Bochs/bochs/cpu/shift64.cc
Stanislav Shwartsman a2897933a3 white space cleanup
2008-02-02 21:46:54 +00:00

429 lines
9.9 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: shift64.cc,v 1.32 2008-02-02 21:46:53 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
void BX_CPU_C::SHLD_EqGq(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, result_64;
unsigned count;
unsigned cf, of;
if (i->b1() == 0x1a4)
count = i->Ib();
else // 0x1a5
count = CL;
count &= 0x3f; // use only 6 LSB's
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (!count) return;
op2_64 = BX_READ_64BIT_REG(i->nnn());
result_64 = (op1_64 << count) | (op2_64 >> (64 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
SET_FLAGS_OSZAPC_LOGIC_64(result_64); /* handle SF, ZF and AF flags */
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63); // of = cf ^ result63
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SHRD_EqGq(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, result_64;
unsigned count;
unsigned cf, of;
if (i->b1() == 0x1ac)
count = i->Ib();
else // 0x1ad
count = CL;
count &= 0x3f; // use only 6 LSB's
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (!count) return;
op2_64 = BX_READ_64BIT_REG(i->nnn());
result_64 = (op2_64 << (64 - count)) | (op1_64 >> count);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
SET_FLAGS_OSZAPC_LOGIC_64(result_64); /* handle SF, ZF and AF flags */
cf = (op1_64 >> (count - 1)) & 0x1;
of = ((result_64 << 1) ^ result_64) >> 63; // of = result62 ^ result63
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::ROL_Eq(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
unsigned bit0, bit63;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x3f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (! count) return;
result_64 = (op1_64 << count) | (op1_64 >> (64 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
bit0 = (result_64 & 0x1);
bit63 = (result_64 >> 63);
// of = cf ^ result63
SET_FLAGS_OxxxxC(bit0 ^ bit63, bit0);
}
void BX_CPU_C::ROR_Eq(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
unsigned bit62, bit63;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x3f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (! count) return;
result_64 = (op1_64 >> count) | (op1_64 << (64 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
bit63 = (result_64 >> 63) & 1;
bit62 = (result_64 >> 62) & 1;
// of = result62 ^ result63
SET_FLAGS_OxxxxC(bit62 ^ bit63, bit63);
}
void BX_CPU_C::RCL_Eq(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
unsigned cf, of;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x3f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (!count) return;
if (count==1) {
result_64 = (op1_64 << 1) | getB_CF();
}
else {
result_64 = (op1_64 << count) | (getB_CF() << (count - 1)) |
(op1_64 >> (65 - count));
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63); // of = cf ^ result63
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::RCR_Eq(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
unsigned of, cf;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x3f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (!count) return;
if (count==1) {
result_64 = (op1_64 >> 1) | (((Bit64u) getB_CF()) << 63);
}
else {
result_64 = (op1_64 >> count) | (getB_CF() << (64 - count)) |
(op1_64 << (65 - count));
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
cf = (op1_64 >> (count - 1)) & 0x1;
of = ((result_64 << 1) ^ result_64) >> 63;
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SHL_Eq(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
unsigned cf, of;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x3f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (!count) return;
/* count < 64, since only lower 6 bits used */
result_64 = (op1_64 << count);
cf = (op1_64 >> (64 - count)) & 0x1;
of = cf ^ (result_64 >> 63);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
SET_FLAGS_OSZAPC_LOGIC_64(result_64); /* handle SF, ZF and AF flags */
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SHR_Eq(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
unsigned cf, of;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x3f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (!count) return;
result_64 = (op1_64 >> count);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
cf = (op1_64 >> (count - 1)) & 0x1;
// note, that of == result63 if count == 1 and
// of == 0 if count >= 2
of = ((result_64 << 1) ^ result_64) >> 63;
SET_FLAGS_OSZAPC_LOGIC_64(result_64); /* handle SF, ZF and AF flags */
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPU_C::SAR_Eq(bxInstruction_c *i)
{
Bit64u op1_64, result_64;
unsigned count;
if (i->b1() == 0xd3)
count = CL;
else // 0xc1 or 0xd1
count = i->Ib();
count &= 0x3f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword(i->seg(), RMAddr(i));
}
if (!count) return;
/* count < 64, since only lower 6 bits used */
if (op1_64 & BX_CONST64(0x8000000000000000)) {
result_64 = (op1_64 >> count) | (BX_CONST64(0xffffffffffffffff) << (64 - count));
}
else {
result_64 = (op1_64 >> count);
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), result_64);
}
else {
write_RMW_virtual_qword(result_64);
}
SET_FLAGS_OSZAPC_LOGIC_64(result_64); /* handle SF, ZF and AF flags */
set_CF((op1_64 >> (count - 1)) & 1);
clear_OF(); /* signed overflow cannot happen in SAR instruction */
}
#endif /* if BX_SUPPORT_X86_64 */