Bochs/bochs/iodev/virt_timer.cc
Volker Ruppert 59f5a03af6 Rewrite of the virtual timer code to support both modes at the same timer.
The timers now have a new member 'realtime' and they are driven by the
selected engine. The VGA update timer and the status LED timer now always use
the realtime mode, but the PIT and CMOS RTC depend on the clock options.
2014-10-19 08:54:16 +00:00

549 lines
19 KiB
C++

////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2014 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
//
//Realtime Algorithm (with gettimeofday)
// HAVE:
// Real number of usec.
// Emulated number of usec.
// WANT:
// Number of ticks to use.
// Number of emulated usec to wait until next try.
//
// ticks=number of ticks needed to match total real usec.
// if(desired ticks > max ticks for elapsed real time)
// ticks = max ticks for elapsed real time.
// if(desired ticks > max ticks for elapsed emulated usec)
// ticks = max ticks for emulated usec.
// next wait ticks = number of ticks until next event.
// next wait real usec = (current ticks + next wait ticks) * usec per ticks
// next wait emulated usec = next wait real usec * emulated usec / real usec
// if(next wait emulated usec < minimum emulated usec for next wait ticks)
// next wait emulated usec = minimum emulated usec for next wait ticks.
// if(next wait emulated usec > max emulated usec wait)
// next wait emulated usec = max emulated usec wait.
//
// How to calculate elapsed real time:
// store an unused time value whenever no ticks are used in a given time.
// add this to the current elapsed time.
// How to calculate elapsed emulated time:
// same as above.
// Above can be done by not updating last_usec and last_sec.
//
// How to calculate emulated usec/real usec:
// Each time there are actual ticks:
// Alpha_product(old emulated usec, emulated usec);
// Alpha_product(old real usec, real usec);
// Divide resulting values.
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "param_names.h"
#include "virt_timer.h"
//Important constant #defines:
#define USEC_PER_SECOND (1000000)
// define a macro to convert floating point numbers into 64-bit integers.
// In MSVC++ you can convert a 64-bit float into a 64-bit signed integer,
// but it will not convert a 64-bit float into a 64-bit unsigned integer.
// This macro works around that.
#define F2I(x) ((Bit64u)(Bit64s) (x))
#define I2F(x) ((double)(Bit64s) (x))
//CONFIGURATION #defines:
//MAINLINE Configuration (For realtime PIT):
//How much faster than real time we can go:
#define MAX_MULT (1.25)
//Minimum number of emulated useconds per second.
// Now calculated using BX_MIN_IPS, the minimum number of
// instructions per second.
#define MIN_USEC_PER_SECOND (((((Bit64u)USEC_PER_SECOND)*((Bit64u)BX_MIN_IPS))/((Bit64u)ips))+(Bit64u)1)
//DEBUG configuration:
//Debug with printf options.
#define DEBUG_REALTIME_WITH_PRINTF 0
#define GET_VIRT_REALTIME64_USEC() (bx_get_realtime64_usec())
//Set up Logging.
#define LOG_THIS bx_virt_timer.
//A single instance.
bx_virt_timer_c bx_virt_timer;
//USEC_ALPHA is multiplier for the past.
//USEC_ALPHA_B is 1-USEC_ALPHA, or multiplier for the present.
#define USEC_ALPHA ((double)(.8))
#define USEC_ALPHA_B ((double)(((double)1)-USEC_ALPHA))
#define USEC_ALPHA2 ((double)(.5))
#define USEC_ALPHA2_B ((double)(((double)1)-USEC_ALPHA2))
#define ALPHA_LOWER(old,new) ((Bit64u)((old<new)?((USEC_ALPHA*(I2F(old)))+(USEC_ALPHA_B*(I2F(new)))):((USEC_ALPHA2*(I2F(old)))+(USEC_ALPHA2_B*(I2F(new))))))
//Conversion between emulated useconds and optionally realtime ticks.
#define TICKS_TO_USEC(a) (((a)*usec_per_second)/ticks_per_second)
#define USEC_TO_TICKS(a) (((a)*ticks_per_second)/usec_per_second)
bx_virt_timer_c::bx_virt_timer_c()
{
put("virt_timer", "VTIMER");
setup();
}
const Bit64u bx_virt_timer_c::NullTimerInterval = BX_MAX_VIRTUAL_TIME;
void bx_virt_timer_c::nullTimer(void* this_ptr)
{
UNUSED(this_ptr);
}
void bx_virt_timer_c::periodic(Bit64u time_passed, bx_bool mode)
{
//Assert that we haven't skipped any events.
BX_ASSERT (time_passed <= s[mode].timers_next_event_time);
BX_ASSERT(!in_timer_handler);
//Update time variables.
s[mode].timers_next_event_time -= time_passed;
s[mode].current_timers_time += time_passed;
//If no events are occurring, just pass the time and we're done.
if (time_passed < s[mode].timers_next_event_time) return;
//Starting timer handler calls.
in_timer_handler = 1;
//Otherwise, cause any events to occur that should.
unsigned i;
for (i=0;i<numTimers;i++) {
if (timer[i].inUse && timer[i].active) {
if (timer[i].realtime != mode) continue;
//Assert that we haven't skipped any timers.
BX_ASSERT(s[mode].current_timers_time <= timer[i].timeToFire);
if (timer[i].timeToFire == s[mode].current_timers_time) {
if (timer[i].continuous) {
timer[i].timeToFire += timer[i].period;
} else {
timer[i].active = 0;
}
//This function MUST return, or the timer mechanism
// will be broken.
timer[i].funct(timer[i].this_ptr);
}
}
}
//Finished timer handler calls.
in_timer_handler = 0;
//Use a second FOR loop so that a timer function call can
// change the behavior of another timer.
//s[mode].timers_next_event_time normally contains a cycle count, not a cycle time.
// here we use it as a temporary variable that IS a cycle time,
// but then convert it back to a cycle count afterwards.
s[mode].timers_next_event_time = s[mode].current_timers_time + BX_MAX_VIRTUAL_TIME;
for (i=0;i<numTimers;i++) {
if (timer[i].inUse && timer[i].active && (timer[i].realtime == mode) &&
((timer[i].timeToFire)<s[mode].timers_next_event_time)) {
s[mode].timers_next_event_time = timer[i].timeToFire;
}
}
s[mode].timers_next_event_time -= s[mode].current_timers_time;
next_event_time_update(mode);
//FIXME
}
//Get the current virtual time.
// This may return the same value on subsequent calls.
Bit64u bx_virt_timer_c::time_usec(bx_bool mode)
{
//Update the time here only if we're not in a timer handler.
//If we're in a timer handler we're up-to-date, and otherwise
// this prevents call stack loops.
if (!in_timer_handler) {
timer_handler(mode);
}
return s[mode].current_timers_time;
}
//Get the current virtual time.
// This will return a monotonically increasing value.
// MUST NOT be called from within a timer interrupt.
Bit64u bx_virt_timer_c::time_usec_sequential(bx_bool mode)
{
//Can't prevent call stack loops here, so this
// MUST NOT be called from within a timer handler.
BX_ASSERT(s[mode].timers_next_event_time>0);
BX_ASSERT(!in_timer_handler);
if (s[mode].last_sequential_time >= s[mode].current_timers_time) {
periodic(1, mode);
s[mode].last_sequential_time = s[mode].current_timers_time;
}
return s[mode].current_timers_time;
}
//Register a timer handler to go off after a given interval.
//Register a timer handler to go off with a periodic interval.
int bx_virt_timer_c::register_timer(void *this_ptr, bx_timer_handler_t handler,
Bit32u useconds, bx_bool continuous,
bx_bool active, bx_bool realtime,
const char *id)
{
//We don't like starting with a zero period timer.
BX_ASSERT((!active) || (useconds>0));
//Search for an unused timer.
unsigned int i;
for (i=0; i < numTimers; i++) {
if ((timer[i].inUse == 0) || (i == numTimers))
break;
}
// If we didn't find a free slot, increment the bound, numTimers.
if (i == numTimers)
numTimers++; // One new timer installed.
BX_ASSERT(numTimers<BX_MAX_VIRTUAL_TIMERS);
timer[i].inUse = 1;
timer[i].period = useconds;
timer[i].timeToFire = s[realtime].current_timers_time + (Bit64u)useconds;
timer[i].active = active;
timer[i].realtime = realtime;
timer[i].continuous = continuous;
timer[i].funct = handler;
timer[i].this_ptr = this_ptr;
strncpy(timer[i].id, id, BxMaxTimerIDLen);
timer[i].id[BxMaxTimerIDLen-1]=0; //I like null terminated strings.
if (realtime) {
BX_DEBUG(("Timer #%d ('%s') using realtime synchronisation mode", i, timer[i].id));
} else {
BX_DEBUG(("Timer #%d ('%s') using standard mode", i, timer[i].id));
}
if (useconds < s[realtime].timers_next_event_time) {
s[realtime].timers_next_event_time = useconds;
next_event_time_update(realtime);
//FIXME
}
return i;
}
//unregister a previously registered timer.
bx_bool bx_virt_timer_c::unregisterTimer(unsigned timerID)
{
BX_ASSERT(timerID < BX_MAX_VIRTUAL_TIMERS);
if (timer[timerID].active) {
BX_PANIC(("unregisterTimer: timer '%s' is still active!", timer[timerID].id));
return(0); // Fail.
}
//No need to prevent doing this to unused timers.
timer[timerID].inUse = 0;
if (timerID == (numTimers-1)) numTimers--;
return 1;
}
void bx_virt_timer_c::start_timers(void)
{
//FIXME
}
//activate a deactivated but registered timer.
void bx_virt_timer_c::activate_timer(unsigned timer_index, Bit32u useconds,
bx_bool continuous)
{
BX_ASSERT(timer_index < BX_MAX_VIRTUAL_TIMERS);
BX_ASSERT(timer[timer_index].inUse);
BX_ASSERT(useconds>0);
bx_bool realtime = timer[timer_index].realtime;
timer[timer_index].period = useconds;
timer[timer_index].timeToFire = s[realtime].current_timers_time + (Bit64u)useconds;
timer[timer_index].active = 1;
timer[timer_index].continuous = continuous;
if (useconds < s[realtime].timers_next_event_time) {
s[realtime].timers_next_event_time = useconds;
next_event_time_update(realtime);
//FIXME
}
}
//deactivate (but don't unregister) a currently registered timer.
void bx_virt_timer_c::deactivate_timer(unsigned timer_index)
{
BX_ASSERT(timer_index < BX_MAX_VIRTUAL_TIMERS);
//No need to prevent doing this to unused/inactive timers.
timer[timer_index].active = 0;
}
void bx_virt_timer_c::advance_virtual_time(Bit64u time_passed, bx_bool mode)
{
BX_ASSERT(time_passed <= s[mode].virtual_next_event_time);
s[mode].current_virtual_time += time_passed;
s[mode].virtual_next_event_time -= time_passed;
if (s[mode].current_virtual_time > s[mode].current_timers_time) {
periodic(s[mode].current_virtual_time - s[mode].current_timers_time, mode);
}
}
//Called when next_event_time changes.
void bx_virt_timer_c::next_event_time_update(bx_bool mode)
{
s[mode].virtual_next_event_time = s[mode].timers_next_event_time + s[mode].current_timers_time - s[mode].current_virtual_time;
if (init_done) {
bx_pc_system.deactivate_timer(s[mode].system_timer_id);
BX_ASSERT(s[mode].virtual_next_event_time);
bx_pc_system.activate_timer(s[mode].system_timer_id,
(Bit32u)BX_MIN(0x7FFFFFFF,BX_MAX(1,TICKS_TO_USEC(s[mode].virtual_next_event_time))),
0);
}
}
void bx_virt_timer_c::setup(void)
{
numTimers = 0;
in_timer_handler = 0;
for (unsigned i = 0; i < 2; i++) {
s[i].current_timers_time = 0;
s[i].timers_next_event_time = BX_MAX_VIRTUAL_TIME;
s[i].last_sequential_time = 0;
s[i].virtual_next_event_time = BX_MAX_VIRTUAL_TIME;
s[i].current_virtual_time = 0;
}
init_done = 0;
}
void bx_virt_timer_c::init(void)
{
// Local copy of IPS value to avoid reading it frequently in timer handler
ips = SIM->get_param_num(BXPN_IPS)->get();
register_timer(this, nullTimer, (Bit32u)NullTimerInterval, 1, 1, 0, "Null Timer #1");
register_timer(this, nullTimer, (Bit32u)NullTimerInterval, 1, 1, 1, "Null Timer #2");
s[0].system_timer_id = bx_pc_system.register_timer(this, pc_system_timer_handler_0,
(Bit32u)s[0].virtual_next_event_time, 0, 1, "Virtual Timer #0");
s[1].system_timer_id = bx_pc_system.register_timer(this, pc_system_timer_handler_1,
(Bit32u)s[1].virtual_next_event_time, 0, 1, "Virtual Timer #1");
//Real time variables:
#if BX_HAVE_REALTIME_USEC
last_real_time = GET_VIRT_REALTIME64_USEC();
#endif
total_real_usec = 0;
last_realtime_delta = 0;
real_time_delay = 0;
//System time variables:
last_usec = 0;
usec_per_second = USEC_PER_SECOND;
stored_delta = 0;
last_system_usec = 0;
em_last_realtime = 0;
//Virtual timer variables:
total_ticks = 0;
last_realtime_ticks = 0;
ticks_per_second = USEC_PER_SECOND;
init_done = 1;
}
void bx_virt_timer_c::register_state(void)
{
unsigned i;
char name[4];
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "virt_timer", "Virtual Timer State");
bx_list_c *vtimers = new bx_list_c(list, "timer");
for (i = 0; i < numTimers; i++) {
sprintf(name, "%d", i);
bx_list_c *bxtimer = new bx_list_c(vtimers, name);
BXRS_PARAM_BOOL(bxtimer, inUse, timer[i].inUse);
BXRS_DEC_PARAM_FIELD(bxtimer, period, timer[i].period);
BXRS_DEC_PARAM_FIELD(bxtimer, timeToFire, timer[i].timeToFire);
BXRS_PARAM_BOOL(bxtimer, active, timer[i].active);
BXRS_PARAM_BOOL(bxtimer, continuous, timer[i].continuous);
BXRS_PARAM_BOOL(bxtimer, realtime, timer[i].realtime);
}
bx_list_c *sys = new bx_list_c(list, "s");
for (i = 0; i < 2; i++) {
sprintf(name, "%d", i);
bx_list_c *snum = new bx_list_c(sys, name);
BXRS_DEC_PARAM_FIELD(snum, current_timers_time, s[i].current_timers_time);
BXRS_DEC_PARAM_FIELD(snum, timers_next_event_time, s[i].timers_next_event_time);
BXRS_DEC_PARAM_FIELD(snum, last_sequential_time, s[i].last_sequential_time);
BXRS_DEC_PARAM_FIELD(snum, virtual_next_event_time, s[i].virtual_next_event_time);
BXRS_DEC_PARAM_FIELD(snum, current_virtual_time, s[i].current_virtual_time);
}
BXRS_DEC_PARAM_SIMPLE(list, last_real_time);
BXRS_DEC_PARAM_SIMPLE(list, total_real_usec);
BXRS_DEC_PARAM_SIMPLE(list, last_realtime_delta);
BXRS_DEC_PARAM_SIMPLE(list, last_usec);
BXRS_DEC_PARAM_SIMPLE(list, usec_per_second);
BXRS_DEC_PARAM_SIMPLE(list, stored_delta);
BXRS_DEC_PARAM_SIMPLE(list, last_system_usec);
BXRS_DEC_PARAM_SIMPLE(list, em_last_realtime);
BXRS_DEC_PARAM_SIMPLE(list, total_ticks);
BXRS_DEC_PARAM_SIMPLE(list, last_realtime_ticks);
BXRS_DEC_PARAM_SIMPLE(list, ticks_per_second);
}
void bx_virt_timer_c::timer_handler(bx_bool mode)
{
if (!mode) {
Bit64u temp_final_time = bx_pc_system.time_usec();
temp_final_time -= s[0].current_virtual_time;
while (temp_final_time) {
if ((temp_final_time)>(s[0].virtual_next_event_time)) {
temp_final_time -= s[0].virtual_next_event_time;
advance_virtual_time(s[0].virtual_next_event_time, 0);
} else {
advance_virtual_time(temp_final_time, 0);
temp_final_time -= temp_final_time;
}
}
bx_pc_system.activate_timer(s[0].system_timer_id,
(Bit32u)BX_MIN(0x7FFFFFFF,(s[0].virtual_next_event_time>2)?(s[0].virtual_next_event_time-2):1),
0);
return;
}
Bit64u usec_delta = bx_pc_system.time_usec()-last_usec;
if (usec_delta) {
#if BX_HAVE_REALTIME_USEC
Bit64u ticks_delta = 0;
Bit64u real_time_delta = GET_VIRT_REALTIME64_USEC() - last_real_time - real_time_delay;
Bit64u real_time_total = real_time_delta + total_real_usec;
Bit64u system_time_delta = (Bit64u)usec_delta + (Bit64u)stored_delta;
if (real_time_delta) {
last_realtime_delta = real_time_delta;
last_realtime_ticks = total_ticks;
}
ticks_per_second = USEC_PER_SECOND;
//Start out with the number of ticks we would like
// to have to line up with real time.
ticks_delta = real_time_total - total_ticks;
if (real_time_total < total_ticks) {
//This slows us down if we're already ahead.
// probably only an issue on startup, but it solves some problems.
ticks_delta = 0;
}
if (ticks_delta + total_ticks - last_realtime_ticks > (F2I(MAX_MULT * I2F(last_realtime_delta)))) {
//This keeps us from going too fast in relation to real time.
#if 0
ticks_delta = (F2I(MAX_MULT * I2F(last_realtime_delta))) + last_realtime_ticks - total_ticks;
#endif
ticks_per_second = F2I(MAX_MULT * I2F(USEC_PER_SECOND));
}
if (ticks_delta > system_time_delta * USEC_PER_SECOND / MIN_USEC_PER_SECOND) {
//This keeps us from having too few instructions between ticks.
ticks_delta = system_time_delta * USEC_PER_SECOND / MIN_USEC_PER_SECOND;
}
if (ticks_delta > s[1].virtual_next_event_time) {
//This keeps us from missing ticks.
ticks_delta = s[1].virtual_next_event_time;
}
if (ticks_delta) {
# if DEBUG_REALTIME_WITH_PRINTF
//Every second print some info.
if (((last_real_time + real_time_delta) / USEC_PER_SECOND) > (last_real_time / USEC_PER_SECOND)) {
Bit64u temp1, temp2, temp3, temp4;
temp1 = (Bit64u) total_real_usec;
temp2 = (total_real_usec);
temp3 = (Bit64u)total_ticks;
temp4 = (Bit64u)((total_real_usec) - total_ticks);
printf("useconds: " FMT_LL "u, ", temp1);
printf("expect ticks: " FMT_LL "u, ", temp2);
printf("ticks: " FMT_LL "u, ", temp3);
printf("diff: "FMT_LL "u\n", temp4);
}
# endif
last_real_time += real_time_delta;
total_real_usec += real_time_delta;
last_system_usec += system_time_delta;
stored_delta = 0;
total_ticks += ticks_delta;
} else {
stored_delta = system_time_delta;
}
Bit64u a = usec_per_second, b;
if (real_time_delta) {
//FIXME
Bit64u em_realtime_delta = last_system_usec + stored_delta - em_last_realtime;
b=((Bit64u)USEC_PER_SECOND * em_realtime_delta / real_time_delta);
em_last_realtime = last_system_usec + stored_delta;
} else {
b=a;
}
usec_per_second = ALPHA_LOWER(a,b);
#else
BX_ASSERT(0);
#endif
#if BX_HAVE_REALTIME_USEC
advance_virtual_time(ticks_delta, 1);
#endif
}
last_usec=last_usec + usec_delta;
bx_pc_system.deactivate_timer(s[1].system_timer_id);
BX_ASSERT(s[1].virtual_next_event_time);
bx_pc_system.activate_timer(s[1].system_timer_id,
(Bit32u)BX_MIN(0x7FFFFFFF,BX_MAX(1,TICKS_TO_USEC(s[1].virtual_next_event_time))),
0);
}
void bx_virt_timer_c::pc_system_timer_handler_0(void* this_ptr)
{
((bx_virt_timer_c *)this_ptr)->timer_handler(0);
}
void bx_virt_timer_c::pc_system_timer_handler_1(void* this_ptr)
{
((bx_virt_timer_c *)this_ptr)->timer_handler(1);
}
void bx_virt_timer_c::set_realtime_delay()
{
real_time_delay = GET_VIRT_REALTIME64_USEC() - last_real_time;
}