Bochs/bochs/cpu/logical32.cc
2007-04-17 21:38:51 +00:00

388 lines
8.5 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: logical32.cc,v 1.27 2007-04-17 21:38:51 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier for merging cpu64 and cpu32 code.
#define RAX EAX
#endif
void BX_CPU_C::XOR_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
result_32 = op1_32 ^ op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
result_32 = op1_32 ^ op2_32;
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
}
void BX_CPU_C::XOR_GdEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
unsigned nnn = i->nnn();
op1_32 = BX_READ_32BIT_REG(nnn);
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
result_32 = op1_32 ^ op2_32;
BX_WRITE_32BIT_REGZ(nnn, result_32);
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
}
void BX_CPU_C::XOR_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = EAX;
op2_32 = i->Id();
result_32 = op1_32 ^ op2_32;
RAX = result_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
}
void BX_CPU_C::XOR_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
result_32 = op1_32 ^ op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
result_32 = op1_32 ^ op2_32;
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
}
void BX_CPU_C::OR_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
result_32 = op1_32 | op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
result_32 = op1_32 | op2_32;
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
}
void BX_CPU_C::NOT_Ed(bxInstruction_c *i)
{
Bit32u op1_32, result_32;
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
result_32 = ~op1_32;
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
result_32 = ~op1_32;
write_RMW_virtual_dword(result_32);
}
}
void BX_CPU_C::OR_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
result_32 = op1_32 | op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
result_32 = op1_32 | op2_32;
write_RMW_virtual_dword(result_32);
}
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
}
void BX_CPU_C::OR_GdEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
#if defined(BX_HostAsm_Or32)
Bit32u flags32;
asmOr32(result_32, op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
result_32 = op1_32 | op2_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
BX_WRITE_32BIT_REGZ(i->nnn(), result_32);
}
void BX_CPU_C::OR_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = EAX;
op2_32 = i->Id();
result_32 = op1_32 | op2_32;
RAX = result_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
}
void BX_CPU_C::AND_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
#if defined(BX_HostAsm_And32)
Bit32u flags32;
asmAnd32(result_32, op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
result_32 = op1_32 & op2_32;
#endif
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
#if defined(BX_HostAsm_And32)
Bit32u flags32;
asmAnd32(result_32, op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
result_32 = op1_32 & op2_32;
#endif
write_RMW_virtual_dword(result_32);
}
#if !defined(BX_HostAsm_And32)
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
}
void BX_CPU_C::AND_GdEd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
#if defined(BX_HostAsm_And32)
Bit32u flags32;
asmAnd32(result_32, op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
BX_WRITE_32BIT_REGZ(i->nnn(), result_32);
}
void BX_CPU_C::AND_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, result_32;
op1_32 = EAX;
op2_32 = i->Id();
#if defined(BX_HostAsm_And32)
Bit32u flags32;
asmAnd32(result_32, op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
RAX = result_32;
}
void BX_CPU_C::AND_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32, result_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
#if defined(BX_HostAsm_And32)
Bit32u flags32;
asmAnd32(result_32, op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
result_32 = op1_32 & op2_32;
#endif
BX_WRITE_32BIT_REGZ(i->rm(), result_32);
}
else {
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
#if defined(BX_HostAsm_And32)
Bit32u flags32;
asmAnd32(result_32, op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
result_32 = op1_32 & op2_32;
#endif
write_RMW_virtual_dword(result_32);
}
#if !defined(BX_HostAsm_And32)
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
}
void BX_CPU_C::TEST_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
op2_32 = BX_READ_32BIT_REG(i->nnn());
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if defined(BX_HostAsm_Test32)
Bit32u flags32;
asmTest32(op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit32u result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
}
void BX_CPU_C::TEST_EAXId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
op1_32 = EAX;
op2_32 = i->Id();
#if defined(BX_HostAsm_Test32)
Bit32u flags32;
asmTest32(op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit32u result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
}
void BX_CPU_C::TEST_EdId(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
op2_32 = i->Id();
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
}
else {
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
}
#if defined(BX_HostAsm_Test32)
Bit32u flags32;
asmTest32(op1_32, op2_32, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit32u result_32 = op1_32 & op2_32;
SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32);
#endif
}