Bochs/bochs/cpu/cpu.cc

823 lines
26 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define BX_INSTR_SPY 0
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif
//unsigned counter[2] = { 0, 0 };
#if BX_SIM_ID == 0 // only need to define once
// This array defines a look-up table for the even parity-ness
// of an 8bit quantity, for optimal assignment of the parity bit
// in the EFLAGS register
const Boolean bx_parity_lookup[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
#endif
#if BX_SMP_PROCESSORS==1
// single processor simulation, so there's one of everything
BX_CPU_C bx_cpu;
BX_MEM_C bx_mem;
#else
// multiprocessor simulation, we need an array of cpus and memories
BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS];
BX_MEM_C *bx_mem_array[BX_ADDRESS_SPACES];
#endif
// notes:
//
// check limit of CS?
#ifdef REGISTER_IADDR
extern void REGISTER_IADDR(Bit32u addr);
#endif
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance to
// run. This is used only when simulating multiple processors.
//
// If maximum instructions have been executed, return. A count less
// than zero means run forever.
#define CHECK_MAX_INSTRUCTIONS(count) \
if (count >= 0) { \
count--; if (count == 0) return; \
}
#if BX_SMP_PROCESSORS==1
# define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1()
#else
# define BX_TICK1_IF_SINGLE_PROCESSOR()
#endif
#if BX_DYNAMIC_TRANSLATION == 0
void
BX_CPU_C::cpu_loop(Bit32s max_instr_count)
{
unsigned ret;
BxInstruction_t i;
unsigned maxisize;
Bit8u *fetch_ptr;
Boolean is_32;
#if BX_DEBUGGER
BX_CPU_THIS_PTR break_point = 0;
#ifdef MAGIC_BREAKPOINT
BX_CPU_THIS_PTR magic_break = 0;
#endif
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
#endif
(void) setjmp( BX_CPU_THIS_PTR jmp_buf_env );
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
main_cpu_loop:
// ???
BX_CPU_THIS_PTR EXT = 0;
BX_CPU_THIS_PTR errorno = 0;
// First check on events which occurred for previous instructions
// (traps) and ones which are asynchronous to the CPU
// (hardware interrupts).
if (BX_CPU_THIS_PTR async_event)
goto handle_async_event;
async_events_processed:
// Now we can handle things which are synchronous to instruction
// execution.
if (BX_CPU_THIS_PTR eflags.rf) {
BX_CPU_THIS_PTR eflags.rf = 0;
}
#if BX_X86_DEBUGGER
else {
// only bother comparing if any breakpoints enabled
if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
Bit32u iaddr =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base +
BX_CPU_THIS_PTR prev_eip;
Bit32u dr6_bits;
if ( (dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction,
BX_HWDebugInstruction)) ) {
// Add to the list of debug events thus far.
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
BX_CPU_THIS_PTR async_event = 1;
// If debug events are not inhibited on this boundary,
// fire off a debug fault. Otherwise handle it on the next
// boundary. (becomes a trap)
if ( !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
}
}
}
#endif
// We have ignored processing of external interrupts and
// debug events on this boundary. Reset the mask so they
// will be processed on the next boundary.
BX_CPU_THIS_PTR inhibit_mask = 0;
#if BX_DEBUGGER
{
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
if ( dbg_is_begin_instr_bpoint(
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
return;
}
}
#endif // #if BX_DEBUGGER
#if BX_INSTR_SPY
{
int n=0;
if ((n & 0xffffff) == 0) {
Bit32u cs = BX_CPU(0)->sregs[BX_SEG_REG_CS].selector.value;
Bit32u eip = BX_CPU(0)->prev_eip;
fprintf (stdout, "instr %d, time %lld, pc %04x:%08x, fetch_ptr=%p\s", n, bx_pc_system.time_ticks (), cs, eip, fetch_ptr);
}
n++;
}
#endif
is_32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
if (BX_CPU_THIS_PTR bytesleft == 0) {
prefetch();
}
fetch_ptr = BX_CPU_THIS_PTR fetch_ptr;
maxisize = 16;
if (BX_CPU_THIS_PTR bytesleft < 16)
maxisize = BX_CPU_THIS_PTR bytesleft;
ret = FetchDecode(fetch_ptr, &i, maxisize, is_32);
if (ret) {
if (i.ResolveModrm) {
// call method on BX_CPU_C object
BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
}
BX_CPU_THIS_PTR fetch_ptr += i.ilen;
BX_CPU_THIS_PTR bytesleft -= i.ilen;
fetch_decode_OK:
if (i.rep_used && (i.attr & BxRepeatable)) {
repeat_loop:
if (i.attr & BxRepeatableZF) {
if (i.as_32) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
ECX -= 1;
}
if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
if (ECX == 0) goto repeat_done;
goto repeat_not_done;
}
else {
if (CX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
CX -= 1;
}
if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
if (CX == 0) goto repeat_done;
goto repeat_not_done;
}
}
else { // normal repeat, no concern for ZF
if (i.as_32) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
ECX -= 1;
}
if (ECX == 0) goto repeat_done;
goto repeat_not_done;
}
else { // 16bit addrsize
if (CX != 0) {
BX_CPU_CALL_METHOD(i.execute, (&i));
CX -= 1;
}
if (CX == 0) goto repeat_done;
goto repeat_not_done;
}
}
// shouldn't get here from above
repeat_not_done:
#ifdef REGISTER_IADDR
REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
#endif
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event) {
invalidate_prefetch_q();
goto debugger_check;
}
goto repeat_loop;
#else /* if BX_DEBUGGER == 1 */
invalidate_prefetch_q();
goto debugger_check;
#endif
repeat_done:
BX_CPU_THIS_PTR eip += i.ilen;
}
else {
// non repeating instruction
BX_CPU_THIS_PTR eip += i.ilen;
BX_CPU_CALL_METHOD(i.execute, (&i));
}
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
#ifdef REGISTER_IADDR
REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
#endif
BX_TICK1_IF_SINGLE_PROCESSOR();
debugger_check:
#if (BX_SMP_PROCESSORS>1 && BX_DEBUGGER==0)
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance
// to run. This is used only when simulating multiple processors. If only
// one processor, don't waste any cycles on it! Also, it is not needed
// with the debugger because its guard mechanism provides the same
// functionality.
CHECK_MAX_INSTRUCTIONS(max_instr_count);
#endif
#if BX_DEBUGGER
// BW vm mode switch support is in dbg_is_begin_instr_bpoint
// note instr generating exceptions never reach this point.
// (mch) Read/write, time break point support
if (BX_CPU_THIS_PTR break_point) {
switch (BX_CPU_THIS_PTR break_point) {
case BREAK_POINT_TIME:
BX_INFO(("[%lld] Caught time breakpoint", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
return;
case BREAK_POINT_READ:
BX_INFO(("[%lld] Caught read watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
return;
case BREAK_POINT_WRITE:
BX_INFO(("[%lld] Caught write watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
return;
default:
BX_PANIC(("Weird break point condition"));
}
}
#ifdef MAGIC_BREAKPOINT
// (mch) Magic break point support
if (BX_CPU_THIS_PTR magic_break) {
if (bx_dbg.magic_break_enabled) {
BX_DEBUG(("Stopped on MAGIC BREAKPOINT"));
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
return;
} else {
BX_CPU_THIS_PTR magic_break = 0;
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
BX_DEBUG(("Ignoring MAGIC BREAKPOINT"));
}
}
#endif
if (BX_CPU_THIS_PTR trace) {
BX_CPU_THIS_PTR stop_reason = STOP_TRACE;
return;
}
#endif
#if BX_DEBUGGER
{
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
if ( dbg_is_end_instr_bpoint(
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
return;
}
}
#endif // #if BX_DEBUGGER
goto main_cpu_loop;
}
else {
unsigned remain, j;
static Bit8u FetchBuffer[16];
Bit8u *temp_ptr;
// read all leftover bytes in current page
for (j=0; j<BX_CPU_THIS_PTR bytesleft; j++) {
FetchBuffer[j] = *fetch_ptr++;
}
// get remaining bytes for prefetch in next page
// prefetch() needs eip current
BX_CPU_THIS_PTR eip += BX_CPU_THIS_PTR bytesleft;
remain = BX_CPU_THIS_PTR bytesleft;
prefetch();
if (BX_CPU_THIS_PTR bytesleft < 16) {
// make sure (bytesleft - remain) below doesn't go negative
BX_PANIC(("fetch_decode: bytesleft==0 after prefetch"));
}
temp_ptr = fetch_ptr = BX_CPU_THIS_PTR fetch_ptr;
// read leftover bytes in next page
for (; j<16; j++) {
FetchBuffer[j] = *temp_ptr++;
}
ret = FetchDecode(FetchBuffer, &i, 16, is_32);
if (ret==0)
BX_PANIC(("fetchdecode: cross boundary: ret==0"));
if (i.ResolveModrm) {
BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
}
remain = i.ilen - remain;
// note: eip has already been advanced to beginning of page
BX_CPU_THIS_PTR fetch_ptr = fetch_ptr + remain;
BX_CPU_THIS_PTR bytesleft -= remain;
//BX_CPU_THIS_PTR eip += remain;
BX_CPU_THIS_PTR eip = BX_CPU_THIS_PTR prev_eip;
goto fetch_decode_OK;
}
//
// This area is where we process special conditions and events.
//
handle_async_event:
if (BX_CPU_THIS_PTR debug_trap & 0x80000000) {
// I made up the bitmask above to mean HALT state.
#if BX_SMP_PROCESSORS==1
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
// for one processor, pass the time as quickly as possible until
// an interrupt wakes up the CPU.
while (1) {
if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_) {
break;
}
BX_TICK1();
}
#else /* BX_SMP_PROCESSORS != 1 */
// for multiprocessor simulation, even if this CPU is halted we still
// must give the others a chance to simulate. If an interrupt has
// arrived, then clear the HALT condition; otherwise just return from
// the CPU loop with stop_reason STOP_CPU_HALTED.
if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_) {
// interrupt ends the HALT condition
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
//bx_printf ("halt condition has been cleared in %s", name);
} else {
// HALT condition remains, return so other CPUs have a chance
#if BX_DEBUGGER
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
#endif
return;
}
#endif
}
// Priority 1: Hardware Reset and Machine Checks
// RESET
// Machine Check
// (bochs doesn't support these)
// Priority 2: Trap on Task Switch
// T flag in TSS is set
if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 3: External Hardware Interventions
// FLUSH
// STOPCLK
// SMI
// INIT
// (bochs doesn't support these)
// Priority 4: Traps on Previous Instruction
// Breakpoints
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
if ( BX_CPU_THIS_PTR debug_trap &&
!(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
// A trap may be inhibited on this boundary due to an instruction
// which loaded SS. If so we clear the inhibit_mask below
// and don't execute this code until the next boundary.
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 5: External Interrupts
// NMI Interrupts
// Maskable Hardware Interrupts
if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
// Processing external interrupts is inhibited on this
// boundary because of certain instructions like STI.
// inhibit_mask is cleared below, in which case we will have
// an opportunity to check interrupts on the next instruction
// boundary.
}
else if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ && BX_DBG_ASYNC_INTR) {
Bit8u vector;
// NOTE: similar code in ::take_irq()
#if BX_SUPPORT_APIC
if (BX_CPU_THIS_PTR int_from_local_apic)
vector = BX_CPU_THIS_PTR local_apic.acknowledge_int ();
else
vector = BX_IAC(); // may set INTR with next interrupt
#else
// if no local APIC, always acknowledge the PIC.
vector = BX_IAC(); // may set INTR with next interrupt
#endif
//BX_DEBUG(("decode: interrupt %u",
// (unsigned) vector));
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; /* external event */
interrupt(vector, 0, 0, 0);
BX_INSTR_HWINTERRUPT(vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
}
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
// NOTE: similar code in ::take_dma()
// assert Hold Acknowledge (HLDA) and go into a bus hold state
BX_RAISE_HLDA();
}
// Priority 6: Faults from fetching next instruction
// Code breakpoint fault
// Code segment limit violation (priority 7 on 486/Pentium)
// Code page fault (priority 7 on 486/Pentium)
// (handled in main decode loop)
// Priority 7: Faults from decoding next instruction
// Instruction length > 15 bytes
// Illegal opcode
// Coprocessor not available
// (handled in main decode loop etc)
// Priority 8: Faults on executing an instruction
// Floating point execution
// Overflow
// Bound error
// Invalid TSS
// Segment not present
// Stack fault
// General protection
// Data page fault
// Alignment check
// (handled by rest of the code)
if (BX_CPU_THIS_PTR eflags.tf) {
// TF is set before execution of next instruction. Schedule
// a debug trap (#DB) after execution. After completion of
// next instruction, the code above will invoke the trap.
BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
}
if ( !(BX_CPU_THIS_PTR INTR ||
BX_CPU_THIS_PTR debug_trap ||
BX_HRQ ||
BX_CPU_THIS_PTR eflags.tf) )
BX_CPU_THIS_PTR async_event = 0;
goto async_events_processed;
}
#endif // #if BX_DYNAMIC_TRANSLATION == 0
// boundaries of consideration:
//
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
// * A20 boundary: 1024k (1Megabyte)
// * page boundary: 4k
// * ROM boundary: 2k (dont care since we are only reading)
// * segment boundary: any
void
BX_CPU_C::prefetch(void)
{
// cs:eIP
// prefetch QSIZE byte quantity aligned on corresponding boundary
Bit32u new_linear_addr;
Bit32u new_phy_addr;
Bit32u temp_eip, temp_limit;
temp_eip = BX_CPU_THIS_PTR eip;
temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + temp_eip;
BX_CPU_THIS_PTR prev_linear_page = new_linear_addr & 0xfffff000;
if (temp_eip > temp_limit) {
BX_PANIC(("prefetch: EIP > CS.limit"));
}
#if BX_SUPPORT_PAGING
if (BX_CPU_THIS_PTR cr0.pg) {
// aligned block guaranteed to be all in one page, same A20 address
new_phy_addr = itranslate_linear(new_linear_addr, CPL==3);
new_phy_addr = A20ADDR(new_phy_addr);
}
else
#endif // BX_SUPPORT_PAGING
{
new_phy_addr = A20ADDR(new_linear_addr);
}
if ( new_phy_addr >= BX_CPU_THIS_PTR mem->len ) {
// don't take this out if dynamic translation enabled,
// otherwise you must make a check to see if bytesleft is 0 after
// a call to prefetch() in the dynamic code.
BX_ERROR(("prefetch: running in bogus memory"));
}
// max physical address as confined by page boundary
BX_CPU_THIS_PTR prev_phy_page = new_phy_addr & 0xfffff000;
BX_CPU_THIS_PTR max_phy_addr = BX_CPU_THIS_PTR prev_phy_page | 0x00000fff;
// check if segment boundary comes into play
//if ((temp_limit - temp_eip) < 4096) {
// }
BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
}
// If control has transfered locally, it is possible the prefetch Q is
// still valid. This would happen for repeat instructions, and small
// branches.
void
BX_CPU_C::revalidate_prefetch_q(void)
{
Bit32u new_linear_addr, new_linear_page, new_linear_offset;
Bit32u new_phy_addr;
new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + BX_CPU_THIS_PTR eip;
new_linear_page = new_linear_addr & 0xfffff000;
if (new_linear_page == BX_CPU_THIS_PTR prev_linear_page) {
// same linear address, old linear->physical translation valid
new_linear_offset = new_linear_addr & 0x00000fff;
new_phy_addr = BX_CPU_THIS_PTR prev_phy_page | new_linear_offset;
BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
}
else {
BX_CPU_THIS_PTR bytesleft = 0; // invalidate prefetch Q
}
}
void
BX_CPU_C::invalidate_prefetch_q(void)
{
BX_CPU_THIS_PTR bytesleft = 0;
}
#if BX_DEBUGGER
extern unsigned int dbg_show_mask;
Boolean
BX_CPU_C::dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32)
{
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = eip;
BX_CPU_THIS_PTR guard_found.laddr = laddr;
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
// BW mode switch breakpoint
// instruction which generate exceptions never reach the end of the
// loop due to a long jump. Thats why we check at start of instr.
// Downside is that we show the instruction about to be executed
// (not the one generating the mode switch).
if (BX_CPU_THIS_PTR mode_break &&
(BX_CPU_THIS_PTR debug_vm != BX_CPU_THIS_PTR eflags.vm)) {
BX_INFO(("Caught vm mode switch breakpoint"));
BX_CPU_THIS_PTR debug_vm = BX_CPU_THIS_PTR eflags.vm;
BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT;
return 1;
}
if( (BX_CPU_THIS_PTR show_flag) & (dbg_show_mask)) {
int rv;
if((rv = bx_dbg_symbolic_output()))
return rv;
}
// see if debugger is looking for iaddr breakpoint of any type
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
#if BX_DBG_SUPPORT_VIR_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
if ( (bx_guard.iaddr.vir[i].cs == cs) &&
(bx_guard.iaddr.vir[i].eip == eip) ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
if ( bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
Bit32u phy;
Boolean valid;
dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr,
&phy, &valid);
if ( (BX_CPU_THIS_PTR guard_found.icount!=0) && valid ) {
for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
if ( bx_guard.iaddr.phy[i].addr == phy ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
}
return(0); // not on a breakpoint
}
Boolean
BX_CPU_C::dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32)
{
BX_CPU_THIS_PTR guard_found.icount++;
// see if debugger requesting icount guard
if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
if (BX_CPU_THIS_PTR guard_found.icount >= bx_guard.icount) {
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = eip;
BX_CPU_THIS_PTR guard_found.laddr = laddr;
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_ICOUNT;
return(1);
}
}
// convenient point to see if user typed Ctrl-C
if (bx_guard.interrupt_requested &&
(bx_guard.guard_for & BX_DBG_GUARD_CTRL_C)) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
return(1);
}
#if (BX_NUM_SIMULATORS >= 2)
// if async event pending, acknowlege them
if (bx_guard.async_changes_pending.which) {
if (bx_guard.async_changes_pending.which & BX_DBG_ASYNC_PENDING_A20)
bx_dbg_async_pin_ack(BX_DBG_ASYNC_PENDING_A20,
bx_guard.async_changes_pending.a20);
if (bx_guard.async_changes_pending.which) {
BX_PANIC(("decode: async pending unrecognized."));
}
}
#endif
return(0); // no breakpoint
}
void
BX_CPU_C::dbg_take_irq(void)
{
unsigned vector;
// NOTE: similar code in ::cpu_loop()
if ( BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ ) {
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
// normal return from setjmp setup
vector = BX_IAC(); // may set INTR with next interrupt
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
interrupt(vector, 0, 0, 0);
}
}
}
void
BX_CPU_C::dbg_force_interrupt(unsigned vector)
{
// Used to force slave simulator to take an interrupt, without
// regard to IF
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
// normal return from setjmp setup
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // probably don't need this
interrupt(vector, 0, 0, 0);
}
}
void
BX_CPU_C::dbg_take_dma(void)
{
// NOTE: similar code in ::cpu_loop()
if ( BX_HRQ ) {
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
BX_RAISE_HLDA();
}
}
#endif // #if BX_DEBUGGER