int g = (hi >> 23) & 0x01;
int base_is_jump_addr;
#if 0
if (s) {
// either a code or a data segment. bit 11 (type file MSB) then says
// 0=data segment, 1=code seg
if (type&8) {
fprintf (fp, "Segment type: Code, %s%s%s\n",
(type&2)? "Execute/Read" : "Execute-Only",
(type&4)? ", Conforming" : "",
(type&1)? ", Accessed" : "");
fprintf (fp, "D flag=%d (use %d-bit addresses, %d-bit or 8-bit operands)\n", d_b, d_b? 32 : 16);
} else {
fprintf (fp, "Segment type: Data, %s%s%s\n",
(type&2)? "Read/Write" : "Read-Only",
(type&4)? ", Expand-down" : "",
(type&1)? ", Accessed" : "");
}
} else {
// types from IA32-devel-guide-3, page 3-15.
static char *type_names[16] = { "Reserved", "16-Bit TSS (available)", "LDT", "16-Bit TSS (Busy)", "16-Bit Call Gate", "Task Gate", "16-Bit Interrupt Gate", "16-Bit Trap Gate", "Reserved", "32-Bit TSS (Available)", "Reserved", "32-Bit TSS (Busy)", "32-Bit Call Gate", "Reserved", "32-Bit Interrupt Gate", "32-Bit Trap Gate" };
// some kind of gate?
fprintf (fp, "System segment, type=0x%x=%s\n", type, type_names[type]);
base_is_jump_addr = 1;
// for call gates, print segment:offset and parameter count p.40-15
// for task gate, only present,dpl,TSS segment selector exist. p.5-13
// for interrupt gate, segment:offset,p,dpl
// for trap gate, segment:offset,p,dpl
}
fprintf (fp, "DPL=descriptor privilege level=%d\n", dpl);
if (base_is_jump_addr) {
fprintf (fp, "target address=%04x:%08x\n", segment, offset);
} else {
fprintf (fp, "base address=%p\n", base);
fprintf (fp, "G=granularity=%d\n", g);
fprintf (fp, "limit=0x%x %s (see G)\n", limit, g?"4K-byte units" : "bytes");
fprintf (fp, "AVL=available to OS=%d\n", avl);
}
fprintf (fp, "P=present=%d\n", present);
#endif
/* brief output */
// 32-bit trap gate, target=0010:c0108ec4, DPL=0, present=1
// code segment, base=0000:00cfffff, length=0xffff
if (s) {
// either a code or a data segment. bit 11 (type file MSB) then says
// 0=data segment, 1=code seg
if (type&8) {
fprintf (fp, "Code segment, linearaddr=%08x, len=%04x %s, %s%s%s, %d-bit addrs\n",
base, limit, g ? "* 4Kbytes" : "bytes",
(type&2)? "Execute/Read" : "Execute-Only",
(type&4)? ", Conforming" : "",
(type&1)? ", Accessed" : "",
d_b? 32 : 16);
} else {
fprintf (fp, "Data segment, linearaddr=%08x, len=%04x %s, %s%s%s\n",
base, limit, g ? "* 4Kbytes" : "bytes",
(type&2)? "Read/Write" : "Read-Only",
(type&4)? ", Expand-down" : "",
(type&1)? ", Accessed" : "");
}
} else {
// types from IA32-devel-guide-3, page 3-15.
static char *undef = "???";
static char *type_names[16] = { undef, "16-Bit TSS (available)", "LDT", "16-Bit TSS (Busy)", "16-Bit Call Gate", "Task Gate", "16-Bit Interrupt Gate", "16-Bit Trap Gate", undef, "32-Bit TSS (Available)", undef, "32-Bit TSS (Busy)", "32-Bit Call Gate", undef, "32-Bit Interrupt Gate", "32-Bit Trap Gate" };
fprintf (fp, "%s ", type_names[type]);
// only print more if type is valid
if (type_names[type] == undef) {
fprintf (fp, "descriptor hi=%08x, lo=%08x", hi, lo);
} else {
// for call gates, print segment:offset and parameter count p.4-15
// for task gate, only present,dpl,TSS segment selector exist. p.5-13
// for interrupt gate, segment:offset,p,dpl
// for trap gate, segment:offset,p,dpl
// for TSS, base address and segment limit
switch (type) {
case 1: case 3: // 16-bit TSS
case 9: case 11: // 32-bit TSS
limit = (hi&0x000f0000) | (lo&0xffff);
fprintf (fp, "at %08x, length 0x%x", base, limit);
break;
case 2:
// it's an LDT. not much to print.
break;
default:
// task, int, trap, or call gate.
fprintf (fp, "target=%04x:%08x, DPL=%d", segment, offset, dpl);
}
}
fprintf (fp, "\n");
}
}
void
bx_dbg_info_idt_command(bx_num_range range) {
bx_dbg_cpu_t cpu;
BX_CPU(0)->dbg_get_cpu(&cpu);
int n, print_table = 0;
if (range.to == EMPTY_ARG) {
// show all entries
range.from = 0;
range.to = (cpu.idtr.limit) / 8;
print_table = 1;
}
if (print_table)
fprintf (stderr, "Interrupt Descriptor Table (0x%08x):\n", cpu.idtr.base);
for (n = range.from; n<=range.to; n++) {
Bit32u paddr, paddr_valid;
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(cpu.idtr.base + 8*n, &paddr, &paddr_valid);
if (!paddr_valid) {
fprintf (stderr, "error: IDTR+8*%d points to invalid linear address %p\n",
n, cpu.idtr.base);
return;
}
// read 8-byte entry from IDT
unsigned char entry[8];
BX_MEM(0)->dbg_fetch_mem (paddr, 8, entry);
fprintf (stderr, "IDT[0x%02x]=", n);
bx_dbg_print_descriptor (stderr, entry, 0);
}
if (print_table) fprintf (stderr, "You can list individual entries with 'info idt NUM' or groups with 'info idt NUM:NUM'\n");
}
void
bx_dbg_info_gdt_command(bx_num_range range) {
bx_dbg_cpu_t cpu;
BX_CPU(0)->dbg_get_cpu(&cpu);
int n, print_table = 0;
if (range.to == EMPTY_ARG) {
// show all entries
range.from = 0;
range.to = (cpu.gdtr.limit) / 8;
print_table = 1;
}
if (print_table)
fprintf (stderr, "Global Descriptor Table (0x%08x):\n", cpu.gdtr.base);
for (n = range.from; n<=range.to; n++) {
Bit32u paddr, paddr_valid;
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(cpu.gdtr.base + 8*n, &paddr, &paddr_valid);
if (!paddr_valid) {
fprintf (stderr, "error: GDTR+8*%d points to invalid linear address %p\n",
n, cpu.gdtr.base);
return;
}
unsigned char entry[8];
// read 8-byte entry from GDT
BX_MEM(0)->dbg_fetch_mem (paddr, 8, entry);
fprintf (stderr, "GDT[0x%02x]=", n);
bx_dbg_print_descriptor (stderr, entry, 0);
}
if (print_table) fprintf (stderr, "You can list individual interrupts with 'info gdt NUM'.\n");
}
void
bx_dbg_info_ldt_command(bx_num_range n) {
bx_dbg_cpu_t cpu;
BX_CPU(0)->dbg_get_cpu(&cpu);
fprintf (stderr, "Local Descriptor Table output not implemented\n");
}
void
bx_dbg_info_tss_command(bx_num_range n) {
bx_dbg_cpu_t cpu;
BX_CPU(0)->dbg_get_cpu(&cpu);
fprintf (stderr, "TSS output not implemented\n");
}
bx_num_range
make_num_range (Bit64s from, Bit64s to)
{
bx_num_range x;
x.from = from;
x.to = to;
return x;
}
void
bx_dbg_info_control_regs_command(void)
{
bx_dbg_cpu_t cpu;
BX_CPU(0)->dbg_get_cpu(&cpu);
int cr0 = cpu.cr0;
int cr2 = cpu.cr2;
int cr3 = cpu.cr3;
int cr4 = cpu.cr4;
fprintf (stderr, "CR0=0x%08x\n", cr0);
fprintf (stderr, " PG=paging=%d\n", (cr0>>31) & 1);
fprintf (stderr, " CD=cache disable=%d\n", (cr0>>30) & 1);
fprintf (stderr, " NW=not write through=%d\n", (cr0>>29) & 1);
fprintf (stderr, " AM=alignment mask=%d\n", (cr0>>18) & 1);
fprintf (stderr, " WP=write protect=%d\n", (cr0>>16) & 1);
fprintf (stderr, " NE=numeric error=%d\n", (cr0>>5) & 1);
fprintf (stderr, " ET=extension type=%d\n", (cr0>>4) & 1);
fprintf (stderr, " TS=task switched=%d\n", (cr0>>3) & 1);
fprintf (stderr, " EM=FPU emulation=%d\n", (cr0>>2) & 1);
fprintf (stderr, " MP=monitor coprocessor=%d\n", (cr0>>1) & 1);
fprintf (stderr, " PE=protection enable=%d\n", (cr0>>0) & 1);
fprintf (stderr, "CR2=page fault linear address=0x%08x\n", cr2);
fprintf (stderr, "CR3=0x%08x\n", cr3);
fprintf (stderr, " PCD=page-level cache disable=%d\n", (cr3>>4) & 1);
fprintf (stderr, " PWT=page-level writes transparent=%d\n", (cr3>>3) & 1);
fprintf (stderr, "CR4=0x%08x\n", cr4);
fprintf (stderr, " VME=virtual-8086 mode extensions=%d\n", (cr4>>0) & 1);
fprintf (stderr, " PVI=protected-mode virtual interrupts=%d\n", (cr4>>1) & 1);
fprintf (stderr, " TSD=time stamp disable=%d\n", (cr4>>2) & 1);
fprintf (stderr, " DE=debugging extensions=%d\n", (cr4>>3) & 1);
fprintf (stderr, " PSE=page size extensions=%d\n", (cr4>>4) & 1);
fprintf (stderr, " PAE=physical address extension=%d\n", (cr4>>5) & 1);
fprintf (stderr, " MCE=machine check enable=%d\n", (cr4>>6) & 1);
fprintf (stderr, " PGE=page global enable=%d\n", (cr4>>7) & 1);
fprintf (stderr, " PCE=performance-monitor counter enable=%d\n", (cr4>>8) & 1);
fprintf (stderr, " OXFXSR=OS support for FXSAVE/FXRSTOR=%d\n", (cr4>>9) & 1);
fprintf (stderr, " OSXMMEXCPT=OS support for unmasked SIMD FP exceptions=%d\n", (cr4>>10) & 1);
}
/*
* this implements the info ne2k commands in the debugger.
* info ne2k - shows all registers
* info ne2k page N - shows all registers in a page
* info ne2k page N reg M - shows just one register
*/
void
bx_dbg_info_ne2k(int page, int reg)
{
#if BX_NE2K_SUPPORT
bx_ne2k.print_info (stderr, page, reg, 0);
#else
fprintf (stderr, "NE2000 support is not compiled in.\n");
#endif
}
//
// Reports from various events
//
void
bx_dbg_iac_report(unsigned vector, unsigned irq)
{
#if BX_NUM_SIMULATORS > 1
unsigned tail, master;
#endif
if (doit) fprintf(stderr, "iac report: vector=%u\n", vector);
if (bx_guard.report.irq) {
fprintf(stderr, "event icount=%u IRQ irq=%u vec=%x\n",
(unsigned) BX_CPU(dbg_cpu)->guard_found.icount, irq, vector);
}
#if BX_NUM_SIMULATORS > 1
if (bx_debugger.master_slave_mode == BX_DBG_SLAVE_MODE ) {
fprintf(stderr, "Error: iac_report: in slave mode.\n");
bx_dbg_exit(1);
}
// Master simulator mode
if (bx_debugger.async_journal.size >= BX_DBG_ASYNC_JOURNAL_SIZE) {
fprintf(stderr, "Error: iac: async journal full.\n");
bx_dbg_exit(1);
}
if (bx_debugger.async_journal.size == 0) {
// start off point head & tail at same element
bx_debugger.async_journal.head = 0;
tail = bx_debugger.async_journal.tail = 0;
}
else {
tail = bx_debugger.async_journal.tail + 1;
}
if (tail >= BX_DBG_ASYNC_JOURNAL_SIZE) {
fprintf(stderr, "Error: iac_report: journal wrapped.\n");
bx_dbg_exit(0);
}
master = bx_debugger.master;
bx_debugger.async_journal.element[tail].what = BX_DBG_ASYNC_JOURNAL_IAC;
bx_debugger.async_journal.element[tail].icount = bx_guard_found[master].icount;
bx_debugger.async_journal.element[tail].u.iac.val = vector;
if (bx_debugger.async_journal.size)
bx_debugger.async_journal.tail++;
bx_debugger.async_journal.size++;
#endif
}
void
bx_dbg_a20_report(unsigned val)
{
if (bx_guard.report.a20) {
fprintf(stderr, "event icount=%u A20 val=%u\n",
(unsigned) BX_CPU(dbg_cpu)->guard_found.icount, val);
}
}
#if BX_NUM_SIMULATORS > 1
void
bx_dbg_journal_a20_event(unsigned val)
{
unsigned tail, master;
if (bx_debugger.master_slave_mode == BX_DBG_SLAVE_MODE ) {
fprintf(stderr, "Error: a20_report: in slave mode.\n");
bx_dbg_exit(1);
}
// Master simulator mode
if (bx_debugger.async_journal.size >= BX_DBG_ASYNC_JOURNAL_SIZE) {
fprintf(stderr, "Error: async journal full.\n");
bx_dbg_exit(1);
}
if (bx_debugger.async_journal.size == 0) {
// start off point head & tail at same element
bx_debugger.async_journal.head = 0;
tail = bx_debugger.async_journal.tail = 0;
}
else {
tail = bx_debugger.async_journal.tail + 1;
}
if (tail >= BX_DBG_ASYNC_JOURNAL_SIZE) {
fprintf(stderr, "Error: a20_report: journal wrapped.\n");
bx_dbg_exit(0);
}
master = bx_debugger.master;
bx_debugger.async_journal.element[tail].what = BX_DBG_ASYNC_JOURNAL_A20;
bx_debugger.async_journal.element[tail].icount = bx_guard_found[master].icount;
bx_debugger.async_journal.element[tail].u.a20.val = val;
if (bx_debugger.async_journal.size)
bx_debugger.async_journal.tail++;
bx_debugger.async_journal.size++;
}
#endif
void
bx_dbg_io_report(Bit32u addr, unsigned size, unsigned op, Bit32u val)
{
if (bx_guard.report.io) {
fprintf(stderr, "event icount=%u IO addr=0x%x size=%u op=%s val=0x%x\n",
(unsigned) BX_CPU(dbg_cpu)->guard_found.icount,
(unsigned) addr,
size,
(op==BX_READ) ? "read" : "write",
(unsigned) val);
}
// nothing else to do. bx_dbg_inp() and bx_dbg_outp() do the journaling.
}
void
bx_dbg_ucmem_report(Bit32u addr, unsigned size, unsigned op, Bit32u val)
{
if (bx_guard.report.ucmem) {
fprintf(stderr, "event icount=%u UCmem addr=0x%x size=%u op=%s val=0x%x\n",
(unsigned) BX_CPU(dbg_cpu)->guard_found.icount,
(unsigned) addr,
size,
(op==BX_READ) ? "read" : "write",
(unsigned) val);
}
// nothing else to do. bx_dbg_ucmem_read() and bx_dbg_ucmem_write()
// do the journaling.
}
void
bx_dbg_dma_report(Bit32u addr, unsigned len, unsigned what, Bit32u val)
{
if (bx_dbg_batch_dma.this_many == 0) {
fprintf(stderr, "%s: DMA batch this_many=0.\n", argv0);
bx_dbg_exit(1);
}
// if Q is full, post events (and flush)
if (bx_dbg_batch_dma.Qsize >= bx_dbg_batch_dma.this_many) {
fprintf(stderr, "%s: DMA batch Q was not flushed.\n", argv0);
bx_dbg_exit(1);
}
// if Q already has MAX elements in it
if (bx_dbg_batch_dma.Qsize >= BX_BATCH_DMA_BUFSIZE) {
fprintf(stderr, "%s: DMA batch buffer overrun.\n", argv0);
bx_dbg_exit(1);
}
bx_dbg_batch_dma.Qsize++;
bx_dbg_batch_dma.Q[bx_dbg_batch_dma.Qsize-1].addr = addr;
bx_dbg_batch_dma.Q[bx_dbg_batch_dma.Qsize-1].len = len;
bx_dbg_batch_dma.Q[bx_dbg_batch_dma.Qsize-1].what = what;
bx_dbg_batch_dma.Q[bx_dbg_batch_dma.Qsize-1].val = val;
bx_dbg_batch_dma.Q[bx_dbg_batch_dma.Qsize-1].icount = BX_CPU(dbg_cpu)->guard_found.icount;
// if Q is full, post events (and flush)
if (bx_dbg_batch_dma.Qsize >= bx_dbg_batch_dma.this_many)
bx_dbg_post_dma_reports();
}
void
bx_dbg_post_dma_reports(void)
{
unsigned i;
unsigned addr, len, what, val;
unsigned last_addr, last_len, last_what;
unsigned print_header;
unsigned first_iteration;
if (bx_guard.report.dma) {
if (bx_dbg_batch_dma.Qsize == 0) return; // nothing batched to print
// compress output so all contiguous DMA ops of the same type and size
// are printed on the same line
last_addr = bx_dbg_batch_dma.Q[0].addr;
last_len = bx_dbg_batch_dma.Q[0].len;
last_what = bx_dbg_batch_dma.Q[0].what;
first_iteration = 1;
for (i=0; i<bx_dbg_batch_dma.Qsize; i++) {
addr = bx_dbg_batch_dma.Q[i].addr;
len = bx_dbg_batch_dma.Q[i].len;
what = bx_dbg_batch_dma.Q[i].what;
val = bx_dbg_batch_dma.Q[i].val;
if (len != last_len)
print_header = 1;
else if (what != last_what)
print_header = 1;
else if (addr != (last_addr + last_len))
print_header = 1;
else
print_header = 0;
// now store current values for next iteration
last_addr = addr;
last_len = len;
last_what = what;
if (print_header) {
if (!first_iteration) // need return from previous line
fprintf(stderr, "\n");
else
first_iteration = 0;
// need to output the event header
fprintf(stderr, "event icount=%u DMA addr=0x%x size=%u op=%s val=0x%x",
(unsigned) bx_dbg_batch_dma.Q[i].icount,
addr, len, (what==BX_READ) ? "read" : "write",
val );
print_header = 0;
}
else {
// *no* need to output the event header
fprintf(stderr, " 0x%x", val);
}
}
if (bx_dbg_batch_dma.Qsize)
fprintf(stderr, "\n");
}
// empty Q, regardless of whether reports are printed
bx_dbg_batch_dma.Qsize = 0;
}
//
// Cosimulation routines
//
#if (BX_NUM_SIMULATORS >= 2)
Bit8u
bx_dbg_ucmem_read(Bit32u addr)
{
Bit8u value;
unsigned head, tail;
if ( bx_debugger.master_slave_mode == BX_DBG_MASTER_MODE ) {
if (!bx_debugger.fast_forward_mode) {
if (bx_debugger.UCmem_journal.size >= BX_DBG_UCMEM_JOURNAL_SIZE) {
fprintf(stderr, "dbg_ucmem_read: journal full.\n");
bx_dbg_exit(0);
}
if (bx_debugger.UCmem_journal.size == 0) {
// start off point head & tail at same element
bx_debugger.UCmem_journal.head = 0;
tail = bx_debugger.UCmem_journal.tail = 0;
}
else {
tail = bx_debugger.UCmem_journal.tail + 1;
}
if (tail >= BX_DBG_UCMEM_JOURNAL_SIZE) {
fprintf(stderr, "dbg_ucmem_read: journal wrapped.\n");
bx_dbg_exit(0);
}
value = bx_devices.vga->mem_read(addr);
bx_dbg_ucmem_report(addr, 1, BX_READ, value);
bx_debugger.UCmem_journal.element[tail].op = BX_READ;
bx_debugger.UCmem_journal.element[tail].len = 1;
bx_debugger.UCmem_journal.element[tail].addr = addr;
bx_debugger.UCmem_journal.element[tail].value = value;
if (bx_debugger.UCmem_journal.size)
bx_debugger.UCmem_journal.tail++;
bx_debugger.UCmem_journal.size++;
if (doit)
fprintf(stderr, "MASTER UCR: head:%u tail%u size:%u\n",
bx_debugger.UCmem_journal.head,
bx_debugger.UCmem_journal.tail,
bx_debugger.UCmem_journal.size);
return(value);
} else {
value = bx_devices.vga->mem_read(addr);
return(value);
}
}
else {
if (bx_debugger.UCmem_journal.size == 0) {
fprintf(stderr, "Error: ucmem_read: journal empty.\n");
return(0xff);
}
head = bx_debugger.UCmem_journal.head;
value = bx_debugger.UCmem_journal.element[head].value;
if ((bx_debugger.UCmem_journal.element[head].op != BX_READ) ||
(bx_debugger.UCmem_journal.element[head].len != 1) ||
(bx_debugger.UCmem_journal.element[head].addr != addr)) {
fprintf(stderr, "Error: ucmem_read: out of sync with journal.\n");
fprintf(stderr, "Error: master: op=%1s len=%u addr=0x%x val=0x%x\n",
(bx_debugger.UCmem_journal.element[head].op==BX_READ) ? "W" : "R",
(unsigned) bx_debugger.UCmem_journal.element[head].len,
(unsigned) bx_debugger.UCmem_journal.element[head].addr,
(unsigned) bx_debugger.UCmem_journal.element[head].value);
fprintf(stderr, "Error: slave: op=W len=%u addr=0x%x val=0x%x\n",
(unsigned) 1, (unsigned) addr, (unsigned) value);
return(0xff);
}
// slave UCmem op in sync with journaled master op, delete this entry
bx_debugger.UCmem_journal.head++;
bx_debugger.UCmem_journal.size--;
return(value);
}
}
void
bx_dbg_ucmem_write(Bit32u addr, Bit8u value)
{
unsigned tail, head;
if ( bx_debugger.master_slave_mode == BX_DBG_MASTER_MODE ) {
if (!bx_debugger.fast_forward_mode) {
if (bx_debugger.UCmem_journal.size >= BX_DBG_UCMEM_JOURNAL_SIZE) {
fprintf(stderr, "dbg_ucmem_write: journal full.\n");
bx_dbg_exit(0);
}
if (bx_debugger.UCmem_journal.size == 0) {
// start off point head & tail at same element
bx_debugger.UCmem_journal.head = 0;
tail = bx_debugger.UCmem_journal.tail = 0;
}
else {
tail = bx_debugger.UCmem_journal.tail + 1;
}
if (tail >= BX_DBG_UCMEM_JOURNAL_SIZE) {
fprintf(stderr, "dbg_ucmem_write: journal wrapped.\n");
bx_dbg_exit(0);
}
bx_debugger.UCmem_journal.element[tail].op = BX_WRITE;
bx_debugger.UCmem_journal.element[tail].len = 1;
bx_debugger.UCmem_journal.element[tail].addr = addr;
bx_debugger.UCmem_journal.element[tail].value = value;
if (bx_debugger.UCmem_journal.size)
bx_debugger.UCmem_journal.tail++;
bx_debugger.UCmem_journal.size++;
bx_devices.vga->mem_write(addr, value);
bx_dbg_ucmem_report(addr, 1, BX_WRITE, value);
} else {
bx_devices.vga->mem_write(addr, value);
}
}
else {
if (bx_debugger.UCmem_journal.size == 0) {
fprintf(stderr, "Error: ucmem_write: journal empty.\n");
return;
}
head = bx_debugger.UCmem_journal.head;
if ((bx_debugger.UCmem_journal.element[head].op != BX_WRITE) ||
(bx_debugger.UCmem_journal.element[head].len != 1) ||
(bx_debugger.UCmem_journal.element[head].addr != addr) ||
(bx_debugger.UCmem_journal.element[head].value != value) ) {
fprintf(stderr, "Error: ucmem_write: out of sync with journal.\n");
fprintf(stderr, "Error: master: op=%1s len=%u addr=0x%x val=0x%x\n",
(bx_debugger.UCmem_journal.element[head].op==BX_WRITE) ? "W" : "R",
(unsigned) bx_debugger.UCmem_journal.element[head].len,
(unsigned) bx_debugger.UCmem_journal.element[head].addr,
(unsigned) bx_debugger.UCmem_journal.element[head].value);
fprintf(stderr, "Error: slave: op=W len=%u addr=0x%x val=0x%x\n",
(unsigned) 1, (unsigned) addr, (unsigned) value);
return;
}
// slave UCmem op in sync with journaled master op, delete this entry
bx_debugger.UCmem_journal.head++;
bx_debugger.UCmem_journal.size--;
}
}
void
bx_dbg_async_pin_request(unsigned what, Boolean val)
{
// Request from IO devices for change in pin external to CPU.
// This is pended until CPU ack's with bx_dbg_async_pin_ack().
if (bx_debugger.master_slave_mode != BX_DBG_MASTER_MODE) {
fprintf(stderr, "Error: dbg_async_pin_request not in master mode.\n");
bx_dbg_exit(1);
}
switch (what) {
case BX_DBG_ASYNC_PENDING_A20:
// Q pending status
bx_guard.async_changes_pending.which |= BX_DBG_ASYNC_PENDING_A20;
bx_guard.async_changes_pending.a20 = val;
return;
break;
case BX_DBG_ASYNC_PENDING_RESET:
case BX_DBG_ASYNC_PENDING_NMI:
default:
fprintf(stderr, "Error: set_async_pin: unhandled case.\n");
bx_dbg_exit(1);
}
}
void
bx_dbg_async_pin_ack(unsigned what, Boolean val)
{
// Acknowledgement from master simulator for pending change in pin
// external to CPU.
if (bx_debugger.master_slave_mode != BX_DBG_MASTER_MODE) {
fprintf(stderr, "Error: dbg_async_pin_ack: not master mode.\n");
bx_dbg_exit(1);
}
switch (what) {
case BX_DBG_ASYNC_PENDING_A20:
// get rid of pending status
bx_guard.async_changes_pending.which &= ~BX_DBG_ASYNC_PENDING_A20;
// notify pc_system of change
bx_pc_system.set_enable_a20(val);
if (BX_CPU(bx_debugger.master)->set_A20)
BX_CPU(bx_debugger.master)->set_A20(val);
bx_dbg_journal_a20_event(val);
return;
break;
case BX_DBG_ASYNC_PENDING_RESET:
case BX_DBG_ASYNC_PENDING_NMI:
default:
fprintf(stderr, "Error: set_async_pin: unhandled case.\n");
bx_dbg_exit(1);
}
}
Bit32u
bx_dbg_inp(Bit16u addr, unsigned len)
{
Bit32u value;
unsigned tail, head;
if ( bx_debugger.master_slave_mode == BX_DBG_MASTER_MODE ) {
if (!bx_debugger.fast_forward_mode) {
if (bx_debugger.IO_journal.size >= BX_DBG_IO_JOURNAL_SIZE) {
fprintf(stderr, "dbg_inp: journal full.\n");
bx_dbg_exit(0);
}
if (bx_debugger.IO_journal.size == 0) {
// start off point head & tail at same element
bx_debugger.IO_journal.head = 0;
tail = bx_debugger.IO_journal.tail = 0;
}
else {
tail = bx_debugger.IO_journal.tail + 1;
}
if (tail >= BX_DBG_IO_JOURNAL_SIZE) {
fprintf(stderr, "dbg_inp: journal wrapped.\n");
bx_dbg_exit(0);
}
value = bx_pc_system.inp(addr, len);
bx_debugger.IO_journal.element[tail].op = BX_READ;
bx_debugger.IO_journal.element[tail].len = (Bit8u) len;
bx_debugger.IO_journal.element[tail].addr = addr;
bx_debugger.IO_journal.element[tail].value = value;
if (bx_debugger.IO_journal.size)
bx_debugger.IO_journal.tail++;
bx_debugger.IO_journal.size++;
//fprintf(stderr, "MASTER IN: head:%u tail%u size:%u\n",
// bx_debugger.IO_journal.head,
// bx_debugger.IO_journal.tail,
// bx_debugger.IO_journal.size);
return(value);
} else {
value = bx_pc_system.inp(addr, len);
return(value);
}
}
else {
if (bx_debugger.IO_journal.size == 0) {
fprintf(stderr, "Error: dbg_inp: journal empty.\n");
return(0xffffffff);
}
head = bx_debugger.IO_journal.head;
value = bx_debugger.IO_journal.element[head].value;
if ((bx_debugger.IO_journal.element[head].op != BX_READ) ||
(bx_debugger.IO_journal.element[head].len != len) ||
(bx_debugger.IO_journal.element[head].addr != addr) ) {
fprintf(stderr, "Error: dbg_inp: out of sync with journal.\n");
fprintf(stderr, "Error: master: op=%3s len=%u addr=0x%x\n",
(bx_debugger.IO_journal.element[head].op==BX_WRITE) ? "OUT" : "IN",
(unsigned) bx_debugger.IO_journal.element[head].len,
(unsigned) bx_debugger.IO_journal.element[head].addr);
fprintf(stderr, "Error: slave: op=OUT len=%u addr=0x%x\n",
(unsigned) len, (unsigned) addr);
return(0xffffffff);
}
// slave IO op in sync with journaled master op, delete this entry
bx_debugger.IO_journal.head++;
bx_debugger.IO_journal.size--;
// fprintf(stderr, "SLAVE IN: head:%u tail%u size:%u\n",
// bx_debugger.IO_journal.head,
// bx_debugger.IO_journal.tail,
// bx_debugger.IO_journal.size);
return(value);
}
}
void
bx_dbg_outp(Bit16u addr, Bit32u value, unsigned len)
{
unsigned tail, head;
if ( bx_debugger.master_slave_mode == BX_DBG_MASTER_MODE ) {
if (!bx_debugger.fast_forward_mode) {
if (bx_debugger.IO_journal.size >= BX_DBG_IO_JOURNAL_SIZE) {
fprintf(stderr, "dbg_outp: IO journal full.\n");
bx_dbg_exit(0);
}
if (bx_debugger.IO_journal.size == 0) {
// start off point head & tail at same element
bx_debugger.IO_journal.head = 0;
tail = bx_debugger.IO_journal.tail = 0;
}
else {
tail = bx_debugger.IO_journal.tail + 1;
}
if (tail >= BX_DBG_IO_JOURNAL_SIZE) {
fprintf(stderr, "dbg_outp: IO journal wrapped.\n");
bx_dbg_exit(0);
}
bx_debugger.IO_journal.element[tail].op = BX_WRITE;
bx_debugger.IO_journal.element[tail].len = (Bit8u) len;
bx_debugger.IO_journal.element[tail].addr = addr;
bx_debugger.IO_journal.element[tail].value = value;
if (bx_debugger.IO_journal.size)
bx_debugger.IO_journal.tail++;
bx_debugger.IO_journal.size++;
bx_pc_system.outp(addr, value, len);
if (doit)
fprintf(stderr, "master: IO journal size now %u\n", bx_debugger.IO_journal.size);
} else {
bx_pc_system.outp(addr, value, len);
}
}
else {
if (bx_debugger.IO_journal.size == 0) {
fprintf(stderr, "Error: dbg_outp: journal empty.\n");
return;
}
head = bx_debugger.IO_journal.head;
if ((bx_debugger.IO_journal.element[head].op != BX_WRITE) ||
(bx_debugger.IO_journal.element[head].len != len) ||
(bx_debugger.IO_journal.element[head].addr != addr) ||
(bx_debugger.IO_journal.element[head].value != value) ) {
fprintf(stderr, "Error: dbg_outp: out of sync with journal.\n");
fprintf(stderr, "Error: master: op=%3s len=%u addr=0x%x val=0x%x\n",
(bx_debugger.IO_journal.element[head].op==BX_WRITE) ? "OUT" : "IN",
(unsigned) bx_debugger.IO_journal.element[head].len,
(unsigned) bx_debugger.IO_journal.element[head].addr,
(unsigned) bx_debugger.IO_journal.element[head].value);
fprintf(stderr, "Error: slave: op=OUT len=%u addr=0x%x val=0x%x\n",
(unsigned) len, (unsigned) addr, (unsigned) value);
return;
}
// slave IO op in sync with journaled master op, delete this entry
bx_debugger.IO_journal.head++;
bx_debugger.IO_journal.size--;
if (doit)
fprintf(stderr, "slave: IO journal size now %u\n", bx_debugger.IO_journal.size);
}
}
void
bx_dbg_raise_HLDA(void)
{
fprintf(stderr, "dbg_HLDA called\n");
bx_dbg_exit(0);
}
Bit8u
bx_dbg_IAC(void)
{
// Convience routine. bochs skips this, and calls the PIC code
// directly. This is for other simulators to interface to the
// the PIC code.
unsigned iac;
iac = bx_devices.pic->IAC();
return(iac);
}
void
bx_dbg_set_INTR(Boolean b)
{
if ( bx_debugger.master_slave_mode == BX_DBG_SLAVE_MODE ) {
fprintf(stderr, "Error: set_INTR in slave mode.\n");
bx_dbg_exit(1);
}
bx_pc_system.INTR = b;
BX_CPU(bx_debugger.master)->set_INTR(b);
}
#endif // #if (BX_NUM_SIMULATORS >= 2)
// BW added. return non zero to cause a stop
#if BX_DEBUGGER
static int symbol_level;
int
bx_dbg_symbolic_output(void)
{
/* modes & address spaces */
if(BX_CPU(dbg_cpu)->cr0.pe != last_pe) {
fprintf(stderr,"%10lld: Switched %s protected mode\n",
bx_pc_system.time_ticks(),
last_pe ? "from" : "to");
last_pe = !last_pe;
}
if(last_vm != BX_CPU(dbg_cpu)->eflags.vm) {
fprintf(stderr,"%10lld: %s V86 mode\n",
bx_pc_system.time_ticks(),
last_vm ? "Exited" : "Entered");
last_vm = !last_vm;
}
if(last_cr3 != BX_CPU(dbg_cpu)->cr3)
fprintf(stderr,"\n%10lld: Address space switched since last trigger. CR3: 0x%08x\n",
bx_pc_system.time_ticks(), BX_CPU(dbg_cpu)->cr3);
/* interrupts */
if (dbg_show_mask & 0x40) {
if(BX_CPU(dbg_cpu)->show_flag & 0x4) {
fprintf(stderr,"%10lld: softint %04x:%08x %08x\n",
bx_pc_system.time_ticks(),
BX_CPU(dbg_cpu)->guard_found.cs,
BX_CPU(dbg_cpu)->guard_found.eip,
BX_CPU(dbg_cpu)->guard_found.laddr);
}
if((BX_CPU(dbg_cpu)->show_flag & 0x10) && !(BX_CPU(dbg_cpu)->show_flag & 0x4)) {
fprintf(stderr,"\n%10lld: exception (not softint) %04x:%08x %08x\n",
bx_pc_system.time_ticks(),
BX_CPU(dbg_cpu)->guard_found.cs,
BX_CPU(dbg_cpu)->guard_found.eip,
BX_CPU(dbg_cpu)->guard_found.laddr);
}
if(BX_CPU(dbg_cpu)->show_flag & 0x8) {
fprintf(stderr,"%10lld: iret %04x:%08x %08x (from %08x)\n\n",
bx_pc_system.time_ticks(),
BX_CPU(dbg_cpu)->guard_found.cs,
BX_CPU(dbg_cpu)->guard_found.eip,
BX_CPU(dbg_cpu)->guard_found.laddr,
BX_CPU(dbg_cpu)->show_eip);
}
}
/* calls */
if(BX_CPU(dbg_cpu)->show_flag & 0x1) {
Bit32u phy = 0;
Boolean valid;
if (dbg_show_mask & 0x20) {
BX_CPU(dbg_cpu)->dbg_xlate_linear2phy(BX_CPU(dbg_cpu)->guard_found.laddr,
&phy, &valid);
fprintf(stderr,"%10lld:%*s call %04x:%08x 0x%08x (%08x) %s",
bx_pc_system.time_ticks(),
symbol_level+1," ",
BX_CPU(dbg_cpu)->guard_found.cs,
BX_CPU(dbg_cpu)->guard_found.eip,
BX_CPU(dbg_cpu)->guard_found.laddr,
phy,
bx_dbg_symbolic_address(BX_CPU(dbg_cpu)->cr3,
BX_CPU(dbg_cpu)->guard_found.eip,
BX_CPU(dbg_cpu)->guard_found.laddr - BX_CPU(dbg_cpu)->guard_found.eip) );
if(!valid)
fprintf(stderr," phys not valid");
fprintf(stderr,"\n");
}
symbol_level++;
if(symbol_level > 40)
symbol_level = 10;
}
if (BX_CPU(dbg_cpu)->show_flag & 0x2) {
symbol_level--;
if(symbol_level < 0)
symbol_level = 0;
}
BX_CPU(dbg_cpu)->show_flag = 0;
last_cr3 = BX_CPU(dbg_cpu)->cr3;
return 0;
}
#endif
// BW added to dump page table
static void
dbg_lin2phys(BX_CPU_C *cpu, Bit32u laddress, Bit32u *phy, Boolean *valid, Bit32u *tlb_phy, Boolean *tlb_valid) {
Bit32u lpf, ppf, poffset, TLB_index, paddress;
Bit32u pde, pde_addr;
Bit32u pte, pte_addr;
*tlb_valid = 0;
if (cpu->cr0.pg == 0) {
*phy = laddress;
*valid = 1;
return;
}
lpf = laddress & 0xfffff000; // linear page frame
poffset = laddress & 0x00000fff; // physical offset
TLB_index = BX_TLB_INDEX_OF(lpf);
// see if page is in the TLB first
if (cpu->TLB.entry[TLB_index].lpf == lpf) {
*tlb_phy = cpu->TLB.entry[TLB_index].ppf | poffset;
*tlb_valid = 1;
}
// Get page dir entry
pde_addr = (cpu->cr3 & 0xfffff000) |
((laddress & 0xffc00000) >> 20);
BX_MEM(0)->read_physical(cpu, pde_addr, 4, &pde);
if ( !(pde & 0x01) ) {
// Page Directory Entry NOT present
goto page_fault;
}
// Get page table entry
pte_addr = (pde & 0xfffff000) |
((laddress & 0x003ff000) >> 10);
BX_MEM(0)->read_physical(cpu, pte_addr, 4, &pte);
if ( !(pte & 0x01) ) {
// Page Table Entry NOT present
goto page_fault;
}
ppf = pte & 0xfffff000;
paddress = ppf | poffset;
*phy = paddress;
*valid = 1;
return;
page_fault:
*phy = 0;
*valid = 0;
return;
}
static void dbg_dump_table(Boolean all)
{
Bit32u lina;
Bit32u phy, tlb_phy;
Boolean valid, tlb_valid;
Bit32u start_lina, start_phy; // start of a valid translation interval
if (BX_CPU(dbg_cpu)->cr0.pg == 0) {
printf("paging off\n");
return;
}
printf("cr3: %08x \n", BX_CPU(dbg_cpu)->cr3);
lina = 0;
start_lina = 1;
start_phy = 2;
while(1) {
dbg_lin2phys(BX_CPU(dbg_cpu), lina, &phy, &valid, &tlb_phy, &tlb_valid);
if(valid) {
if( (lina - start_lina != phy - start_phy) || tlb_valid) {
if(all && (start_lina != 1))
printf("%08x - %08x: %8x - %8x\n",
start_lina, lina - 0x1000, start_phy, start_phy + (lina-0x1000-start_lina));
start_lina = lina;
start_phy = phy;
}
if(tlb_valid) {
if(all && tlb_phy == phy)
printf("%08x : %8x (%8x) in TLB\n",
lina, phy, tlb_phy);
if(tlb_phy != phy)
printf("%08x : %8x (%8x) in TLB Phys differs!!!\n",
lina, phy, tlb_phy);
start_lina = 1;
start_phy = 2;
}
} else {
if(all && start_lina != 1)
printf("%08x - %08x: %8x - %8x\n",
start_lina, lina - 0x1000, start_phy, start_phy + (lina-0x1000-start_lina));
if(tlb_valid) {
printf("%08x : (%8x) in TLB Table not valid!!!\n",
lina, tlb_phy);
}
start_lina = 1;
start_phy = 2;
}
if(lina == 0xfffff000)
break;
lina += 0x1000;
}
if(all & start_lina != 1)
printf("%08x - %08x: %8x - %8x\n",
start_lina, 0xfffff000, start_phy, start_phy + (0xfffff000-start_lina));
}