277 lines
7.4 KiB
C++
277 lines
7.4 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001-2012 The Bochs Project
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdM(bxInstruction_c *i)
|
|
{
|
|
RSP_SPECULATIVE;
|
|
|
|
Bit32u val32 = pop_32();
|
|
|
|
// Note: there is one little weirdism here. It is possible to use
|
|
// ESP in the modrm addressing. If used, the value of ESP after the
|
|
// pop is used to calculate the address.
|
|
Bit32u eaddr = (Bit32u) BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
|
|
|
|
write_virtual_dword_32(i->seg(), eaddr, val32);
|
|
|
|
RSP_COMMIT;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_ERX(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_READ_32BIT_REG(i->rm()));
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_ERX(bxInstruction_c *i)
|
|
{
|
|
BX_WRITE_32BIT_REGZ(i->rm(), pop_32());
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_Sw(bxInstruction_c *i)
|
|
{
|
|
Bit16u val_16 = BX_CPU_THIS_PTR sregs[i->nnn()].selector.value;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
stack_write_word((Bit32u) (ESP-4), val_16);
|
|
ESP -= 4;
|
|
}
|
|
else
|
|
{
|
|
stack_write_word((Bit16u) (SP-4), val_16);
|
|
SP -= 4;
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_Sw(bxInstruction_c *i)
|
|
{
|
|
Bit16u selector;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
selector = stack_read_word(ESP);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->nnn()], selector);
|
|
ESP += 4;
|
|
}
|
|
else {
|
|
selector = stack_read_word(SP);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->nnn()], selector);
|
|
SP += 4;
|
|
}
|
|
|
|
if (i->nnn() == BX_SEG_REG_SS) {
|
|
// POP SS inhibits interrupts, debug exceptions and single-step
|
|
// trap exceptions until the execution boundary following the
|
|
// next instruction is reached.
|
|
// Same code as MOV_SwEw()
|
|
inhibit_interrupts(BX_INHIBIT_INTERRUPTS_BY_MOVSS);
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Id(bxInstruction_c *i)
|
|
{
|
|
push_32(i->Id());
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdM(bxInstruction_c *i)
|
|
{
|
|
Bit32u eaddr = (Bit32u) BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
|
|
|
|
Bit32u op1_32 = read_virtual_dword_32(i->seg(), eaddr);
|
|
|
|
push_32(op1_32);
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHAD32(bxInstruction_c *i)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
Bit16u temp_SP = SP;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
stack_write_dword((Bit32u) (temp_ESP - 4), EAX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 8), ECX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 12), EDX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 16), EBX);
|
|
stack_write_dword((Bit32u) (temp_ESP - 20), temp_ESP);
|
|
stack_write_dword((Bit32u) (temp_ESP - 24), EBP);
|
|
stack_write_dword((Bit32u) (temp_ESP - 28), ESI);
|
|
stack_write_dword((Bit32u) (temp_ESP - 32), EDI);
|
|
ESP -= 32;
|
|
}
|
|
else
|
|
{
|
|
stack_write_dword((Bit16u) (temp_SP - 4), EAX);
|
|
stack_write_dword((Bit16u) (temp_SP - 8), ECX);
|
|
stack_write_dword((Bit16u) (temp_SP - 12), EDX);
|
|
stack_write_dword((Bit16u) (temp_SP - 16), EBX);
|
|
stack_write_dword((Bit16u) (temp_SP - 20), temp_ESP);
|
|
stack_write_dword((Bit16u) (temp_SP - 24), EBP);
|
|
stack_write_dword((Bit16u) (temp_SP - 28), ESI);
|
|
stack_write_dword((Bit16u) (temp_SP - 32), EDI);
|
|
SP -= 32;
|
|
}
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POPAD32(bxInstruction_c *i)
|
|
{
|
|
Bit32u edi, esi, ebp, ebx, edx, ecx, eax;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
edi = stack_read_dword((Bit32u) (temp_ESP + 0));
|
|
esi = stack_read_dword((Bit32u) (temp_ESP + 4));
|
|
ebp = stack_read_dword((Bit32u) (temp_ESP + 8));
|
|
stack_read_dword((Bit32u) (temp_ESP + 12));
|
|
ebx = stack_read_dword((Bit32u) (temp_ESP + 16));
|
|
edx = stack_read_dword((Bit32u) (temp_ESP + 20));
|
|
ecx = stack_read_dword((Bit32u) (temp_ESP + 24));
|
|
eax = stack_read_dword((Bit32u) (temp_ESP + 28));
|
|
ESP += 32;
|
|
}
|
|
else
|
|
{
|
|
Bit16u temp_SP = SP;
|
|
edi = stack_read_dword((Bit16u) (temp_SP + 0));
|
|
esi = stack_read_dword((Bit16u) (temp_SP + 4));
|
|
ebp = stack_read_dword((Bit16u) (temp_SP + 8));
|
|
stack_read_dword((Bit16u) (temp_SP + 12));
|
|
ebx = stack_read_dword((Bit16u) (temp_SP + 16));
|
|
edx = stack_read_dword((Bit16u) (temp_SP + 20));
|
|
ecx = stack_read_dword((Bit16u) (temp_SP + 24));
|
|
eax = stack_read_dword((Bit16u) (temp_SP + 28));
|
|
SP += 32;
|
|
}
|
|
|
|
EDI = edi;
|
|
ESI = esi;
|
|
EBP = ebp;
|
|
EBX = ebx;
|
|
EDX = edx;
|
|
ECX = ecx;
|
|
EAX = eax;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i)
|
|
{
|
|
Bit16u imm16 = i->Iw();
|
|
Bit8u level = i->Ib2();
|
|
level &= 0x1F;
|
|
|
|
RSP_SPECULATIVE;
|
|
|
|
push_32(EBP);
|
|
Bit32u frame_ptr32 = ESP;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
Bit32u ebp = EBP; // Use temp copy for case of exception.
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
ebp -= 4;
|
|
Bit32u temp32 = stack_read_dword(ebp);
|
|
push_32(temp32);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_32(frame_ptr32);
|
|
}
|
|
|
|
ESP -= imm16;
|
|
|
|
// ENTER finishes with memory write check on the final stack pointer
|
|
// the memory is touched but no write actually occurs
|
|
// emulate it by doing RMW read access from SS:ESP
|
|
read_RMW_virtual_dword_32(BX_SEG_REG_SS, ESP);
|
|
}
|
|
else {
|
|
Bit16u bp = BP;
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
bp -= 4;
|
|
Bit32u temp32 = stack_read_dword(bp);
|
|
push_32(temp32);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_32(frame_ptr32);
|
|
}
|
|
|
|
SP -= imm16;
|
|
|
|
// ENTER finishes with memory write check on the final stack pointer
|
|
// the memory is touched but no write actually occurs
|
|
// emulate it by doing RMW read access from SS:SP
|
|
read_RMW_virtual_dword_32(BX_SEG_REG_SS, SP);
|
|
}
|
|
|
|
EBP = frame_ptr32;
|
|
|
|
RSP_COMMIT;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|
|
|
|
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE32(bxInstruction_c *i)
|
|
{
|
|
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
|
|
|
|
Bit32u value32;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
|
|
value32 = stack_read_dword(EBP);
|
|
ESP = EBP + 4;
|
|
}
|
|
else {
|
|
value32 = stack_read_dword(BP);
|
|
SP = BP + 4;
|
|
}
|
|
|
|
EBP = value32;
|
|
|
|
BX_NEXT_INSTR(i);
|
|
}
|