Bochs/bochs/memory/memory.cc
Volker Ruppert 11318c98f3 Improved flash memory support for the BIOS EEPROM (now emulating Intel(tm)
flash chips.
- 28F001BX-T for 128k BIOS image (two 4k parameter blocks below boot block)
- 28F002BC-T for 256k BIOS image (two 8k parameter blocks below boot block)
- Only tested updating ESCD by external BIOS images. Bochs BIOS currently
  writes configuration to shadow RAM.
2020-11-29 08:47:13 +00:00

473 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2020 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "cpu/cpu.h"
#include "iodev/iodev.h"
#define LOG_THIS BX_MEM_THIS
//
// Memory map inside the 1st megabyte:
//
// 0x00000 - 0x7ffff DOS area (512K)
// 0x80000 - 0x9ffff Optional fixed memory hole (128K)
// 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K)
// 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K)
// 0xe0000 - 0xeffff Lower BIOS Area (64K)
// 0xf0000 - 0xfffff Upper BIOS Area (64K)
//
void BX_MEM_C::writePhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data)
{
Bit8u *data_ptr;
bx_phy_address a20addr = A20ADDR(addr);
struct memory_handler_struct *memory_handler = NULL;
// Note: accesses should always be contained within a single page
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("writePhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
#if BX_SUPPORT_MONITOR_MWAIT
BX_MEM_THIS check_monitor(a20addr, len);
#endif
bx_bool is_bios = (a20addr >= (bx_phy_address)BX_MEM_THIS bios_rom_addr);
#if BX_PHY_ADDRESS_LONG
if (a20addr > BX_CONST64(0xffffffff)) is_bios = 0;
#endif
if (cpu != NULL) {
#if BX_SUPPORT_IODEBUG
bx_devices.pluginIODebug->mem_write(cpu, a20addr, len, data);
#endif
if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000) && BX_MEM_THIS smram_available)
{
// SMRAM memory space
if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted))
goto mem_write;
}
}
memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20];
while (memory_handler) {
if (memory_handler->write_handler != NULL) {
if (memory_handler->begin <= a20addr &&
memory_handler->end >= a20addr &&
memory_handler->write_handler(a20addr, len, data, memory_handler->param))
{
return;
}
}
memory_handler = memory_handler->next;
}
mem_write:
// all memory access fits in single 4K page
if ((a20addr < BX_MEM_THIS len) && !is_bios) {
// all of data is within limits of physical memory
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
if (len == 8) {
pageWriteStampTable.decWriteStamp(a20addr, 8);
WriteHostQWordToLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr), *(Bit64u*)data);
return;
}
if (len == 4) {
pageWriteStampTable.decWriteStamp(a20addr, 4);
WriteHostDWordToLittleEndian((Bit32u*) BX_MEM_THIS get_vector(a20addr), *(Bit32u*)data);
return;
}
if (len == 2) {
pageWriteStampTable.decWriteStamp(a20addr, 2);
WriteHostWordToLittleEndian((Bit16u*) BX_MEM_THIS get_vector(a20addr), *(Bit16u*)data);
return;
}
if (len == 1) {
pageWriteStampTable.decWriteStamp(a20addr, 1);
* (BX_MEM_THIS get_vector(a20addr)) = * (Bit8u *) data;
return;
}
// len == other, just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
// addr *not* in range 000A0000 .. 000FFFFF
while(1) {
// Write in chunks of 8 bytes if we can
if ((len & 7) == 0) {
pageWriteStampTable.decWriteStamp(a20addr, 8);
WriteHostQWordToLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr), *(Bit64u*)data_ptr);
len -= 8;
a20addr += 8;
#ifdef BX_LITTLE_ENDIAN
data_ptr += 8;
#else
data_ptr -= 8;
#endif
if (len == 0) return;
} else {
pageWriteStampTable.decWriteStamp(a20addr, 1);
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
}
pageWriteStampTable.decWriteStamp(a20addr);
// addr must be in range 000A0000 .. 000FFFFF
for(unsigned i=0; i<len; i++) {
// SMMRAM
if (a20addr < 0x000c0000) {
// devices are not allowed to access SMMRAM under VGA memory
if (cpu) {
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
}
goto inc_one;
}
// adapter ROM C0000 .. DFFFF
// ROM BIOS memory E0000 .. FFFFF
#if BX_SUPPORT_PCI == 0
// ignore write to ROM
#else
// Write Based on 440fx Programming
if (BX_MEM_THIS pci_enabled && ((a20addr & 0xfffc0000) == 0x000c0000)) {
unsigned area = (unsigned)(a20addr >> 14) & 0x0f;
if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000;
if (BX_MEM_THIS memory_type[area][1] == 1) {
// Writes to ShadowRAM
BX_DEBUG(("Writing to ShadowRAM: address 0x" FMT_PHY_ADDRX ", data %02x", a20addr, *data_ptr));
*(BX_MEM_THIS get_vector(a20addr)) = *data_ptr;
} else if ((area >= BX_MEM_AREA_E0000) && BX_MEM_THIS bios_write_enabled) {
// volatile BIOS write support
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
for (unsigned i = 0; i < len; i++) {
if (BX_MEM_THIS flash_type > 0) {
BX_MEM_THIS flash_write(BIOS_MAP_LAST128K(a20addr), *data_ptr);
} else {
BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)] = *data_ptr;
}
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
} else {
// Writes to ROM, Inhibit
BX_DEBUG(("Write to ROM ignored: address 0x" FMT_PHY_ADDRX ", data %02x", a20addr, *data_ptr));
}
}
#endif
inc_one:
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
} else if (BX_MEM_THIS bios_write_enabled && is_bios) {
// volatile BIOS write support
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
for (unsigned i = 0; i < len; i++) {
if (BX_MEM_THIS flash_type > 0) {
BX_MEM_THIS flash_write(a20addr & BIOS_MASK, *data_ptr);
} else {
BX_MEM_THIS rom[a20addr & BIOS_MASK] = *data_ptr;
}
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
} else {
// access outside limits of physical memory, ignore
BX_DEBUG(("Write outside the limits of physical memory (0x" FMT_PHY_ADDRX ") (ignore)", a20addr));
}
}
void BX_MEM_C::readPhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data)
{
Bit8u *data_ptr;
bx_phy_address a20addr = A20ADDR(addr);
struct memory_handler_struct *memory_handler = NULL;
// Note: accesses should always be contained within a single page
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("readPhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
bx_bool is_bios = (a20addr >= (bx_phy_address)BX_MEM_THIS bios_rom_addr);
#if BX_PHY_ADDRESS_LONG
if (a20addr > BX_CONST64(0xffffffff)) is_bios = 0;
#endif
if (cpu != NULL) {
#if BX_SUPPORT_IODEBUG
bx_devices.pluginIODebug->mem_read(cpu, a20addr, len, data);
#endif
if ((a20addr >= 0x000a0000 && a20addr < 0x000c0000) && BX_MEM_THIS smram_available)
{
// SMRAM memory space
if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted))
goto mem_read;
}
}
memory_handler = BX_MEM_THIS memory_handlers[a20addr >> 20];
while (memory_handler) {
if (memory_handler->begin <= a20addr &&
memory_handler->end >= a20addr &&
memory_handler->read_handler(a20addr, len, data, memory_handler->param))
{
return;
}
memory_handler = memory_handler->next;
}
mem_read:
if ((a20addr < BX_MEM_THIS len) && !is_bios) {
// all of data is within limits of physical memory
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
if (len == 8) {
* (Bit64u*) data = ReadHostQWordFromLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 4) {
* (Bit32u*) data = ReadHostDWordFromLittleEndian((Bit32u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 2) {
* (Bit16u*) data = ReadHostWordFromLittleEndian((Bit16u*) BX_MEM_THIS get_vector(a20addr));
return;
}
if (len == 1) {
* (Bit8u *) data = * (BX_MEM_THIS get_vector(a20addr));
return;
}
// len == other case can just fall thru to special cases handling
}
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
if (a20addr < 0x000a0000 || a20addr >= 0x00100000)
{
// addr *not* in range 000A0000 .. 000FFFFF
while(1) {
// Read in chunks of 8 bytes if we can
if ((len & 7) == 0) {
*((Bit64u*)data_ptr) = ReadHostQWordFromLittleEndian((Bit64u*) BX_MEM_THIS get_vector(a20addr));
len -= 8;
a20addr += 8;
#ifdef BX_LITTLE_ENDIAN
data_ptr += 8;
#else
data_ptr -= 8;
#endif
if (len == 0) return;
} else {
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
if (len == 1) return;
len--;
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
}
// addr must be in range 000A0000 .. 000FFFFF
for (unsigned i=0; i<len; i++) {
// SMMRAM
if (a20addr < 0x000c0000) {
// devices are not allowed to access SMMRAM under VGA memory
if (cpu) *data_ptr = *(BX_MEM_THIS get_vector(a20addr));
goto inc_one;
}
#if BX_SUPPORT_PCI
if (BX_MEM_THIS pci_enabled && ((a20addr & 0xfffc0000) == 0x000c0000)) {
unsigned area = (unsigned)(a20addr >> 14) & 0x0f;
if (area > BX_MEM_AREA_F0000) area = BX_MEM_AREA_F0000;
if (BX_MEM_THIS memory_type[area][0] == 0) {
// Read from ROM
if ((a20addr & 0xfffe0000) == 0x000e0000) {
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
if (BX_MEM_THIS flash_type > 0) {
*data_ptr = BX_MEM_THIS flash_read(BIOS_MAP_LAST128K(a20addr));
} else {
*data_ptr = BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)];
}
} else {
*data_ptr = BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ];
}
} else {
// Read from ShadowRAM
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
}
}
else
#endif // #if BX_SUPPORT_PCI
{
if ((a20addr & 0xfffc0000) != 0x000c0000) {
*data_ptr = *(BX_MEM_THIS get_vector(a20addr));
}
else if ((a20addr & 0xfffe0000) == 0x000e0000) {
// last 128K of BIOS ROM mapped to 0xE0000-0xFFFFF
*data_ptr = BX_MEM_THIS rom[BIOS_MAP_LAST128K(a20addr)];
}
else {
*data_ptr = BX_MEM_THIS rom[(a20addr & EXROM_MASK) + BIOSROMSZ];
}
}
inc_one:
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
}
else // access outside limits of physical memory
{
#if BX_PHY_ADDRESS_LONG
if (a20addr > BX_CONST64(0xffffffff)) {
memset(data, 0xFF, len);
return;
}
#endif
#ifdef BX_LITTLE_ENDIAN
data_ptr = (Bit8u *) data;
#else // BX_BIG_ENDIAN
data_ptr = (Bit8u *) data + (len - 1);
#endif
if (is_bios) {
for (unsigned i = 0; i < len; i++) {
if (BX_MEM_THIS flash_type > 0) {
*data_ptr = BX_MEM_THIS flash_read(a20addr & BIOS_MASK);
} else {
*data_ptr = BX_MEM_THIS rom[a20addr & BIOS_MASK];
}
a20addr++;
#ifdef BX_LITTLE_ENDIAN
data_ptr++;
#else // BX_BIG_ENDIAN
data_ptr--;
#endif
}
} else {
// bogus memory
memset(data, 0xFF, len);
}
}
}
void BX_MEM_C::dmaReadPhysicalPage(bx_phy_address addr, unsigned len, Bit8u *data)
{
// Note: accesses should always be contained within a single page
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("dmaReadPhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
Bit8u *memptr = getHostMemAddr(NULL, addr, BX_READ);
if (memptr != NULL) {
memcpy(data, memptr, len);
}
else {
for (unsigned i=0;i < len; i++) {
readPhysicalPage(NULL, addr+i, 1, &data[i]);
}
}
}
void BX_MEM_C::dmaWritePhysicalPage(bx_phy_address addr, unsigned len, Bit8u *data)
{
// Note: accesses should always be contained within a single page
if ((addr>>12) != ((addr+len-1)>>12)) {
BX_PANIC(("dmaWritePhysicalPage: cross page access at address 0x" FMT_PHY_ADDRX ", len=%d", addr, len));
}
Bit8u *memptr = getHostMemAddr(NULL, addr, BX_WRITE);
if (memptr != NULL) {
pageWriteStampTable.decWriteStamp(addr);
memcpy(memptr, data, len);
}
else {
for (unsigned i=0;i < len; i++) {
writePhysicalPage(NULL, addr+i, 1, &data[i]);
}
}
}