Bochs/bochs/cpu/logical32.cc
Kevin Lawton 6843c3dfe8 Integrated patches/patch.logicalxx_asm from Jas Sandys-Lumsdaine.
Essentially, when I coded a few of the instructions to use
  asm()s for acceleration of the eflags, I got lazy and only
  used the asm() to compute eflags and let the normal C operation
  do the actual operation.  Jas's patch, moved the asm()s such
  that they now do the work of the operation as well.

  The patches look great.  The code reads a lot better as well.

  Further work can be done to give the compiler more options with
  register scheduling.
2002-09-28 01:48:18 +00:00

565 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: logical32.cc,v 1.13 2002-09-28 01:48:17 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XOR_EdGd(bxInstruction_c *i)
{
/* for 32 bit operand size mode */
Bit32u op2_32, op1_32, result_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
result_32 = op1_32 ^ op2_32;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
Write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::XOR_GdEd(bxInstruction_c *i)
{
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
/* op2_32 is a register or memory reference */
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
result_32 = op1_32 ^ op2_32;
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), result_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::XOR_EAXId(bxInstruction_c *i)
{
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, sum_32;
op1_32 = EAX;
op2_32 = i->Id();
sum_32 = op1_32 ^ op2_32;
/* now write sum back to destination */
#if BX_SUPPORT_X86_64
RAX = sum_32;
#else
EAX = sum_32;
#endif
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::XOR_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id();
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
result_32 = op1_32 ^ op2_32;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
Write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_XOR32);
}
void
BX_CPU_C::OR_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id();
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
result_32 = op1_32 | op2_32;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
Write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_OR32);
}
void
BX_CPU_C::NOT_Ed(bxInstruction_c *i)
{
Bit32u op1_32, result_32;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
result_32 = ~op1_32;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
Write_RMW_virtual_dword(result_32);
}
}
void
BX_CPU_C::OR_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
result_32 = op1_32 | op2_32;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
Write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_OR32);
}
void
BX_CPU_C::OR_GdEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
/* op2_32 is a register or memory reference */
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
result_32 = op1_32 | op2_32;
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), result_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_OR32);
}
void
BX_CPU_C::OR_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = EAX;
op2_32 = i->Id();
sum_32 = op1_32 | op2_32;
/* now write sum back to destination */
#if BX_SUPPORT_X86_64
RAX = sum_32;
#else
EAX = sum_32;
#endif
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_INSTR_OR32);
}
void
BX_CPU_C::AND_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_32 = op1_32 & op2_32;
#endif
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
Write_RMW_virtual_dword(result_32);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32);
#endif
}
void
BX_CPU_C::AND_GdEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_32 = op1_32 & op2_32;
#endif
BX_WRITE_32BIT_REGZ(i->nnn(), result_32);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32);
#endif
}
void
BX_CPU_C::AND_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = EAX;
op2_32 = i->Id();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_32 = op1_32 & op2_32;
#endif
#if BX_SUPPORT_X86_64
RAX = result_32;
#else
EAX = result_32;
#endif
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32);
#endif
}
void
BX_CPU_C::AND_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andl %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=r" (result_32)
: "1" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
result_32 = op1_32 & op2_32;
#endif
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
Write_RMW_virtual_dword(result_32);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32);
#endif
}
void
BX_CPU_C::TEST_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit32u result_32;
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_TEST32);
#endif
}
void
BX_CPU_C::TEST_EAXId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
/* op1 is EAX register */
op1_32 = EAX;
/* op2 is imm32 */
op2_32 = i->Id();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit32u result_32;
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_TEST32);
#endif
}
void
BX_CPU_C::TEST_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
/* op2 is imm32 */
op2_32 = i->Id();
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testl %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "r" (op1_32), "g" (op2_32)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit32u result_32;
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_TEST32);
#endif
}