Bochs/bochs/cpu/data_xfer32.cc
Kevin Lawton 491035fcb2 I extended the guest-to-host TLB acceleration across the
Read-Modify-Write instructions.  The first read phase stores
the host pointer in the "pages" field if a direct use pointer
is available.  The Write phase first checks if a pointer was
issued and uses it for a direct write if available.

I chose the "pages" field since it needs to be checked by the
write_RMW_virtual variants anyways and thus needs to be
cached anyways.

Mostly the mods where to access.cc, but I did also macro-ize
the calls to write_RMW_virtual...() in files which use it
and cpu.h.  Right now, the macro is just a straight pass-through.
I tried expanding it to a quick initial check for the pointer
availability to do the write in-place, with a function call
as a fall-back.  That didn't seemed to matter at all.

Booting is not helped by this really.  The upper bound of
the gain is 5 or 6%, and that's only if you have a loop that
looks like:

label:
  add [eax], ebx   ;; mega read-modify-write instruction
  jmp label        ;; intensive loop.
2002-09-06 21:54:58 +00:00

324 lines
7.3 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: data_xfer32.cc,v 1.8 2002-09-06 21:54:57 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XCHG_ERXEAX(BxInstruction_t *i)
{
Bit32u temp32;
temp32 = EAX;
EAX = BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].erx;
BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].erx = temp32;
}
void
BX_CPU_C::MOV_ERXId(BxInstruction_t *i)
{
BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].erx = i->Id;
}
void
BX_CPU_C::MOV_EdGd(BxInstruction_t *i)
{
Bit32u op2_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
/* now write op2 to op1 */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, op2_32);
}
else {
write_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
}
void
BX_CPU_C::MOV_GdEd(BxInstruction_t *i)
{
Bit32u op2_32;
if (i->mod == 0xc0) {
op2_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
BX_WRITE_32BIT_REG(i->nnn, op2_32);
}
void
BX_CPU_C::LEA_GdM(BxInstruction_t *i)
{
if (i->mod == 0xc0) {
BX_PANIC(("LEA_GvM: op2 is a register"));
UndefinedOpcode(i);
return;
}
/* write effective address of op2 in op1 */
BX_WRITE_32BIT_REG(i->nnn, i->rm_addr);
}
void
BX_CPU_C::MOV_EAXOd(BxInstruction_t *i)
{
Bit32u temp_32;
Bit32u addr_32;
addr_32 = i->Id;
/* read from memory address */
if (!BX_NULL_SEG_REG(i->seg)) {
read_virtual_dword(i->seg, addr_32, &temp_32);
}
else {
read_virtual_dword(BX_SEG_REG_DS, addr_32, &temp_32);
}
/* write to register */
EAX = temp_32;
}
void
BX_CPU_C::MOV_OdEAX(BxInstruction_t *i)
{
Bit32u temp_32;
Bit32u addr_32;
addr_32 = i->Id;
/* read from register */
temp_32 = EAX;
/* write to memory address */
if (!BX_NULL_SEG_REG(i->seg)) {
write_virtual_dword(i->seg, addr_32, &temp_32);
}
else {
write_virtual_dword(BX_SEG_REG_DS, addr_32, &temp_32);
}
}
void
BX_CPU_C::MOV_EdId(BxInstruction_t *i)
{
Bit32u op2_32;
op2_32 = i->Id;
/* now write sum back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, op2_32);
}
else {
write_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
}
void
BX_CPU_C::MOVZX_GdEb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVZX_GvEb: not supported on < 386"));
#else
Bit8u op2_8;
if (i->mod == 0xc0) {
op2_8 = BX_READ_8BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg, i->rm_addr, &op2_8);
}
/* zero extend byte op2 into dword op1 */
BX_WRITE_32BIT_REG(i->nnn, (Bit32u) op2_8);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVZX_GdEw(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVZX_GvEw: not supported on < 386"));
#else
Bit16u op2_16;
if (i->mod == 0xc0) {
op2_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op2_16);
}
/* zero extend word op2 into dword op1 */
BX_WRITE_32BIT_REG(i->nnn, (Bit32u) op2_16);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVSX_GdEb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVSX_GvEb: not supported on < 386"));
#else
Bit8u op2_8;
if (i->mod == 0xc0) {
op2_8 = BX_READ_8BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg, i->rm_addr, &op2_8);
}
/* sign extend byte op2 into dword op1 */
BX_WRITE_32BIT_REG(i->nnn, (Bit8s) op2_8);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVSX_GdEw(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVSX_GvEw: not supported on < 386"));
#else
Bit16u op2_16;
if (i->mod == 0xc0) {
op2_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op2_16);
}
/* sign extend word op2 into dword op1 */
BX_WRITE_32BIT_REG(i->nnn, (Bit16s) op2_16);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::XCHG_EdGd(BxInstruction_t *i)
{
Bit32u op2_32, op1_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
BX_WRITE_32BIT_REG(i->rm, op2_32);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
Write_RMW_virtual_dword(op2_32);
}
BX_WRITE_32BIT_REG(i->nnn, op1_32);
}
void
BX_CPU_C::CMOV_GdEd(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 6) || (BX_CPU_LEVEL_HACKED >= 6)
// Note: CMOV accesses a memory source operand (read), regardless
// of whether condition is true or not. Thus, exceptions may
// occur even if the MOV does not take place.
Boolean condition;
Bit32u op2_32;
switch (i->b1) {
// CMOV opcodes:
case 0x140: condition = get_OF(); break;
case 0x141: condition = !get_OF(); break;
case 0x142: condition = get_CF(); break;
case 0x143: condition = !get_CF(); break;
case 0x144: condition = get_ZF(); break;
case 0x145: condition = !get_ZF(); break;
case 0x146: condition = get_CF() || get_ZF(); break;
case 0x147: condition = !get_CF() && !get_ZF(); break;
case 0x148: condition = get_SF(); break;
case 0x149: condition = !get_SF(); break;
case 0x14A: condition = get_PF(); break;
case 0x14B: condition = !get_PF(); break;
case 0x14C: condition = get_SF() != get_OF(); break;
case 0x14D: condition = get_SF() == get_OF(); break;
case 0x14E: condition = get_ZF() || (get_SF() != get_OF()); break;
case 0x14F: condition = !get_ZF() && (get_SF() == get_OF()); break;
default:
condition = 0;
BX_PANIC(("CMOV_GdEd: default case"));
}
if (i->mod == 0xc0) {
op2_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
if (condition) {
BX_WRITE_32BIT_REG(i->nnn, op2_32);
}
#else
BX_INFO(("cmov_gded called"));
UndefinedOpcode(i);
#endif
}