Bochs/bochs/cpu/soft_int.cc
2009-01-31 10:43:24 +00:00

204 lines
5.6 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: soft_int.cc,v 1.49 2009-01-31 10:43:23 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
// Make code more tidy with a few macros.
#if BX_SUPPORT_X86_64==0
#define RSP ESP
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BOUND_GwMa(bxInstruction_c *i)
{
Bit16s bound_min, bound_max;
Bit16s op1_16 = BX_READ_16BIT_REG(i->nnn());
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
bound_min = (Bit16s) read_virtual_word(i->seg(), eaddr);
bound_max = (Bit16s) read_virtual_word(i->seg(), eaddr+2);
if (op1_16 < bound_min || op1_16 > bound_max) {
BX_INFO(("BOUND_GdMa: fails bounds test"));
exception(BX_BR_EXCEPTION, 0, 0);
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BOUND_GdMa(bxInstruction_c *i)
{
Bit32s bound_min, bound_max;
Bit32s op1_32 = BX_READ_32BIT_REG(i->nnn());
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
bound_min = (Bit32s) read_virtual_dword(i->seg(), eaddr);
bound_max = (Bit32s) read_virtual_dword(i->seg(), eaddr+4);
if (op1_32 < bound_min || op1_32 > bound_max) {
BX_INFO(("BOUND_GdMa: fails bounds test"));
exception(BX_BR_EXCEPTION, 0, 0);
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INT1(bxInstruction_c *i)
{
#if BX_SUPPORT_VMX
VMexit_Event(i, BX_PRIVILEGED_SOFTWARE_INTERRUPT, 1, 0, 0);
#endif
// This is an undocumented instrucion (opcode 0xf1)
// which is useful for an ICE system.
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_softint;
#endif
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
// interrupt is not RSP safe
interrupt(1, BX_PRIVILEGED_SOFTWARE_INTERRUPT, 0, 0);
BX_CPU_THIS_PTR speculative_rsp = 0;
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
EIP);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INT3(bxInstruction_c *i)
{
// INT 3 is not IOPL sensitive
#if BX_SUPPORT_VMX
VMexit_Event(i, BX_SOFTWARE_EXCEPTION, 3, 0, 0);
#endif
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_softint;
#endif
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
// interrupt is not RSP safe
interrupt(3, BX_SOFTWARE_EXCEPTION, 0, 0);
BX_CPU_THIS_PTR speculative_rsp = 0;
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
EIP);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INT_Ib(bxInstruction_c *i)
{
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_softint;
#endif
Bit8u vector = i->Ib();
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
if (v8086_mode()) {
#if BX_SUPPORT_VME
if (BX_CPU_THIS_PTR cr4.get_VME())
{
bx_address tr_base = BX_CPU_THIS_PTR tr.cache.u.system.base;
Bit16u io_base = system_read_word(tr_base + 102);
Bit8u vme_redirection_bitmap = system_read_byte(tr_base + io_base - 32 + (vector >> 3));
if (! (vme_redirection_bitmap & (1 << (vector & 7))))
{
// redirect interrupt through virtual-mode idt
v86_redirect_interrupt(vector);
goto done;
}
}
#endif
// interrupt is not redirected or VME is OFF
if (BX_CPU_THIS_PTR get_IOPL() < 3)
{
BX_DEBUG(("INT_Ib(): Interrupt cannot be redirected, generate #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#if BX_SUPPORT_VMX
VMexit_Event(i, BX_SOFTWARE_INTERRUPT, vector, 0, 0);
#endif
#ifdef SHOW_EXIT_STATUS
if ((vector == 0x21) && (AH == 0x4c)) {
BX_INFO(("INT 21/4C called AL=0x%02x, BX=0x%04x", (unsigned) AL, (unsigned) BX));
}
#endif
interrupt(vector, BX_SOFTWARE_INTERRUPT, 0, 0);
done:
BX_CPU_THIS_PTR speculative_rsp = 0;
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
EIP);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INTO(bxInstruction_c *i)
{
if (get_OF()) {
#if BX_SUPPORT_VMX
VMexit_Event(i, BX_SOFTWARE_EXCEPTION, 4, 0, 0);
#endif
#if BX_DEBUGGER
BX_CPU_THIS_PTR show_flag |= Flag_softint;
#endif
BX_CPU_THIS_PTR speculative_rsp = 1;
BX_CPU_THIS_PTR prev_rsp = RSP;
// interrupt is not RSP safe
interrupt(4, BX_SOFTWARE_EXCEPTION, 0, 0);
BX_CPU_THIS_PTR speculative_rsp = 0;
BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
EIP);
}
}