Bochs/bochs/cpu/data_xfer8.cc
Stanislav Shwartsman 002c86660a reword all the CPU code in preparation for future CPU speedup implementation.
Bochs emulation can be another 10-15% faster using technique described in paper
"Fast Microcode Interpretation with Transactional Commit/Abort"
http://amas-bt.cs.virginia.edu/2011proceedings/amasbt2011-p3.pdf
2011-07-06 20:01:18 +00:00

132 lines
3.7 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2011 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RLIb(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), i->Ib());
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RHIb(bxInstruction_c *i)
{
BX_WRITE_8BIT_REGH(i->rm() & 0x03, i->Ib());
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_EbGbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_byte(i->seg(), eaddr, BX_READ_8BIT_REGx(i->nnn(), i->extend8bitL()));
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_GbEbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u val8 = read_virtual_byte(i->seg(), eaddr);
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), val8);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_GbEbR(bxInstruction_c *i)
{
Bit8u op2 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), op2);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_ALOd(bxInstruction_c *i)
{
AL = read_virtual_byte_32(i->seg(), i->Id());
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_OdAL(bxInstruction_c *i)
{
write_virtual_byte_32(i->seg(), i->Id(), AL);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_EbIbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
write_virtual_byte(i->seg(), eaddr, i->Ib());
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::XLAT(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L()) {
AL = read_virtual_byte_64(i->seg(), RBX + AL);
}
else
#endif
if (i->as32L()) {
AL = read_virtual_byte(i->seg(), (Bit32u) (EBX + AL));
}
else {
AL = read_virtual_byte_32(i->seg(), (Bit16u) (BX + AL));
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::XCHG_EbGbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit8u op1 = read_RMW_virtual_byte(i->seg(), eaddr);
Bit8u op2 = BX_READ_8BIT_REGx(i->nnn(), i->extend8bitL());
write_RMW_virtual_byte(op2);
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), op1);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::XCHG_EbGbR(bxInstruction_c *i)
{
Bit8u op1 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
Bit8u op2 = BX_READ_8BIT_REGx(i->nnn(), i->extend8bitL());
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), op1);
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), op2);
BX_NEXT_INSTR(i);
}