645e04860e
because ICACHE do not support physical address > mem.len. This is the first part of the fix, the rest coming soon
1096 lines
37 KiB
C++
1096 lines
37 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: access.cc,v 1.48 2004-11-18 23:16:35 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
#define IsLongMode() (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
|
|
#define LPFOf(laddr) ((laddr) & BX_CONST64(0xfffffffffffff000))
|
|
#define BX_CANONICAL_BITS 48
|
|
#define IsCanonical(offset) ((Bit64u)((((Bit64s)(offset)) >> (BX_CANONICAL_BITS-1)) + 1) < 2)
|
|
|
|
//#define BX_CANONICAL_LO BX_CONST64(0xffff800000000000)
|
|
//#define BX_CANONICAL_HI BX_CONST64(0x0000800000000000)
|
|
//#define IsCanonical(offset) ((Bit64u)(offset-BX_CANONICAL_LO) < (Bit64u)(BX_CANONICAL_HI-BX_CANONICAL_LO))
|
|
|
|
#else
|
|
#define IsLongMode() (0)
|
|
#define LPFOf(laddr) ((laddr) & 0xfffff000)
|
|
#define IsCanonical(offset) (0)
|
|
#endif
|
|
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, bx_address offset,
|
|
unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
// do canonical checks
|
|
if (!IsCanonical(offset)) {
|
|
BX_ERROR(("Canonical Address Failure %08x%08x",(Bit32u)(offset >> 32),(Bit32u)(offset & 0xffffffff)));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
seg->cache.valid |= SegAccessWOK;
|
|
return;
|
|
}
|
|
#endif
|
|
if (protected_mode()) {
|
|
if (seg->cache.valid==0) {
|
|
BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg)));
|
|
BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value));
|
|
BX_ERROR(("write_virtual_checks: valid bit = 0"));
|
|
BX_ERROR(("CS: %04x", (unsigned) BX_CPU_THIS_PTR sregs[1].selector.value));
|
|
BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_INFO(("write_virtual_checks(): segment not present"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: // read only
|
|
case 4: case 5: // read only, expand down
|
|
case 8: case 9: // execute only
|
|
case 10: case 11: // execute/read
|
|
case 12: case 13: // execute only, conforming
|
|
case 14: case 15: // execute/read-only, conforming
|
|
BX_INFO(("write_virtual_checks(): no write access to seg"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
|
|
case 2: case 3: /* read/write */
|
|
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
|
|
BX_INFO(("write_virtual_checks(): write beyond limit, r/w"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding writes. The limit
|
|
// checks still needs to be done though, but is more simple. We
|
|
// could probably also optimize that out with a flag for the case
|
|
// when limit is the maximum 32bit value. Limit should accomodate
|
|
// at least a dword, since we subtract from it in the simple
|
|
// limit check in other functions, and we don't want the value to roll.
|
|
// Only normal segments (not expand down) are handled this way.
|
|
seg->cache.valid |= SegAccessWOK;
|
|
}
|
|
break;
|
|
|
|
case 6: case 7: /* read write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if ((offset <= seg->cache.u.segment.limit_scaled) ||
|
|
(offset > upper_limit) ||
|
|
((upper_limit - offset) < (length - 1))) {
|
|
BX_INFO(("write_virtual_checks(): write beyond limit, r/w ED"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
else { /* real mode */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
|
|
//BX_INFO(("write_virtual_checks() SEG EXCEPTION: %x:%x + %x",
|
|
// (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length));
|
|
if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0);
|
|
else exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding writes. See notes above.
|
|
seg->cache.valid |= SegAccessWOK;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, bx_address offset,
|
|
unsigned length)
|
|
{
|
|
Bit32u upper_limit;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
|
|
// do canonical checks
|
|
if (!IsCanonical(offset)) {
|
|
BX_ERROR(("Canonical Address Failure %08x%08x",(Bit32u)(offset >> 32),(Bit32u)(offset & 0xffffffff)));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
seg->cache.valid |= SegAccessROK;
|
|
return;
|
|
}
|
|
#endif
|
|
if (protected_mode()) {
|
|
if (seg->cache.valid==0) {
|
|
BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg)));
|
|
BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value));
|
|
//BX_ERROR(("read_virtual_checks: valid bit = 0"));
|
|
//BX_ERROR(("CS: %04x", (unsigned)
|
|
// BX_CPU_THIS_PTR sregs[1].selector.value));
|
|
//BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip));
|
|
//debug(EIP);
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (seg->cache.p == 0) { /* not present */
|
|
BX_INFO(("read_virtual_checks(): segment not present"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
|
|
switch (seg->cache.type) {
|
|
case 0: case 1: /* read only */
|
|
case 10: case 11: /* execute/read */
|
|
case 14: case 15: /* execute/read-only, conforming */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
|
|
BX_INFO(("read_virtual_checks(): write beyond limit"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding writes. See notes for
|
|
// write checks; similar code.
|
|
seg->cache.valid |= SegAccessROK;
|
|
}
|
|
break;
|
|
|
|
case 2: case 3: /* read/write */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
|
|
BX_INFO(("read_virtual_checks(): write beyond limit"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding writes. See notes for
|
|
// write checks; similar code.
|
|
seg->cache.valid |= SegAccessROK;
|
|
}
|
|
break;
|
|
|
|
case 4: case 5: /* read only, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if ((offset <= seg->cache.u.segment.limit_scaled) ||
|
|
(offset > upper_limit) ||
|
|
((upper_limit - offset) < (length - 1))) {
|
|
BX_INFO(("read_virtual_checks(): write beyond limit"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 6: case 7: /* read write, expand down */
|
|
if (seg->cache.u.segment.d_b)
|
|
upper_limit = 0xffffffff;
|
|
else
|
|
upper_limit = 0x0000ffff;
|
|
if ((offset <= seg->cache.u.segment.limit_scaled) ||
|
|
(offset > upper_limit) ||
|
|
((upper_limit - offset) < (length - 1))) {
|
|
BX_INFO(("read_virtual_checks(): write beyond limit"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 8: case 9: /* execute only */
|
|
case 12: case 13: /* execute only, conforming */
|
|
/* can't read or write an execute-only segment */
|
|
BX_INFO(("read_virtual_checks(): execute only"));
|
|
exception(int_number(seg), 0, 0);
|
|
return;
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
else { /* real mode */
|
|
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|
|
|| (length-1 > seg->cache.u.segment.limit_scaled)) {
|
|
//BX_ERROR(("read_virtual_checks() SEG EXCEPTION: %x:%x + %x",
|
|
// (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length));
|
|
if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0);
|
|
else exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
if (seg->cache.u.segment.limit_scaled >= 7) {
|
|
// Mark cache as being OK type for succeeding writes. See notes for
|
|
// write checks; similar code.
|
|
seg->cache.valid |= SegAccessROK;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
char * BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::strseg(bx_segment_reg_t *seg)
|
|
{
|
|
if (seg == &BX_CPU_THIS_PTR sregs[0]) return("ES");
|
|
else if (seg == & BX_CPU_THIS_PTR sregs[1]) return("CS");
|
|
else if (seg == & BX_CPU_THIS_PTR sregs[2]) return("SS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[3]) return("DS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[4]) return("FS");
|
|
else if (seg == &BX_CPU_THIS_PTR sregs[5]) return("GS");
|
|
else {
|
|
BX_ERROR(("undefined segment passed to strseg()!"));
|
|
return("??");
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset <= seg->cache.u.segment.limit_scaled)) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_WRITE);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
|
|
// Current write access has privilege.
|
|
if (hostPageAddr) {
|
|
*hostAddr = *data;
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 1, pl, BX_WRITE, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 1);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_word(unsigned s, bx_address offset, Bit16u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset < seg->cache.u.segment.limit_scaled)) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_WRITE);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
|
|
if (hostPageAddr) {
|
|
WriteHostWordToLittleEndian(hostAddr, *data);
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 2, pl, BX_WRITE, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 2);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset < (seg->cache.u.segment.limit_scaled-2))) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_WRITE);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
|
|
// Current write access has privilege.
|
|
if (hostPageAddr) {
|
|
WriteHostDWordToLittleEndian(hostAddr, *data);
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 4, pl, BX_WRITE, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 4);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset <= (seg->cache.u.segment.limit_scaled-7))) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_WRITE);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
|
|
// Current write access has privilege.
|
|
if (hostPageAddr) {
|
|
WriteHostQWordToLittleEndian(hostAddr, *data);
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 8, pl, BX_WRITE, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 8);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessROK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset <= seg->cache.u.segment.limit_scaled)) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_READ);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
{
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1<<pl)) { // Read this pl OK.
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
if (hostPageAddr) {
|
|
*data = *hostAddr;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 1, pl, BX_READ, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
read_virtual_checks(seg, offset, 1);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_word(unsigned s, bx_address offset, Bit16u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessROK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset < seg->cache.u.segment.limit_scaled)) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_READ);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
{
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1<<pl)) { // Read this pl OK.
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
if (hostPageAddr) {
|
|
ReadHostWordFromLittleEndian(hostAddr, *data);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 2, pl, BX_READ, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
read_virtual_checks(seg, offset, 2);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessROK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset < (seg->cache.u.segment.limit_scaled-2))) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_READ);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
{
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1<<pl)) { // Read this pl OK.
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
if (hostPageAddr) {
|
|
ReadHostDWordFromLittleEndian(hostAddr, *data);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 4, pl, BX_READ, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
read_virtual_checks(seg, offset, 4);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessROK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset <= (seg->cache.u.segment.limit_scaled-7))) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_READ);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
{
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
|
|
// See if the TLB entry privilege level allows us read access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1<<pl)) { // Read this pl OK.
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
if (hostPageAddr) {
|
|
ReadHostQWordFromLittleEndian(hostAddr, *data);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 8, pl, BX_READ, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
read_virtual_checks(seg, offset, 8);
|
|
goto accessOK;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////
|
|
// special Read-Modify-Write operations //
|
|
// address translation info is kept across read/write calls //
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_RMW_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset <= seg->cache.u.segment.limit_scaled)) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_RW);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
|
|
// Current write access has privilege.
|
|
if (hostPageAddr) {
|
|
*data = *hostAddr;
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
// Accelerated attempt falls through to long path. Do it the
|
|
// old fashioned way...
|
|
access_linear(laddr, 1, pl, BX_RW, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 1);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_RMW_virtual_word(unsigned s, bx_address offset, Bit16u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset < seg->cache.u.segment.limit_scaled)) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_RW);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
|
|
// Current write access has privilege.
|
|
if (hostPageAddr) {
|
|
ReadHostWordFromLittleEndian(hostAddr, *data);
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 2, pl, BX_RW, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 2);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_RMW_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset < (seg->cache.u.segment.limit_scaled-2))) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_RW);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
|
|
// Current write access has privilege.
|
|
if (hostPageAddr) {
|
|
ReadHostDWordFromLittleEndian(hostAddr, *data);
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 4, pl, BX_RW, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 4);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_RMW_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
|
|
{
|
|
bx_address laddr;
|
|
bx_segment_reg_t *seg;
|
|
|
|
seg = &BX_CPU_THIS_PTR sregs[s];
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if ((IsLongMode() && IsCanonical(offset))
|
|
|| (offset <= (seg->cache.u.segment.limit_scaled-7))) {
|
|
unsigned pl;
|
|
accessOK:
|
|
laddr = seg->cache.u.segment.base + offset;
|
|
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_RW);
|
|
pl = (CPL==3);
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
Bit32u pageOffset = laddr & 0xfff;
|
|
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
|
|
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if ((BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)))
|
|
{
|
|
// See if the TLB entry privilege level allows us write access
|
|
// from this CPL.
|
|
Bit32u accessBits = BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits;
|
|
if (accessBits & (1 << (2 | pl))) {
|
|
bx_hostpageaddr_t hostPageAddr;
|
|
hostPageAddr = BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr;
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
|
|
// Current write access has privilege.
|
|
if (hostPageAddr) {
|
|
ReadHostQWordFromLittleEndian(hostAddr, *data);
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
#if BX_SUPPORT_ICACHE
|
|
BX_CPU_THIS_PTR iCache.decWriteStamp(BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // BX_SupportGuest2HostTLB
|
|
|
|
access_linear(laddr, 8, pl, BX_RW, (void *) data);
|
|
return;
|
|
}
|
|
}
|
|
write_virtual_checks(seg, offset, 8);
|
|
goto accessOK;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::write_RMW_virtual_byte(Bit8u val8)
|
|
{
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit8u *hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
*hostAddr = val8;
|
|
}
|
|
else {
|
|
// address_xlation.pages must be 1
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::write_RMW_virtual_word(Bit16u val16)
|
|
{
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
WriteHostWordToLittleEndian(hostAddr, val16);
|
|
}
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16);
|
|
}
|
|
else {
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16);
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1);
|
|
#else
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1);
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::write_RMW_virtual_dword(Bit32u val32)
|
|
{
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
WriteHostDWordToLittleEndian(hostAddr, val32);
|
|
}
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32);
|
|
}
|
|
else {
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
|
&val32);
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
|
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
|
|
#else
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
|
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
|
&val32);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::write_RMW_virtual_qword(Bit64u val64)
|
|
{
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
WriteHostQWordToLittleEndian(hostAddr, val64);
|
|
}
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64);
|
|
}
|
|
else {
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
|
&val64);
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
|
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
|
|
#else
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
|
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
|
|
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
|
&val64);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
//
|
|
// Some macro defs to make things cleaner for endian-ness issues.
|
|
// The following routines access a double qword, ie 16-bytes.
|
|
// For the moment, I redirect these to use the single qword routines
|
|
// by splitting one access into two.
|
|
//
|
|
// Endian Host byte order Guest (x86) byte order
|
|
// ======================================================
|
|
// Little 0..7 8..15 0..7 8..15
|
|
// Big 15..8 7...0 0..7 8..15
|
|
//
|
|
// Below are the host memory offsets to each of 2 single quadwords, which
|
|
// are different across big an little endian machines. The memory
|
|
// accessing routines take care of the access endian issues when accessing
|
|
// the physical memory image.
|
|
//
|
|
|
|
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
# define Host1stDWordOffset 0
|
|
# define Host2ndDWordOffset 8
|
|
#else
|
|
# define Host1stDWordOffset 8
|
|
# define Host2ndDWordOffset 0
|
|
#endif
|
|
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_dqword(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// Read Double Quadword.
|
|
Bit64u *qwords = (Bit64u*) data;
|
|
|
|
read_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
|
|
read_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// If double quadword access is unaligned, #GP(0).
|
|
if (offset & 0xf) {
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
read_virtual_dqword(s, offset, data);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_dqword(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// Write Double Quadword.
|
|
Bit64u *qwords = (Bit64u*) data;
|
|
|
|
write_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
|
|
write_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data)
|
|
{
|
|
// If double quadword access is unaligned, #GP(0).
|
|
if (offset & 0xf) {
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
write_virtual_dqword(s, offset, data);
|
|
}
|
|
|
|
#if BX_SUPPORT_FPU
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_virtual_tword(unsigned s, bx_address offset, floatx80 *data)
|
|
{
|
|
// read floating point register
|
|
read_virtual_qword(s, offset+0, &data->fraction);
|
|
read_virtual_word (s, offset+8, &data->exp);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_virtual_tword(unsigned s, bx_address offset, floatx80 *data)
|
|
{
|
|
// store floating point register
|
|
write_virtual_qword(s, offset+0, &data->fraction);
|
|
write_virtual_word (s, offset+8, &data->exp);
|
|
}
|
|
|
|
#endif
|