Bochs/bochs/cpu/sse_move.cc
Stanislav Shwartsman 8ae803f930 MASKMOVDQU bug fix
2009-08-21 13:44:51 +00:00

1634 lines
45 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: sse_move.cc,v 1.99 2009-08-21 13:44:51 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2003 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_SSE
void BX_CPU_C::print_state_SSE(void)
{
BX_DEBUG(("MXCSR: 0x%08x\n", BX_MXCSR_REGISTER));
for(unsigned n=0;n<BX_XMM_REGISTERS;n++) {
BxPackedXmmRegister xmm = BX_READ_XMM_REG(n);
BX_DEBUG(("XMM%02u: %08x%08x:%08x%08x\n", n,
xmm.xmm32u(3), xmm.xmm32u(2), xmm.xmm32u(1), xmm.xmm32u(0)));
}
}
#endif
#if BX_SUPPORT_FPU
Bit8u BX_CPU_C::pack_FPU_TW(Bit16u twd)
{
Bit8u tag_byte = 0;
if((twd & 0x0003) != 0x0003) tag_byte |= 0x01;
if((twd & 0x000c) != 0x000c) tag_byte |= 0x02;
if((twd & 0x0030) != 0x0030) tag_byte |= 0x04;
if((twd & 0x00c0) != 0x00c0) tag_byte |= 0x08;
if((twd & 0x0300) != 0x0300) tag_byte |= 0x10;
if((twd & 0x0c00) != 0x0c00) tag_byte |= 0x20;
if((twd & 0x3000) != 0x3000) tag_byte |= 0x40;
if((twd & 0xc000) != 0xc000) tag_byte |= 0x80;
return tag_byte;
}
Bit16u BX_CPU_C::unpack_FPU_TW(Bit16u tag_byte)
{
Bit32u twd = 0;
/* FTW
*
* Note that the original format for FTW can be recreated from the stored
* FTW valid bits and the stored 80-bit FP data (assuming the stored data
* was not the contents of MMX registers) using the following table:
| Exponent | Exponent | Fraction | J,M bits | FTW valid | x87 FTW |
| all 1s | all 0s | all 0s | | | |
-------------------------------------------------------------------
| 0 | 0 | 0 | 0x | 1 | S 10 |
| 0 | 0 | 0 | 1x | 1 | V 00 |
-------------------------------------------------------------------
| 0 | 0 | 1 | 00 | 1 | S 10 |
| 0 | 0 | 1 | 10 | 1 | V 00 |
-------------------------------------------------------------------
| 0 | 1 | 0 | 0x | 1 | S 10 |
| 0 | 1 | 0 | 1x | 1 | S 10 |
-------------------------------------------------------------------
| 0 | 1 | 1 | 00 | 1 | Z 01 |
| 0 | 1 | 1 | 10 | 1 | S 10 |
-------------------------------------------------------------------
| 1 | 0 | 0 | 1x | 1 | S 10 |
| 1 | 0 | 0 | 1x | 1 | S 10 |
-------------------------------------------------------------------
| 1 | 0 | 1 | 00 | 1 | S 10 |
| 1 | 0 | 1 | 10 | 1 | S 10 |
-------------------------------------------------------------------
| all combinations above | 0 | E 11 |
*
* The J-bit is defined to be the 1-bit binary integer to the left of
* the decimal place in the significand.
*
* The M-bit is defined to be the most significant bit of the fractional
* portion of the significand (i.e., the bit immediately to the right of
* the decimal place). When the M-bit is the most significant bit of the
* fractional portion of the significand, it must be 0 if the fraction
* is all 0's.
*/
for(int index = 7;index >= 0; index--, twd <<= 2, tag_byte <<= 1)
{
if(tag_byte & 0x80) {
const floatx80 &fpu_reg = BX_FPU_REG(index);
twd |= FPU_tagof(fpu_reg);
}
else {
twd |= FPU_Tag_Empty;
}
}
return (twd >> 2);
}
#endif
/* ************************************ */
/* SSE: SAVE/RESTORE FPU/MMX/SSEx STATE */
/* ************************************ */
/* 0F AE Grp15 010 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LDMXCSR(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u new_mxcsr = read_virtual_dword(i->seg(), eaddr);
if(new_mxcsr & ~MXCSR_MASK)
exception(BX_GP_EXCEPTION, 0, 0);
BX_MXCSR_REGISTER = new_mxcsr;
#else
BX_INFO(("LDMXCSR: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 0F AE Grp15 011 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STMXCSR(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit32u mxcsr = BX_MXCSR_REGISTER & MXCSR_MASK;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_dword(i->seg(), eaddr, mxcsr);
#else
BX_INFO(("STMXCSR: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 0F AE Grp15 000 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::FXSAVE(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
unsigned index;
BxPackedXmmRegister xmm;
BX_DEBUG(("FXSAVE: save FPU/MMX/SSE state"));
#if BX_SUPPORT_MMX
if(BX_CPU_THIS_PTR cr0.get_TS())
exception(BX_NM_EXCEPTION, 0, 0);
if(BX_CPU_THIS_PTR cr0.get_EM())
exception(BX_UD_EXCEPTION, 0, 0);
#endif
xmm.xmm16u(0) = BX_CPU_THIS_PTR the_i387.get_control_word();
xmm.xmm16u(1) = BX_CPU_THIS_PTR the_i387.get_status_word();
xmm.xmm16u(2) = pack_FPU_TW(BX_CPU_THIS_PTR the_i387.get_tag_word());
/* x87 FPU Opcode (16 bits) */
/* The lower 11 bits contain the FPU opcode, upper 5 bits are reserved */
xmm.xmm16u(3) = BX_CPU_THIS_PTR the_i387.foo;
/*
* x87 FPU IP Offset (32/64 bits)
* The contents of this field differ depending on the current
* addressing mode (16/32/64 bit) when the FXSAVE instruction was executed:
* + 64-bit mode - 64-bit IP offset
* + 32-bit mode - 32-bit IP offset
* + 16-bit mode - low 16 bits are IP offset; high 16 bits are reserved.
* x87 CS FPU IP Selector
* + 16 bit, in 16/32 bit mode only
*/
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
xmm.xmm64u(1) = (BX_CPU_THIS_PTR the_i387.fip);
}
else
#endif
{
xmm.xmm32u(2) = (Bit32u)(BX_CPU_THIS_PTR the_i387.fip);
xmm.xmm32u(3) = (BX_CPU_THIS_PTR the_i387.fcs);
}
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_dqword_aligned(i->seg(), eaddr, (Bit8u *) &xmm);
/*
* x87 FPU Instruction Operand (Data) Pointer Offset (32/64 bits)
* The contents of this field differ depending on the current
* addressing mode (16/32 bit) when the FXSAVE instruction was executed:
* + 64-bit mode - 64-bit offset
* + 32-bit mode - 32-bit offset
* + 16-bit mode - low 16 bits are offset; high 16 bits are reserved.
* x87 DS FPU Instruction Operand (Data) Pointer Selector
* + 16 bit, in 16/32 bit mode only
*/
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
xmm.xmm64u(0) = (BX_CPU_THIS_PTR the_i387.fdp);
}
else
#endif
{
xmm.xmm32u(0) = (Bit32u)(BX_CPU_THIS_PTR the_i387.fdp);
xmm.xmm32u(1) = (BX_CPU_THIS_PTR the_i387.fds);
}
#if BX_SUPPORT_SSE >= 1
xmm.xmm32u(2) = BX_MXCSR_REGISTER;
xmm.xmm32u(3) = MXCSR_MASK;
#else
xmm.xmm32u(2) = 0;
xmm.xmm32u(3) = 0;
#endif
write_virtual_dqword(i->seg(), eaddr + 16, (Bit8u *) &xmm);
/* store i387 register file */
for(index=0; index < 8; index++)
{
const floatx80 &fp = BX_FPU_REG(index);
xmm.xmm64u(0) = fp.fraction;
xmm.xmm64u(1) = 0;
xmm.xmm16u(4) = fp.exp;
write_virtual_dqword(i->seg(), eaddr+index*16+32, (Bit8u *) &xmm);
}
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR efer.get_FFXSR() && CPL == 0 && Is64BitMode())
return; // skip saving of the XMM state
#endif
#if BX_SUPPORT_SSE >= 1
/* store XMM register file */
for(index=0; index < BX_XMM_REGISTERS; index++)
{
// save XMM8-XMM15 only in 64-bit mode
if (index < 8 || Is64BitMode()) {
write_virtual_dqword(i->seg(),
eaddr+index*16+160, (Bit8u *) &(BX_CPU_THIS_PTR xmm[index]));
}
}
#endif
/* do not touch reserved fields */
#else
BX_INFO(("FXSAVE: required P6 support, use --enable-cpu-level=6 option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 0F AE Grp15 001 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::FXRSTOR(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 6
BxPackedXmmRegister xmm;
unsigned index;
BX_DEBUG(("FXRSTOR: restore FPU/MMX/SSE state"));
#if BX_SUPPORT_MMX
if(BX_CPU_THIS_PTR cr0.get_TS())
exception(BX_NM_EXCEPTION, 0, 0);
if(BX_CPU_THIS_PTR cr0.get_EM())
exception(BX_UD_EXCEPTION, 0, 0);
#endif
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
read_virtual_dqword_aligned(i->seg(), eaddr, (Bit8u *) &xmm);
BX_CPU_THIS_PTR the_i387.cwd = xmm.xmm16u(0);
BX_CPU_THIS_PTR the_i387.swd = xmm.xmm16u(1);
BX_CPU_THIS_PTR the_i387.tos = (xmm.xmm16u(1) >> 11) & 0x07;
/* Restore x87 FPU Opcode */
/* The lower 11 bits contain the FPU opcode, upper 5 bits are reserved */
BX_CPU_THIS_PTR the_i387.foo = xmm.xmm16u(3) & 0x7FF;
/* Restore x87 FPU IP */
#if BX_SUPPORT_X86_64
if (i->os64L()) {
BX_CPU_THIS_PTR the_i387.fip = xmm.xmm64u(1);
BX_CPU_THIS_PTR the_i387.fcs = 0;
}
else
#endif
{
BX_CPU_THIS_PTR the_i387.fip = xmm.xmm32u(2);
BX_CPU_THIS_PTR the_i387.fcs = xmm.xmm16u(6);
}
Bit32u tag_byte = xmm.xmmubyte(4);
/* Restore x87 FPU DP */
read_virtual_dqword(i->seg(), eaddr + 16, (Bit8u *) &xmm);
#if BX_SUPPORT_X86_64
if (i->os64L()) {
BX_CPU_THIS_PTR the_i387.fdp = xmm.xmm64u(0);
BX_CPU_THIS_PTR the_i387.fds = 0;
}
else
#endif
{
BX_CPU_THIS_PTR the_i387.fdp = xmm.xmm32u(0);
BX_CPU_THIS_PTR the_i387.fds = xmm.xmm16u(2);
}
#if BX_SUPPORT_SSE >= 1
/* If the OSFXSR bit in CR4 is not set, the FXRSTOR instruction does
not restore the states of the XMM and MXCSR registers. */
if(BX_CPU_THIS_PTR cr4.get_OSFXSR())
{
Bit32u new_mxcsr = xmm.xmm32u(2);
if(new_mxcsr & ~MXCSR_MASK)
exception(BX_GP_EXCEPTION, 0, 0);
BX_MXCSR_REGISTER = new_mxcsr;
}
#endif
/* load i387 register file */
for(index=0; index < 8; index++)
{
floatx80 reg;
reg.fraction = read_virtual_qword(i->seg(), eaddr+index*16+32);
reg.exp = read_virtual_word (i->seg(), eaddr+index*16+40);
BX_FPU_REG(index) = reg;
}
BX_CPU_THIS_PTR the_i387.twd = unpack_FPU_TW(tag_byte);
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR efer.get_FFXSR() && CPL == 0 && Is64BitMode())
return; // skip restore of the XMM state
#endif
#if BX_SUPPORT_SSE >= 1
/* If the OSFXSR bit in CR4 is not set, the FXRSTOR instruction does
not restore the states of the XMM and MXCSR registers. */
if(BX_CPU_THIS_PTR cr4.get_OSFXSR())
{
/* load XMM register file */
for(index=0; index < BX_XMM_REGISTERS; index++)
{
// restore XMM8-XMM15 only in 64-bit mode
if (index < 8 || Is64BitMode()) {
read_virtual_dqword(i->seg(),
eaddr+index*16+160, (Bit8u *) &(BX_CPU_THIS_PTR xmm[index]));
}
}
}
#endif
#else
BX_INFO(("FXRSTOR: required P6 support, use --enable-cpu-level=6 option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* *************************** */
/* SSE: MEMORY MOVE OPERATIONS */
/* *************************** */
/* All these opcodes never generate SIMD floating point exeptions */
/* MOVUPS: 0F 10 */
/* MOVUPD: 66 0F 10 */
/* MOVDQU: F3 0F 6F */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVUPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
read_virtual_dqword(i->seg(), eaddr, (Bit8u *) &op);
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVUPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* MOVUPS: 0F 11 */
/* MOVUPD: 66 0F 11 */
/* MOVDQU: F3 0F 7F */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVUPS_WpsVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
/* op is a register or memory reference */
if (i->modC0()) {
BX_WRITE_XMM_REG(i->rm(), op);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
write_virtual_dqword(i->seg(), eaddr, (Bit8u *) &op);
}
#else
BX_INFO(("MOVUPS_WpsVps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* MOVAPS: 0F 28 */
/* MOVAPD: 66 0F 28 */
/* MOVDQA: F3 0F 6F */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVAPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
read_virtual_dqword_aligned(i->seg(), eaddr, (Bit8u *) &op);
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVAPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* MOVAPS: 0F 29 */
/* MOVAPD: 66 0F 29 */
/* MOVDQA: F3 0F 7F */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVAPS_WpsVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
/* op is a register or memory reference */
if (i->modC0()) {
BX_WRITE_XMM_REG(i->rm(), op);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
write_virtual_dqword_aligned(i->seg(), eaddr, (Bit8u *) &op);
}
#else
BX_INFO(("MOVAPS_WpsVps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F3 0F 10 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
/* op2 is a register or memory reference */
if (i->modC0())
{
/* If the source operand is an XMM register, the high-order
96 bits of the destination XMM register are not modified. */
op.xmm32u(0) = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* If the source operand is a memory location, the high-order
96 bits of the destination XMM register are cleared to 0s */
op.xmm32u(0) = read_virtual_dword(i->seg(), eaddr);
op.xmm32u(1) = 0;
op.xmm64u(1) = 0;
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F3 0F 11 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSS_WssVss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit32u val32 = BX_READ_XMM_REG_LO_DWORD(i->nnn());
/* destination is a register or memory reference */
if (i->modC0())
{
/* If the source operand is an XMM register, the high-order
96 bits of the destination XMM register are not modified. */
BX_WRITE_XMM_REG_LO_DWORD(i->rm(), val32);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
write_virtual_dword(i->seg(), eaddr, val32);
}
#else
BX_INFO(("MOVSS_WssVss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F2 0F 10 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
/* op2 is a register or memory reference */
if (i->modC0())
{
/* If the source operand is an XMM register, the high-order
64 bits of the destination XMM register are not modified. */
op.xmm64u(0) = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* If the source operand is a memory location, the high-order
64 bits of the destination XMM register are cleared to 0s */
op.xmm64u(0) = read_virtual_qword(i->seg(), eaddr);
op.xmm64u(1) = 0;
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F2 0F 11 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD_WsdVsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64 = BX_READ_XMM_REG_LO_QWORD(i->nnn());
/* destination is a register or memory reference */
if (i->modC0())
{
/* If the source operand is an XMM register, the high-order
64 bits of the destination XMM register are not modified. */
BX_WRITE_XMM_REG_LO_QWORD(i->rm(), val64);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
write_virtual_qword(i->seg(), eaddr, val64);
}
#else
BX_INFO(("MOVSD_WsdVsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* MOVLPS: 0F 12 */
/* MOVLPD: 66 0F 12 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVLPS_VpsMq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64;
if (i->modC0()) /* MOVHLPS xmm1, xmm2 opcode */
{
val64 = BX_READ_XMM_REG_HI_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
/* now write result back to destination */
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), val64);
#else
BX_INFO(("MOVLPS_VpsMq: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F2 0F 12 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVDDUP_VpdWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64;
BxPackedXmmRegister op;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
op.xmm64u(0) = val64;
op.xmm64u(1) = val64;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVDDUP_VpdWq: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F3 0F 12 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSLDUP_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
result.xmm32u(0) = op.xmm32u(0);
result.xmm32u(1) = op.xmm32u(0);
result.xmm32u(2) = op.xmm32u(2);
result.xmm32u(3) = op.xmm32u(2);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("MOVSLDUP_VpsWps: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F3 0F 16 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSHDUP_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
result.xmm32u(0) = op.xmm32u(1);
result.xmm32u(1) = op.xmm32u(1);
result.xmm32u(2) = op.xmm32u(3);
result.xmm32u(3) = op.xmm32u(3);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("MOVHLDUP_VpsWps: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* MOVLPS: 0F 13 */
/* MOVLPD: 66 0F 13 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVLPS_MqVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_qword(i->seg(), eaddr, BX_XMM_REG_LO_QWORD(i->nnn()));
#else
BX_INFO(("MOVLPS_MqVps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* MOVHPS: 0F 16 */
/* MOVHPD: 66 0F 16 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVHPS_VpsMq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
Bit64u val64;
if (i->modC0()) /* MOVLHPS xmm1, xmm2 opcode */
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
/* now write result back to destination */
BX_WRITE_XMM_REG_HI_QWORD(i->nnn(), val64);
#else
BX_INFO(("MOVHPS_VpsMq: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* MOVHPS: 0F 17 */
/* MOVHPD: 66 0F 17 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVHPS_MqVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_qword(i->seg(), eaddr, BX_XMM_REG_HI_QWORD(i->nnn()));
#else
BX_INFO(("MOVHPS_MqVps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F2 0F F0 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LDDQU_VdqMdq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
read_virtual_dqword(i->seg(), eaddr, (Bit8u *) &op);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("LDDQU_VdqMdq: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F F7 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MASKMOVDQU_VdqUdq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
bx_address rdi;
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn()),
mask = BX_READ_XMM_REG(i->rm()), temp;
#if BX_SUPPORT_X86_64
if (i->as64L()) { /* 64 bit address mode */
rdi = RDI;
}
else
#endif
if (i->as32L()) {
rdi = EDI;
}
else { /* 16 bit address mode */
rdi = DI;
}
/* no data will be written to memory if mask is all 0s */
if ((mask.xmm64u(0) | mask.xmm64u(1)) == 0) return;
/* implement as read-modify-write for efficiency */
read_virtual_dqword(i->seg(), rdi, (Bit8u *) &temp);
for(unsigned j=0; j<16; j++) {
if(mask.xmmubyte(j) & 0x80) temp.xmmubyte(j) = op.xmmubyte(j);
}
/* and write result back to the memory */
write_virtual_dqword(i->seg(), rdi, (Bit8u *) &temp);
#else
BX_INFO(("MASKMOVDQU_VdqUdq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 0F 50 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVMSKPS_GdVRps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
Bit32u val32 = 0;
if(op.xmm32u(0) & 0x80000000) val32 |= 0x1;
if(op.xmm32u(1) & 0x80000000) val32 |= 0x2;
if(op.xmm32u(2) & 0x80000000) val32 |= 0x4;
if(op.xmm32u(3) & 0x80000000) val32 |= 0x8;
BX_WRITE_32BIT_REGZ(i->rm(), val32);
#else
BX_INFO(("MOVMSKPS_GdVRps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 50 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVMSKPD_GdVRpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
Bit32u val32 = 0;
if(op.xmm32u(1) & 0x80000000) val32 |= 0x1;
if(op.xmm32u(3) & 0x80000000) val32 |= 0x2;
BX_WRITE_32BIT_REGZ(i->rm(), val32);
#else
BX_INFO(("MOVMSKPD_GdVRpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 6E */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVD_VdqEd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1;
Bit32u op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_32BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
op1.xmm64u(0) = (Bit64u)(op2);
op1.xmm64u(1) = 0;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MOVD_VdqEd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#if BX_SUPPORT_X86_64
/* 66 0F 6E */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVQ_VdqEq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1;
Bit64u op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_64BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword_64(i->seg(), eaddr);
}
op1.xmm64u(0) = op2;
op1.xmm64u(1) = 0;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MOVQ_VdqEq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif
/* 66 0F 7E */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVD_EdVd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
Bit32u op2 = BX_READ_XMM_REG_LO_DWORD(i->nnn());
/* destination is a register or memory reference */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op2);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
write_virtual_dword(i->seg(), eaddr, op2);
}
#else
BX_INFO(("MOVD_EdVd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#if BX_SUPPORT_X86_64
/* 66 0F 7E */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVQ_EqVq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
Bit64u op2 = BX_READ_XMM_REG_LO_QWORD(i->nnn());
/* destination is a register or memory reference */
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), op2);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
write_virtual_qword_64(i->seg(), eaddr, op2);
}
#else
BX_INFO(("MOVQ_EqVq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif
/* F3 0F 7E */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVQ_VqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
if (i->modC0()) {
op.xmm64u(0) = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op.xmm64u(0) = read_virtual_qword(i->seg(), eaddr);
}
/* zero-extension to 128 bit */
op.xmm64u(1) = 0;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVQ_VqWq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F D6 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVQ_WqVq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->nnn());
if (i->modC0())
{
op.xmm64u(1) = 0; /* zero-extension to 128 bits */
BX_WRITE_XMM_REG(i->rm(), op);
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
write_virtual_qword(i->seg(), eaddr, op.xmm64u(0));
}
#else
BX_INFO(("MOVQ_WqVq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F2 0F D6 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVDQ2Q_PqVRq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BX_CPU_THIS_PTR FPU_check_pending_exceptions(); /* check floating point status word for a pending FPU exceptions */
BX_CPU_THIS_PTR prepareFPU2MMX();
BxPackedMmxRegister mm;
MMXUQ(mm) = BX_READ_XMM_REG_LO_QWORD(i->nnn());
BX_WRITE_MMX_REG(i->rm(), mm);
#else
BX_INFO(("MOVDQ2Q_PqVRq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* F3 0F D6 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVQ2DQ_VdqQq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BX_CPU_THIS_PTR FPU_check_pending_exceptions(); /* check floating point status word for a pending FPU exceptions */
BX_CPU_THIS_PTR prepareFPU2MMX();
BxPackedXmmRegister op;
BxPackedMmxRegister mm = BX_READ_MMX_REG(i->nnn());
op.xmm64u(0) = MMXUQ(mm);
op.xmm64u(1) = 0;
BX_WRITE_XMM_REG(i->rm(), op);
#else
BX_INFO(("MOVQ2DQ_VdqQq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F D7 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVMSKB_GdUdq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op = BX_READ_XMM_REG(i->rm());
Bit32u result = 0;
if(op.xmmubyte(0x0) & 0x80) result |= 0x0001;
if(op.xmmubyte(0x1) & 0x80) result |= 0x0002;
if(op.xmmubyte(0x2) & 0x80) result |= 0x0004;
if(op.xmmubyte(0x3) & 0x80) result |= 0x0008;
if(op.xmmubyte(0x4) & 0x80) result |= 0x0010;
if(op.xmmubyte(0x5) & 0x80) result |= 0x0020;
if(op.xmmubyte(0x6) & 0x80) result |= 0x0040;
if(op.xmmubyte(0x7) & 0x80) result |= 0x0080;
if(op.xmmubyte(0x8) & 0x80) result |= 0x0100;
if(op.xmmubyte(0x9) & 0x80) result |= 0x0200;
if(op.xmmubyte(0xA) & 0x80) result |= 0x0400;
if(op.xmmubyte(0xB) & 0x80) result |= 0x0800;
if(op.xmmubyte(0xC) & 0x80) result |= 0x1000;
if(op.xmmubyte(0xD) & 0x80) result |= 0x2000;
if(op.xmmubyte(0xE) & 0x80) result |= 0x4000;
if(op.xmmubyte(0xF) & 0x80) result |= 0x8000;
/* now write result back to destination */
BX_WRITE_32BIT_REGZ(i->nnn(), result);
#else
BX_INFO(("PMOVMSKB_GdUdq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* **************************** */
/* SSE: STORE DATA NON-TEMPORAL */
/* **************************** */
/* 0F C3 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVNTI_MdGd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_dword(i->seg(), eaddr, BX_READ_32BIT_REG(i->nnn()));
#else
BX_INFO(("MOVNTI_MdGd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#if BX_SUPPORT_X86_64
/* 0F C3 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVNTI_MqGq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_qword_64(i->seg(), eaddr, BX_READ_64BIT_REG(i->nnn()));
#else
BX_INFO(("MOVNTI_MqGq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif
/* MOVNTPS: 0F 2B */
/* MOVNTPD: 66 0F 2B */
/* MOVNTDQ: 66 0F E7 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVNTPS_MpsVps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_dqword_aligned(i->seg(), eaddr, (Bit8u *)(&BX_READ_XMM_REG(i->nnn())));
#else
BX_INFO(("MOVNTPS_MpsVps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* ************************** */
/* 3-BYTE-OPCODE INSTRUCTIONS */
/* ************************** */
#if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
/* 66 0F 38 20 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVSXBW_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit64u val64;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
result.xmm16u(0) = (Bit8s) (val64 & 0xFF);
result.xmm16u(1) = (Bit8s) ((val64 >> 8) & 0xFF);
result.xmm16u(2) = (Bit8s) ((val64 >> 16) & 0xFF);
result.xmm16u(3) = (Bit8s) ((val64 >> 24) & 0xFF);
result.xmm16u(4) = (Bit8s) ((val64 >> 32) & 0xFF);
result.xmm16u(5) = (Bit8s) ((val64 >> 40) & 0xFF);
result.xmm16u(6) = (Bit8s) ((val64 >> 48) & 0xFF);
result.xmm16u(7) = (Bit8s) (val64 >> 56);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVSXBW_VdqWq: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 21 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVSXBD_VdqWd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit32u val32;
if (i->modC0())
{
val32 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val32 = read_virtual_dword(i->seg(), eaddr);
}
result.xmm32u(0) = (Bit8s) (val32 & 0xFF);
result.xmm32u(1) = (Bit8s) ((val32 >> 8) & 0xFF);
result.xmm32u(2) = (Bit8s) ((val32 >> 16) & 0xFF);
result.xmm32u(3) = (Bit8s) (val32 >> 24);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVSXBD_VdqWd: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 22 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVSXBQ_VdqWw(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit16u val16;
if (i->modC0())
{
val16 = BX_READ_XMM_REG_LO_WORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val16 = read_virtual_word(i->seg(), eaddr);
}
result.xmm64u(0) = (Bit8s) (val16 & 0xFF);
result.xmm64u(1) = (Bit8s) (val16 >> 8);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVSXBQ_VdqWw: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 23 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVSXWD_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit64u val64;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
result.xmm32u(0) = (Bit16s) (val64 & 0xFFFF);
result.xmm32u(1) = (Bit16s) ((val64 >> 16) & 0xFFFF);
result.xmm32u(2) = (Bit16s) ((val64 >> 32) & 0xFFFF);
result.xmm32u(3) = (Bit16s) (val64 >> 48);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVSXWD_VdqWq: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 24 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVSXWQ_VdqWd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit32u val32;
if (i->modC0())
{
val32 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val32 = read_virtual_dword(i->seg(), eaddr);
}
result.xmm64u(0) = (Bit16s) (val32 & 0xFFFF);
result.xmm64u(1) = (Bit16s) (val32 >> 16);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVSXWQ_VdqWd: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 25 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVSXDQ_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit64u val64;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
result.xmm64u(0) = (Bit32s) (val64 & 0xFFFFFFFF);
result.xmm64u(1) = (Bit32s) (val64 >> 32);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVSXDQ_VdqWq: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 2A */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVNTDQA_VdqMdq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
/* source must be memory reference */
if (i->modC0()) {
BX_INFO(("MOVNTDQA_VdqMdq: must be memory reference"));
exception(BX_UD_EXCEPTION, 0, 0);
}
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
read_virtual_dqword_aligned(i->seg(), eaddr, (Bit8u *) &op);
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("MOVNTDQA_VdqMdq: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 30 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVZXBW_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit64u val64;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
result.xmm16u(0) = val64 & 0xFF;
result.xmm16u(1) = (val64 >> 8) & 0xFF;
result.xmm16u(2) = (val64 >> 16) & 0xFF;
result.xmm16u(3) = (val64 >> 24) & 0xFF;
result.xmm16u(4) = (val64 >> 32) & 0xFF;
result.xmm16u(5) = (val64 >> 40) & 0xFF;
result.xmm16u(6) = (val64 >> 48) & 0xFF;
result.xmm16u(7) = val64 >> 56;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVZXBW_VdqWq: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 31 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVZXBD_VdqWd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit32u val32;
if (i->modC0())
{
val32 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val32 = read_virtual_dword(i->seg(), eaddr);
}
result.xmm32u(0) = val32 & 0xFF;
result.xmm32u(1) = (val32 >> 8) & 0xFF;
result.xmm32u(2) = (val32 >> 16) & 0xFF;
result.xmm32u(3) = val32 >> 24;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVZXBD_VdqWd: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 32 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVZXBQ_VdqWw(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit16u val16;
if (i->modC0())
{
val16 = BX_READ_XMM_REG_LO_WORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val16 = read_virtual_word(i->seg(), eaddr);
}
result.xmm64u(0) = val16 & 0xFF;
result.xmm64u(1) = val16 >> 8;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVZXBQ_VdqWw: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 33 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVZXWD_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit64u val64;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
result.xmm32u(0) = val64 & 0xFFFF;
result.xmm32u(1) = (val64 >> 16) & 0xFFFF;
result.xmm32u(2) = (val64 >> 32) & 0xFFFF;
result.xmm32u(3) = val64 >> 48;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVZXWD_VdqWq: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 34 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVZXWQ_VdqWd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit32u val32;
if (i->modC0())
{
val32 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val32 = read_virtual_dword(i->seg(), eaddr);
}
result.xmm64u(0) = val32 & 0xFFFF;
result.xmm64u(1) = val32 >> 16;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVZXWQ_VdqWd: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 38 35 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PMOVZXDQ_VdqWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister result;
Bit64u val64;
if (i->modC0())
{
val64 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
val64 = read_virtual_qword(i->seg(), eaddr);
}
result.xmm64u(0) = val64 & 0xFFFFFFFF;
result.xmm64u(1) = val64 >> 32;
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PMOVZXDQ_VdqWq: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 3A 0F */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PALIGNR_VdqWdqIb(bxInstruction_c *i)
{
#if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, result;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
unsigned shift = i->Ib() * 8;
if(shift == 0) {
result.xmm64u(0) = op2.xmm64u(0);
result.xmm64u(1) = op2.xmm64u(1);
}
else if(shift < 64) {
result.xmm64u(0) = (op2.xmm64u(0) >> shift) | (op2.xmm64u(1) << (64-shift));
result.xmm64u(1) = (op2.xmm64u(1) >> shift) | (op1.xmm64u(0) << (64-shift));
}
else if(shift == 64) {
result.xmm64u(0) = op2.xmm64u(1);
result.xmm64u(1) = op1.xmm64u(0);
}
else if(shift < 128) {
shift -= 64;
result.xmm64u(0) = (op2.xmm64u(1) >> shift) | (op1.xmm64u(0) << (64-shift));
result.xmm64u(1) = (op1.xmm64u(0) >> shift) | (op1.xmm64u(1) << (64-shift));
}
else if(shift == 128) {
result.xmm64u(0) = op1.xmm64u(0);
result.xmm64u(1) = op1.xmm64u(1);
}
else if(shift < 192) {
shift -= 128;
result.xmm64u(0) = (op1.xmm64u(0) >> shift) | (op1.xmm64u(1) << (64-shift));
result.xmm64u(1) = (op1.xmm64u(1) >> shift);
}
else if(shift < 256) {
result.xmm64u(0) = op1.xmm64u(1) >> (shift - 192);
result.xmm64u(1) = 0;
}
else {
result.xmm64u(0) = 0;
result.xmm64u(1) = 0;
}
/* now write result back to destination */
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("PALIGNR_VdqWdqIb: required SSE3E, use --enable-sse and --enable-sse-extension options"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif // BX_SUPPORT_SSE >= 4 || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)