Bochs/bochs/cpu/cpu.cc
Bryce Denney 5fc31bcfda - this revision changes the way eflags are accessed throughout the cpu and
cpu64 directories.  Instead of using the macros introduced in cpu.h rev 1.37
  such as GetEFlagsDFLogical and SetEFlagsDF and ClearEFlagsDF, I made inline
  methods on the BX_CPU_C object that access the eflags fields.  The problem
  with the macros is that they cannot be used outside the BX_CPU_C object.  The
  macros have now been removed, and all references to eflags now use these new
  accessors.
- I debated whether to put the accessors as members of the BX_CPU_C object
  or members of the bx_flags_reg_t struct.  I chose to make them members
  of BX_CPU_C for two reasons: 1. the lazy flags are implemented as
  members of BX_CPU_C, and 2. the eflags are referenced in many many places
  and it is more compact without having to put eflags in front of each.  (The
  real problem with compactness is having to write BX_CPU_THIS_PTR in front of
  everything, but that's another story.)
- Kevin pointed out a major bug in my set accessor code.  What a difference a
  little tilde can make!  That is fixed now.
- modified: load32bitOShack.cc debug/dbg_main.cc
  and in both cpu and cpu64 directories:
    cpu.cc cpu.h ctrl_xfer_pro.cc debugstuff.cc exception.cc flag_ctrl.cc
    flag_ctrl_pro.cc init.cc io.cc io_pro.cc proc_ctrl.cc soft_int.cc
    string.cc vm8086.cc
2002-09-12 18:10:46 +00:00

907 lines
28 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: cpu.cc,v 1.41 2002-09-12 18:10:36 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define BX_INSTR_SPY 0
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif
#if BX_EXTERNAL_DEBUGGER
#include "cpu/extdb.h"
#endif
#if BX_SIM_ID == 0 // only need to define once
// This array defines a look-up table for the even parity-ness
// of an 8bit quantity, for optimal assignment of the parity bit
// in the EFLAGS register
const Boolean bx_parity_lookup[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
#endif
#if BX_SMP_PROCESSORS==1
// single processor simulation, so there's one of everything
BX_CPU_C bx_cpu;
BX_MEM_C bx_mem;
#else
// multiprocessor simulation, we need an array of cpus and memories
BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS];
BX_MEM_C *bx_mem_array[BX_ADDRESS_SPACES];
#endif
// notes:
//
// check limit of CS?
#ifdef REGISTER_IADDR
extern void REGISTER_IADDR(Bit32u addr);
#endif
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance to
// run. This is used only when simulating multiple processors.
//
// If maximum instructions have been executed, return. A count less
// than zero means run forever.
#define CHECK_MAX_INSTRUCTIONS(count) \
if (count >= 0) { \
count--; if (count == 0) return; \
}
#if BX_SMP_PROCESSORS==1
# define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1()
#else
# define BX_TICK1_IF_SINGLE_PROCESSOR()
#endif
#if BX_DYNAMIC_TRANSLATION == 0
void
BX_CPU_C::cpu_loop(Bit32s max_instr_count)
{
unsigned ret;
//BxInstruction_t *i;
// Need to look into whether to change this back to:
BxInstruction_t i;
//BxInstruction_t bxinstruction_dummy;
//i = &bxinstruction_dummy;
#if BX_DEBUGGER
BX_CPU_THIS_PTR break_point = 0;
#ifdef MAGIC_BREAKPOINT
BX_CPU_THIS_PTR magic_break = 0;
#endif
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
#endif
(void) setjmp( BX_CPU_THIS_PTR jmp_buf_env );
// We get here either by a normal function call, or by a longjmp
// back from an exception() call. In either case, commit the
// new EIP/ESP, and set up other environmental fields. This code
// mirrors similar code below, after the interrupt() call.
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
BX_CPU_THIS_PTR EXT = 0;
BX_CPU_THIS_PTR errorno = 0;
main_cpu_loop:
// First check on events which occurred for previous instructions
// (traps) and ones which are asynchronous to the CPU
// (hardware interrupts).
if (BX_CPU_THIS_PTR async_event)
goto handle_async_event;
async_events_processed:
// Now we can handle things which are synchronous to instruction
// execution.
if (BX_CPU_THIS_PTR get_RF ()) {
BX_CPU_THIS_PTR clear_RF ();
}
#if BX_X86_DEBUGGER
else {
// only bother comparing if any breakpoints enabled
if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
Bit32u iaddr =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base +
BX_CPU_THIS_PTR prev_eip;
Bit32u dr6_bits;
if ( (dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction,
BX_HWDebugInstruction)) ) {
// Add to the list of debug events thus far.
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
BX_CPU_THIS_PTR async_event = 1;
// If debug events are not inhibited on this boundary,
// fire off a debug fault. Otherwise handle it on the next
// boundary. (becomes a trap)
if ( !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
}
}
}
#endif
// We have ignored processing of external interrupts and
// debug events on this boundary. Reset the mask so they
// will be processed on the next boundary.
BX_CPU_THIS_PTR inhibit_mask = 0;
#if BX_DEBUGGER
{
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
if ( dbg_is_begin_instr_bpoint(
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
return;
}
}
#endif // #if BX_DEBUGGER
#if BX_INSTR_SPY
{
int n=0;
if ((n & 0xffffff) == 0) {
Bit32u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
Bit32u eip = BX_CPU_THIS_PTR prev_eip;
fprintf (stdout, "instr %d, time %lld, pc %04x:%08x, fetch_ptr=%p\n", n, bx_pc_system.time_ticks (), cs, eip, BX_CPU_THIS_PTR fetch_ptr);
}
n++;
}
#endif
#if BX_EXTERNAL_DEBUGGER
if (regs.debug_state != debug_run) {
bx_external_debugger(this);
}
#endif
{
Bit32u eipBiased;
Bit32u remainingInPage;
unsigned maxFetch;
Bit8u *fetchPtr;
Boolean is32;
eipBiased = EIP + BX_CPU_THIS_PTR eipPageBias;
if ( eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize ) {
prefetch();
eipBiased = EIP + BX_CPU_THIS_PTR eipPageBias;
}
remainingInPage = (BX_CPU_THIS_PTR eipPageWindowSize - eipBiased);
maxFetch = 15;
if (remainingInPage < 15)
maxFetch = remainingInPage;
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
is32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
ret = FetchDecode(fetchPtr, &i, maxFetch, is32);
}
if (ret) {
if (i.ResolveModrm) {
// call method on BX_CPU_C object
BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
}
fetch_decode_OK:
#if BX_DEBUGGER
if (BX_CPU_THIS_PTR trace) {
// print the instruction that is about to be executed.
#if (BX_SMP_PROCESSORS==1)
bx_dbg_disassemble_current (0, 1); // only one cpu, print time stamp
#else
bx_dbg_disassemble_current (local_apic.get_id (), 1); // this cpu only
#endif
}
#endif
if ( !(i.rep_used && (i.attr & BxRepeatable)) ) {
// non repeating instruction
EIP += i.ilen;
BX_CPU_CALL_METHOD(i.execute, (&i));
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
#ifdef REGISTER_IADDR
REGISTER_IADDR(EIP + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
#endif
BX_TICK1_IF_SINGLE_PROCESSOR();
}
else {
repeat_loop:
if (i.attr & BxRepeatableZF) {
if (i.as_32) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
ECX -= 1;
}
if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
if (ECX == 0) goto repeat_done;
goto repeat_not_done;
}
else {
if (CX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
CX -= 1;
}
if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
if (CX == 0) goto repeat_done;
goto repeat_not_done;
}
}
else { // normal repeat, no concern for ZF
if (i.as_32) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
ECX -= 1;
}
if (ECX == 0) goto repeat_done;
goto repeat_not_done;
}
else { // 16bit addrsize
if (CX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
CX -= 1;
}
if (CX == 0) goto repeat_done;
goto repeat_not_done;
}
}
// shouldn't get here from above
repeat_not_done:
#ifdef REGISTER_IADDR
REGISTER_IADDR(EIP + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
#endif
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event) {
invalidate_prefetch_q();
goto debugger_check;
}
goto repeat_loop;
#else /* if BX_DEBUGGER == 1 */
invalidate_prefetch_q();
goto debugger_check;
#endif
repeat_done:
EIP += i.ilen;
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
#ifdef REGISTER_IADDR
REGISTER_IADDR(EIP + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
#endif
BX_TICK1_IF_SINGLE_PROCESSOR();
}
debugger_check:
#if (BX_SMP_PROCESSORS>1 && BX_DEBUGGER==0)
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance
// to run. This is used only when simulating multiple processors. If only
// one processor, don't waste any cycles on it! Also, it is not needed
// with the debugger because its guard mechanism provides the same
// functionality.
CHECK_MAX_INSTRUCTIONS(max_instr_count);
#endif
#if BX_DEBUGGER
// BW vm mode switch support is in dbg_is_begin_instr_bpoint
// note instr generating exceptions never reach this point.
// (mch) Read/write, time break point support
if (BX_CPU_THIS_PTR break_point) {
switch (BX_CPU_THIS_PTR break_point) {
case BREAK_POINT_TIME:
BX_INFO(("[%lld] Caught time breakpoint", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
return;
case BREAK_POINT_READ:
BX_INFO(("[%lld] Caught read watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
return;
case BREAK_POINT_WRITE:
BX_INFO(("[%lld] Caught write watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
return;
default:
BX_PANIC(("Weird break point condition"));
}
}
#ifdef MAGIC_BREAKPOINT
// (mch) Magic break point support
if (BX_CPU_THIS_PTR magic_break) {
if (bx_dbg.magic_break_enabled) {
BX_DEBUG(("Stopped on MAGIC BREAKPOINT"));
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
return;
} else {
BX_CPU_THIS_PTR magic_break = 0;
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
BX_DEBUG(("Ignoring MAGIC BREAKPOINT"));
}
}
#endif
{
// check for icount or control-C. If found, set guard reg and return.
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
if ( dbg_is_end_instr_bpoint(
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
return;
}
}
#endif // #if BX_DEBUGGER
goto main_cpu_loop;
}
else {
unsigned j;
Bit8u fetchBuffer[16]; // Really only need 15
Bit32u eipBiased, remainingInPage;
Bit8u *fetchPtr;
eipBiased = EIP + BX_CPU_THIS_PTR eipPageBias;
remainingInPage = (BX_CPU_THIS_PTR eipPageWindowSize - eipBiased);
if (remainingInPage > 15) {
BX_PANIC(("fetch_decode: remaining > max ilen"));
}
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
// Read all leftover bytes in current page up to boundary.
for (j=0; j<remainingInPage; j++) {
fetchBuffer[j] = *fetchPtr++;
}
// The 2nd chunk of the instruction is on the next page.
// Set EIP to the 0th byte of the 2nd page, and force a
// prefetch so direct access of that physical page is possible, and
// all the associated info is updated.
EIP += remainingInPage;
prefetch();
if (BX_CPU_THIS_PTR eipPageWindowSize < 15) {
BX_PANIC(("fetch_decode: small window size after prefetch"));
}
// We can fetch straight from the 0th byte, which is eipFetchPtr;
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr;
// read leftover bytes in next page
for (; j<15; j++) {
fetchBuffer[j] = *fetchPtr++;
}
ret = FetchDecode(fetchBuffer, &i, 15,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b);
// Restore EIP since we fudged it to start at the 2nd page boundary.
EIP = BX_CPU_THIS_PTR prev_eip;
if (ret==0)
BX_PANIC(("fetchdecode: cross boundary: ret==0"));
if (i.ResolveModrm) {
BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
}
// Since we cross an instruction boundary, note that we need a prefetch()
// again on the next instruction. Perhaps we can optimize this to
// eliminate the extra prefetch() since we do it above, but have to
// think about repeated instructions, etc.
BX_CPU_THIS_PTR eipPageWindowSize = 0; // Fixme
goto fetch_decode_OK;
}
//
// This area is where we process special conditions and events.
//
handle_async_event:
if (BX_CPU_THIS_PTR debug_trap & 0x80000000) {
// I made up the bitmask above to mean HALT state.
#if BX_SMP_PROCESSORS==1
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
// for one processor, pass the time as quickly as possible until
// an interrupt wakes up the CPU.
#if BX_DEBUGGER
while (bx_guard.interrupt_requested != 1) {
#else
while (1) {
#endif
if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR get_IF ()) {
break;
}
if (BX_CPU_THIS_PTR async_event == 0) {
BX_INFO(("decode: reset detected in halt state"));
break;
}
BX_TICK1();
}
#else /* BX_SMP_PROCESSORS != 1 */
// for multiprocessor simulation, even if this CPU is halted we still
// must give the others a chance to simulate. If an interrupt has
// arrived, then clear the HALT condition; otherwise just return from
// the CPU loop with stop_reason STOP_CPU_HALTED.
if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR get_IF ()) {
// interrupt ends the HALT condition
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
//bx_printf ("halt condition has been cleared in %s", name);
} else {
// HALT condition remains, return so other CPUs have a chance
#if BX_DEBUGGER
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
#endif
return;
}
#endif
} else if (BX_CPU_THIS_PTR kill_bochs_request) {
// setting kill_bochs_request causes the cpu loop to return ASAP.
return;
}
// Priority 1: Hardware Reset and Machine Checks
// RESET
// Machine Check
// (bochs doesn't support these)
// Priority 2: Trap on Task Switch
// T flag in TSS is set
if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 3: External Hardware Interventions
// FLUSH
// STOPCLK
// SMI
// INIT
// (bochs doesn't support these)
// Priority 4: Traps on Previous Instruction
// Breakpoints
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
if ( BX_CPU_THIS_PTR debug_trap &&
!(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
// A trap may be inhibited on this boundary due to an instruction
// which loaded SS. If so we clear the inhibit_mask below
// and don't execute this code until the next boundary.
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 5: External Interrupts
// NMI Interrupts
// Maskable Hardware Interrupts
if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
// Processing external interrupts is inhibited on this
// boundary because of certain instructions like STI.
// inhibit_mask is cleared below, in which case we will have
// an opportunity to check interrupts on the next instruction
// boundary.
}
else if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR get_IF () && BX_DBG_ASYNC_INTR) {
Bit8u vector;
// NOTE: similar code in ::take_irq()
#if BX_SUPPORT_APIC
if (BX_CPU_THIS_PTR int_from_local_apic)
vector = BX_CPU_THIS_PTR local_apic.acknowledge_int ();
else
vector = BX_IAC(); // may set INTR with next interrupt
#else
// if no local APIC, always acknowledge the PIC.
vector = BX_IAC(); // may set INTR with next interrupt
#endif
//BX_DEBUG(("decode: interrupt %u",
// (unsigned) vector));
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; /* external event */
interrupt(vector, 0, 0, 0);
BX_INSTR_HWINTERRUPT(vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP);
// Set up environment, as would be when this main cpu loop gets
// invoked. At the end of normal instructions, we always commmit
// the new EIP/ESP values. But here, we call interrupt() much like
// it was a sofware interrupt instruction, and need to effect the
// commit here. This code mirrors similar code above.
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
BX_CPU_THIS_PTR EXT = 0;
BX_CPU_THIS_PTR errorno = 0;
}
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
// NOTE: similar code in ::take_dma()
// assert Hold Acknowledge (HLDA) and go into a bus hold state
BX_RAISE_HLDA();
}
// Priority 6: Faults from fetching next instruction
// Code breakpoint fault
// Code segment limit violation (priority 7 on 486/Pentium)
// Code page fault (priority 7 on 486/Pentium)
// (handled in main decode loop)
// Priority 7: Faults from decoding next instruction
// Instruction length > 15 bytes
// Illegal opcode
// Coprocessor not available
// (handled in main decode loop etc)
// Priority 8: Faults on executing an instruction
// Floating point execution
// Overflow
// Bound error
// Invalid TSS
// Segment not present
// Stack fault
// General protection
// Data page fault
// Alignment check
// (handled by rest of the code)
if (BX_CPU_THIS_PTR get_TF ()) {
// TF is set before execution of next instruction. Schedule
// a debug trap (#DB) after execution. After completion of
// next instruction, the code above will invoke the trap.
BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
}
if ( !(BX_CPU_THIS_PTR INTR ||
BX_CPU_THIS_PTR debug_trap ||
BX_HRQ ||
BX_CPU_THIS_PTR get_TF ()) )
BX_CPU_THIS_PTR async_event = 0;
goto async_events_processed;
}
#endif // #if BX_DYNAMIC_TRANSLATION == 0
// boundaries of consideration:
//
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
// * A20 boundary: 1024k (1Megabyte)
// * page boundary: 4k
// * ROM boundary: 2k (dont care since we are only reading)
// * segment boundary: any
void
BX_CPU_C::prefetch(void)
{
// cs:eIP
// prefetch QSIZE byte quantity aligned on corresponding boundary
Bit32u laddr;
Bit32u paddr;
Bit32u temp_eip, temp_limit;
Bit32u laddrPageOffset0, eipPageOffset0;
temp_eip = EIP;
temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
laddr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base +
temp_eip;
if (temp_eip > temp_limit) {
BX_PANIC(("prefetch: EIP > CS.limit"));
}
#if BX_SUPPORT_PAGING
if (BX_CPU_THIS_PTR cr0.pg) {
// aligned block guaranteed to be all in one page, same A20 address
paddr = itranslate_linear(laddr, CPL==3);
paddr = A20ADDR(paddr);
}
else
#endif // BX_SUPPORT_PAGING
{
paddr = A20ADDR(laddr);
}
// check if segment boundary comes into play
//if ((temp_limit - temp_eip) < 4096) {
// }
// Linear address at the beginning of the page.
laddrPageOffset0 = laddr & 0xfffff000;
// Calculate EIP at the beginning of the page.
eipPageOffset0 = EIP - (laddr - laddrPageOffset0);
BX_CPU_THIS_PTR eipPageBias = - eipPageOffset0;
BX_CPU_THIS_PTR eipPageWindowSize = 4096; // FIXME:
BX_CPU_THIS_PTR eipFetchPtr =
BX_CPU_THIS_PTR mem->getHostMemAddr(A20ADDR(paddr & 0xfffff000), BX_READ);
// Sanity checks
if ( !BX_CPU_THIS_PTR eipFetchPtr ) {
if ( paddr >= BX_CPU_THIS_PTR mem->len ) {
BX_ERROR(("prefetch: running in bogus memory"));
}
else {
BX_ERROR(("prefetch: getHostMemAddr vetoed direct read, paddr=0x%x.",
paddr));
}
}
}
// If control has transfered locally, it is possible the prefetch Q is
// still valid. This would happen for repeat instructions, and small
// branches.
void
BX_CPU_C::revalidate_prefetch_q(void)
{
Bit32u eipBiased;
eipBiased = EIP + BX_CPU_THIS_PTR eipPageBias;
if ( eipBiased < BX_CPU_THIS_PTR eipPageWindowSize ) {
// Good, EIP still within prefetch window.
}
else {
// EIP has branched outside the prefetch window. Mark the
// prefetch info as invalid, and requiring update.
BX_CPU_THIS_PTR eipPageWindowSize = 0;
}
}
void
BX_CPU_C::invalidate_prefetch_q(void)
{
BX_CPU_THIS_PTR eipPageWindowSize = 0;
}
#if BX_DEBUGGER
extern unsigned int dbg_show_mask;
Boolean
BX_CPU_C::dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32)
{
//fprintf (stderr, "begin_instr_bp: checking cs:eip %04x:%08x\n", cs, eip);
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = eip;
BX_CPU_THIS_PTR guard_found.laddr = laddr;
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
// BW mode switch breakpoint
// instruction which generate exceptions never reach the end of the
// loop due to a long jump. Thats why we check at start of instr.
// Downside is that we show the instruction about to be executed
// (not the one generating the mode switch).
if (BX_CPU_THIS_PTR mode_break &&
(BX_CPU_THIS_PTR debug_vm != BX_CPU_THIS_PTR get_VM ())) {
BX_INFO(("Caught vm mode switch breakpoint"));
BX_CPU_THIS_PTR debug_vm = BX_CPU_THIS_PTR get_VM ();
BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT;
return 1;
}
if( (BX_CPU_THIS_PTR show_flag) & (dbg_show_mask)) {
int rv;
if((rv = bx_dbg_symbolic_output()))
return rv;
}
// see if debugger is looking for iaddr breakpoint of any type
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
#if BX_DBG_SUPPORT_VIR_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
if ( (bx_guard.iaddr.vir[i].cs == cs) &&
(bx_guard.iaddr.vir[i].eip == eip) ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
if ( bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
Bit32u phy;
Boolean valid;
dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr,
&phy, &valid);
// The "guard_found.icount!=0" condition allows you to step or
// continue beyond a breakpoint. Bryce tried removing it once,
// and once you get to a breakpoint you are stuck there forever.
// Not pretty.
if (valid && (BX_CPU_THIS_PTR guard_found.icount!=0)) {
for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
if ( bx_guard.iaddr.phy[i].addr == phy ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
}
return(0); // not on a breakpoint
}
Boolean
BX_CPU_C::dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32)
{
//fprintf (stderr, "end_instr_bp: checking for icount or ^C\n");
BX_CPU_THIS_PTR guard_found.icount++;
// convenient point to see if user typed Ctrl-C
if (bx_guard.interrupt_requested &&
(bx_guard.guard_for & BX_DBG_GUARD_CTRL_C)) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
return(1);
}
// see if debugger requesting icount guard
if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
if (BX_CPU_THIS_PTR guard_found.icount >= bx_guard.icount) {
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = eip;
BX_CPU_THIS_PTR guard_found.laddr = laddr;
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_ICOUNT;
return(1);
}
}
#if (BX_NUM_SIMULATORS >= 2)
// if async event pending, acknowlege them
if (bx_guard.async_changes_pending.which) {
if (bx_guard.async_changes_pending.which & BX_DBG_ASYNC_PENDING_A20)
bx_dbg_async_pin_ack(BX_DBG_ASYNC_PENDING_A20,
bx_guard.async_changes_pending.a20);
if (bx_guard.async_changes_pending.which) {
BX_PANIC(("decode: async pending unrecognized."));
}
}
#endif
return(0); // no breakpoint
}
void
BX_CPU_C::dbg_take_irq(void)
{
unsigned vector;
// NOTE: similar code in ::cpu_loop()
if ( BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR get_IF () ) {
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
// normal return from setjmp setup
vector = BX_IAC(); // may set INTR with next interrupt
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
interrupt(vector, 0, 0, 0);
}
}
}
void
BX_CPU_C::dbg_force_interrupt(unsigned vector)
{
// Used to force slave simulator to take an interrupt, without
// regard to IF
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
// normal return from setjmp setup
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // probably don't need this
interrupt(vector, 0, 0, 0);
}
}
void
BX_CPU_C::dbg_take_dma(void)
{
// NOTE: similar code in ::cpu_loop()
if ( BX_HRQ ) {
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
BX_RAISE_HLDA();
}
}
#endif // #if BX_DEBUGGER