Bochs/bochs/cpu/stack32.cc
Stanislav Shwartsman ff79cbd596 Infrstructure change to support disasm of BxInstruction_c directly (without calling disasm)
The end goal will be also merging of disasm and cpu decoder to one module and remove the disasm.

Two bug fixes on the way:
TBM: fixed 64-bit TBM instructions with memory access (did 32-bit load instead of 64-bit)
BMI2: fixed operands order for PEXT/PDEP instructions
AVX2: fixed gather instruction decoding bug from decoder alias commit
2013-09-24 05:21:00 +00:00

277 lines
7.4 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2013 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdR(bxInstruction_c *i)
{
BX_WRITE_32BIT_REGZ(i->dst(), pop_32());
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdM(bxInstruction_c *i)
{
RSP_SPECULATIVE;
Bit32u val32 = pop_32();
// Note: there is one little weirdism here. It is possible to use
// ESP in the modrm addressing. If used, the value of ESP after the
// pop is used to calculate the address.
Bit32u eaddr = (Bit32u) BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_dword_32(i->seg(), eaddr, val32);
RSP_COMMIT;
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdR(bxInstruction_c *i)
{
push_32(BX_READ_32BIT_REG(i->dst()));
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdM(bxInstruction_c *i)
{
Bit32u eaddr = (Bit32u) BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_virtual_dword_32(i->seg(), eaddr);
push_32(op1_32);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_Sw(bxInstruction_c *i)
{
Bit16u val_16 = BX_CPU_THIS_PTR sregs[i->src()].selector.value;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
stack_write_word((Bit32u) (ESP-4), val_16);
ESP -= 4;
}
else
{
stack_write_word((Bit16u) (SP-4), val_16);
SP -= 4;
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_Sw(bxInstruction_c *i)
{
Bit16u selector;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
selector = stack_read_word(ESP);
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector);
ESP += 4;
}
else {
selector = stack_read_word(SP);
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector);
SP += 4;
}
if (i->dst() == BX_SEG_REG_SS) {
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
inhibit_interrupts(BX_INHIBIT_INTERRUPTS_BY_MOVSS);
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Id(bxInstruction_c *i)
{
push_32(i->Id());
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHA32(bxInstruction_c *i)
{
Bit32u temp_ESP = ESP;
Bit16u temp_SP = SP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
stack_write_dword((Bit32u) (temp_ESP - 4), EAX);
stack_write_dword((Bit32u) (temp_ESP - 8), ECX);
stack_write_dword((Bit32u) (temp_ESP - 12), EDX);
stack_write_dword((Bit32u) (temp_ESP - 16), EBX);
stack_write_dword((Bit32u) (temp_ESP - 20), temp_ESP);
stack_write_dword((Bit32u) (temp_ESP - 24), EBP);
stack_write_dword((Bit32u) (temp_ESP - 28), ESI);
stack_write_dword((Bit32u) (temp_ESP - 32), EDI);
ESP -= 32;
}
else
{
stack_write_dword((Bit16u) (temp_SP - 4), EAX);
stack_write_dword((Bit16u) (temp_SP - 8), ECX);
stack_write_dword((Bit16u) (temp_SP - 12), EDX);
stack_write_dword((Bit16u) (temp_SP - 16), EBX);
stack_write_dword((Bit16u) (temp_SP - 20), temp_ESP);
stack_write_dword((Bit16u) (temp_SP - 24), EBP);
stack_write_dword((Bit16u) (temp_SP - 28), ESI);
stack_write_dword((Bit16u) (temp_SP - 32), EDI);
SP -= 32;
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POPA32(bxInstruction_c *i)
{
Bit32u edi, esi, ebp, ebx, edx, ecx, eax;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
Bit32u temp_ESP = ESP;
edi = stack_read_dword((Bit32u) (temp_ESP + 0));
esi = stack_read_dword((Bit32u) (temp_ESP + 4));
ebp = stack_read_dword((Bit32u) (temp_ESP + 8));
stack_read_dword((Bit32u) (temp_ESP + 12));
ebx = stack_read_dword((Bit32u) (temp_ESP + 16));
edx = stack_read_dword((Bit32u) (temp_ESP + 20));
ecx = stack_read_dword((Bit32u) (temp_ESP + 24));
eax = stack_read_dword((Bit32u) (temp_ESP + 28));
ESP += 32;
}
else
{
Bit16u temp_SP = SP;
edi = stack_read_dword((Bit16u) (temp_SP + 0));
esi = stack_read_dword((Bit16u) (temp_SP + 4));
ebp = stack_read_dword((Bit16u) (temp_SP + 8));
stack_read_dword((Bit16u) (temp_SP + 12));
ebx = stack_read_dword((Bit16u) (temp_SP + 16));
edx = stack_read_dword((Bit16u) (temp_SP + 20));
ecx = stack_read_dword((Bit16u) (temp_SP + 24));
eax = stack_read_dword((Bit16u) (temp_SP + 28));
SP += 32;
}
EDI = edi;
ESI = esi;
EBP = ebp;
EBX = ebx;
EDX = edx;
ECX = ecx;
EAX = eax;
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i)
{
Bit16u imm16 = i->Iw();
Bit8u level = i->Ib2();
level &= 0x1F;
RSP_SPECULATIVE;
push_32(EBP);
Bit32u frame_ptr32 = ESP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
Bit32u ebp = EBP; // Use temp copy for case of exception.
if (level > 0) {
/* do level-1 times */
while (--level) {
ebp -= 4;
Bit32u temp32 = stack_read_dword(ebp);
push_32(temp32);
}
/* push(frame pointer) */
push_32(frame_ptr32);
}
ESP -= imm16;
// ENTER finishes with memory write check on the final stack pointer
// the memory is touched but no write actually occurs
// emulate it by doing RMW read access from SS:ESP
read_RMW_virtual_dword_32(BX_SEG_REG_SS, ESP);
}
else {
Bit16u bp = BP;
if (level > 0) {
/* do level-1 times */
while (--level) {
bp -= 4;
Bit32u temp32 = stack_read_dword(bp);
push_32(temp32);
}
/* push(frame pointer) */
push_32(frame_ptr32);
}
SP -= imm16;
// ENTER finishes with memory write check on the final stack pointer
// the memory is touched but no write actually occurs
// emulate it by doing RMW read access from SS:SP
read_RMW_virtual_dword_32(BX_SEG_REG_SS, SP);
}
EBP = frame_ptr32;
RSP_COMMIT;
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE32(bxInstruction_c *i)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit32u value32;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
value32 = stack_read_dword(EBP);
ESP = EBP + 4;
}
else {
value32 = stack_read_dword(BP);
SP = BP + 4;
}
EBP = value32;
BX_NEXT_INSTR(i);
}