Bochs/bochs/cpu/data_xfer32.cc
Christophe Bothamy b3d16a48ef - apply another speedup patch from Conn Clark.
Notes from the author:
Here is another one of my speed up patches. Unlike my previous speedups
this one will help more platforms than just X86. It cleans up the Data
Xfer instructions. Since the Data Xfer instructions are the most often
executed instructions it gives a noticable boost in speed. The basic
optimization technique was to eliminate intermediate variables and pass
a pointer to the final destination or original source to the
read_virtual_whatever and the write_virtual_whatever functions.
2003-05-03 16:19:07 +00:00

317 lines
7.5 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: data_xfer32.cc,v 1.22 2003-05-03 16:19:07 cbothamy Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XCHG_ERXEAX(bxInstruction_c *i)
{
Bit32u temp32;
temp32 = EAX;
#if BX_SUPPORT_X86_64
RAX = BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx;
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = temp32;
#else
EAX = BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx;
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = temp32;
#endif
}
void
BX_CPU_C::MOV_ERXId(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].rrx = i->Id();
#else
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = i->Id();
#endif
}
void
BX_CPU_C::MOV_EEdGd(bxInstruction_c *i)
{
write_virtual_dword(i->seg(), RMAddr(i), &BX_READ_32BIT_REG(i->nnn()));
}
void
BX_CPU_C::MOV_EGdGd(bxInstruction_c *i)
{
BX_WRITE_32BIT_REGZ(i->rm(), BX_READ_32BIT_REG(i->nnn()));
}
void
BX_CPU_C::MOV_GdEGd(bxInstruction_c *i)
{
// 2nd modRM operand Ex, is known to be a general register Gd.
BX_READ_32BIT_REG(i->nnn()) = BX_READ_32BIT_REG(i->rm());
}
void
BX_CPU_C::MOV_GdEEd(bxInstruction_c *i)
{
// 2nd modRM operand Ex, is known to be a memory operand, Ed.
read_virtual_dword(i->seg(), RMAddr(i), &BX_READ_32BIT_REG(i->nnn()));
}
void
BX_CPU_C::LEA_GdM(bxInstruction_c *i)
{
if (i->modC0()) {
BX_PANIC(("LEA_GvM: op2 is a register"));
UndefinedOpcode(i);
return;
}
/* write effective address of op2 in op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), RMAddr(i));
}
void
BX_CPU_C::MOV_EAXOd(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
Bit32u temp_32;
if (!BX_NULL_SEG_REG(i->seg())) {
read_virtual_dword(i->seg(), i->Id(), &temp_32);
}
else {
read_virtual_dword(BX_SEG_REG_DS, i->Id(), &temp_32);
}
RAX = temp_32;
#else
if (!BX_NULL_SEG_REG(i->seg())) {
read_virtual_dword(i->seg(), i->Id(), &EAX);
}
else {
read_virtual_dword(BX_SEG_REG_DS, i->Id(), &EAX);
}
#endif
}
void
BX_CPU_C::MOV_OdEAX(bxInstruction_c *i)
{
if (!BX_NULL_SEG_REG(i->seg())) {
write_virtual_dword(i->seg(), i->Id() , &EAX);
}
else {
write_virtual_dword(BX_SEG_REG_DS, i->Id(), &EAX);
}
}
void
BX_CPU_C::MOV_EdId(bxInstruction_c *i)
{
Bit32u op2_32;
op2_32 = i->Id();
/* now write sum back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op2_32);
}
else {
write_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
}
void
BX_CPU_C::MOVZX_GdEb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVZX_GvEb: not supported on < 386"));
#else
Bit8u op2_8;
if (i->modC0()) {
op2_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op2_8);
}
/* zero extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit32u) op2_8);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVZX_GdEw(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVZX_GvEw: not supported on < 386"));
#else
Bit16u op2_16;
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
/* zero extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit32u) op2_16);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVSX_GdEb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVSX_GvEb: not supported on < 386"));
#else
Bit8u op2_8;
if (i->modC0()) {
op2_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op2_8);
}
/* sign extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit8s) op2_8);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVSX_GdEw(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVSX_GvEw: not supported on < 386"));
#else
Bit16u op2_16;
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
/* sign extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit16s) op2_16);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::XCHG_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
BX_WRITE_32BIT_REGZ(i->rm(), op2_32);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
Write_RMW_virtual_dword(op2_32);
}
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
void
BX_CPU_C::CMOV_GdEd(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 6) || (BX_CPU_LEVEL_HACKED >= 6)
// Note: CMOV accesses a memory source operand (read), regardless
// of whether condition is true or not. Thus, exceptions may
// occur even if the MOV does not take place.
bx_bool condition;
Bit32u op2_32;
switch (i->b1()) {
// CMOV opcodes:
case 0x140: condition = get_OF(); break;
case 0x141: condition = !get_OF(); break;
case 0x142: condition = get_CF(); break;
case 0x143: condition = !get_CF(); break;
case 0x144: condition = get_ZF(); break;
case 0x145: condition = !get_ZF(); break;
case 0x146: condition = get_CF() || get_ZF(); break;
case 0x147: condition = !get_CF() && !get_ZF(); break;
case 0x148: condition = get_SF(); break;
case 0x149: condition = !get_SF(); break;
case 0x14A: condition = get_PF(); break;
case 0x14B: condition = !get_PF(); break;
case 0x14C: condition = getB_SF() != getB_OF(); break;
case 0x14D: condition = getB_SF() == getB_OF(); break;
case 0x14E: condition = get_ZF() || (getB_SF() != getB_OF()); break;
case 0x14F: condition = !get_ZF() && (getB_SF() == getB_OF()); break;
default:
condition = 0;
BX_PANIC(("CMOV_GdEd: default case"));
}
if (condition) {
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
BX_WRITE_32BIT_REGZ(i->nnn(), op2_32);
}
#else
BX_INFO(("cmov_gded called"));
UndefinedOpcode(i);
#endif
}