Bochs/bochs/cpu/bit.cc
2009-03-03 16:55:20 +00:00

453 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: bit.cc,v 1.62 2009-03-03 16:55:20 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 3
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETO_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = getB_OF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETO_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_OF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNO_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !getB_OF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNO_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_OF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETB_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = getB_CF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETB_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_CF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNB_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !getB_CF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNB_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_CF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETZ_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = getB_ZF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETZ_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_ZF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNZ_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !getB_ZF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNZ_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_ZF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETBE_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = (getB_CF() | getB_ZF());
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETBE_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), (getB_CF() | getB_ZF()));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNBE_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !(getB_CF() | getB_ZF());
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNBE_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !(getB_CF() | getB_ZF()));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETS_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = getB_SF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETS_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_SF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNS_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !getB_SF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNS_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_SF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETP_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = getB_PF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETP_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), getB_PF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNP_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !getB_PF();
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNP_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !getB_PF());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETL_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = (getB_SF() ^ getB_OF());
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETL_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), (getB_SF() ^ getB_OF()));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNL_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !(getB_SF() ^ getB_OF());
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNL_EbR(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), !(getB_SF() ^ getB_OF()));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETLE_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = getB_ZF() | (getB_SF() ^ getB_OF());
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETLE_EbR(bxInstruction_c *i)
{
Bit8u result_8 = getB_ZF() | (getB_SF() ^ getB_OF());
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNLE_EbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u result_8 = !(getB_ZF() | (getB_SF() ^ getB_OF()));
write_virtual_byte(i->seg(), eaddr, result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SETNLE_EbR(bxInstruction_c *i)
{
Bit8u result_8 = !(getB_ZF() | (getB_SF() ^ getB_OF()));
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSWAP_ERX(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 4
Bit32u val32, b0, b1, b2, b3;
if (i->os32L() == 0) {
BX_ERROR(("BSWAP with 16-bit opsize: undefined behavior !"));
}
val32 = BX_READ_32BIT_REG(i->opcodeReg());
b0 = val32 & 0xff; val32 >>= 8;
b1 = val32 & 0xff; val32 >>= 8;
b2 = val32 & 0xff; val32 >>= 8;
b3 = val32;
val32 = (b0<<24) | (b1<<16) | (b2<<8) | b3;
BX_WRITE_32BIT_REGZ(i->opcodeReg(), val32);
#else
BX_INFO(("BSWAP_ERX: required CPU >= 4, use --enable-cpu-level=4 option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSWAP_RRX(bxInstruction_c *i)
{
Bit64u val64, b0, b1, b2, b3, b4, b5, b6, b7;
val64 = BX_READ_64BIT_REG(i->opcodeReg());
b0 = val64 & 0xff; val64 >>= 8;
b1 = val64 & 0xff; val64 >>= 8;
b2 = val64 & 0xff; val64 >>= 8;
b3 = val64 & 0xff; val64 >>= 8;
b4 = val64 & 0xff; val64 >>= 8;
b5 = val64 & 0xff; val64 >>= 8;
b6 = val64 & 0xff; val64 >>= 8;
b7 = val64;
val64 = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
BX_WRITE_64BIT_REG(i->opcodeReg(), val64);
}
#endif
// 3-byte opcodes
#if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVBE_GwEw(bxInstruction_c *i)
{
#if BX_SUPPORT_MOVBE
Bit16u val16, b0, b1;
if (i->modC0()) {
val16 = BX_READ_16BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
val16 = read_virtual_word(i->seg(), eaddr);
}
b0 = val16 & 0xff; val16 >>= 8;
b1 = val16;
val16 = (b1<<8) | b0;
BX_WRITE_16BIT_REG(i->nnn(), val16);
#else
BX_INFO(("MOVBE_GwEw: required MOVBE support, use --enable-movbe option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVBE_EwGw(bxInstruction_c *i)
{
#if BX_SUPPORT_MOVBE
Bit16u val16 = BX_READ_16BIT_REG(i->nnn()), b0, b1;
b0 = val16 & 0xff; val16 >>= 8;
b1 = val16;
val16 = (b1<<8) | b0;
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), val16);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_word(i->seg(), eaddr, val16);
}
#else
BX_INFO(("MOVBE_EwGw: required MOVBE support, use --enable-movbe option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVBE_GdEd(bxInstruction_c *i)
{
#if BX_SUPPORT_MOVBE
Bit32u val32, b0, b1, b2, b3;
if (i->modC0()) {
val32 = BX_READ_32BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
val32 = read_virtual_dword(i->seg(), eaddr);
}
b0 = val32 & 0xff; val32 >>= 8;
b1 = val32 & 0xff; val32 >>= 8;
b2 = val32 & 0xff; val32 >>= 8;
b3 = val32;
val32 = (b0<<24) | (b1<<16) | (b2<<8) | b3;
BX_WRITE_32BIT_REGZ(i->nnn(), val32);
#else
BX_INFO(("MOVBE_GdEd: required MOVBE support, use --enable-movbe option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVBE_EdGd(bxInstruction_c *i)
{
#if BX_SUPPORT_MOVBE
Bit32u val32 = BX_READ_32BIT_REG(i->nnn()), b0, b1, b2, b3;
b0 = val32 & 0xff; val32 >>= 8;
b1 = val32 & 0xff; val32 >>= 8;
b2 = val32 & 0xff; val32 >>= 8;
b3 = val32;
val32 = (b0<<24) | (b1<<16) | (b2<<8) | b3;
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), val32);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_dword(i->seg(), eaddr, val32);
}
#else
BX_INFO(("MOVBE_EdGd: required MOVBE support, use --enable-movbe option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVBE_GqEq(bxInstruction_c *i)
{
#if BX_SUPPORT_MOVBE
Bit64u val64, b0, b1, b2, b3, b4, b5, b6, b7;
if (i->modC0()) {
val64 = BX_READ_64BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
val64 = read_virtual_qword(i->seg(), eaddr);
}
b0 = val64 & 0xff; val64 >>= 8;
b1 = val64 & 0xff; val64 >>= 8;
b2 = val64 & 0xff; val64 >>= 8;
b3 = val64 & 0xff; val64 >>= 8;
b4 = val64 & 0xff; val64 >>= 8;
b5 = val64 & 0xff; val64 >>= 8;
b6 = val64 & 0xff; val64 >>= 8;
b7 = val64;
val64 = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
BX_WRITE_64BIT_REG(i->nnn(), val64);
#else
BX_INFO(("MOVBE_GqEq: required MOVBE support, use --enable-movbe option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVBE_EqGq(bxInstruction_c *i)
{
#if BX_SUPPORT_MOVBE
Bit64u val64 = BX_READ_64BIT_REG(i->nnn());
Bit64u b0, b1, b2, b3, b4, b5, b6, b7;
b0 = val64 & 0xff; val64 >>= 8;
b1 = val64 & 0xff; val64 >>= 8;
b2 = val64 & 0xff; val64 >>= 8;
b3 = val64 & 0xff; val64 >>= 8;
b4 = val64 & 0xff; val64 >>= 8;
b5 = val64 & 0xff; val64 >>= 8;
b6 = val64 & 0xff; val64 >>= 8;
b7 = val64;
val64 = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7;
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), val64);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_qword(i->seg(), eaddr, val64);
}
#else
BX_INFO(("MOVBE_EqGq: required MOVBE support, use --enable-movbe option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif // (BX_SUPPORT_X86_64)
#endif // (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
#endif // (BX_CPU_LEVEL >= 3)