Bochs/bochs/iodev/pit82c54.cc
Christophe Bothamy 50efc3b8c7 - apply Conn Clark's patch.perf-regparm-cclark :
- it works only on x86 with gcc2.95+
  - uses the GCC function atribute "regparm(n)" to declare that certain
    functions use the register calling convention
  - performance improvement is about 6%
2003-03-02 23:59:12 +00:00

897 lines
23 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: pit82c54.cc,v 1.21 2003-03-02 23:59:11 cbothamy Exp $
/////////////////////////////////////////////////////////////////////////
//
/*
* Emulator of an Intel 8254/82C54 Programmable Interval Timer.
* Greg Alexander <yakovlev@usa.com>
*
* This code is not yet linked into Bochs, but has been included so
* that you can experiment with it. (bbd)
*
*
* Things I am unclear on (greg):
* 1.)What happens if both the status and count registers are latched,
* but the first of the two count registers has already been read?
* I.E.:
* latch count 0 (16-bit)
* Read count 0 (read LSByte)
* READ_BACK status of count 0
* Read count 0 - do you get MSByte or status?
* This will be flagged as an error.
* 2.)What happens when we latch the output in the middle of a 2-part
* unlatched read?
* 3.)I assumed that programming a counter removes a latched status.
* 4.)I implemented the 8254 description of mode 0, not the 82C54 one.
* 5.)clock() calls represent a rising clock edge followed by a falling
* clock edge.
* 6.)What happens when we trigger mode 1 in the middle of a 2-part
* write?
*/
#include "bochs.h"
#include "pit82c54.h"
#define LOG_THIS this->
void pit_82C54::print_counter(counter_type & thisctr) {
#if 1
BX_INFO(("Printing Counter"));
BX_INFO(("count: %d",thisctr.count));
BX_INFO(("count_binary: %x",thisctr.count_binary));
BX_INFO(("counter gate: %x",thisctr.GATE));
BX_INFO(("counter OUT: %x",thisctr.OUTpin));
BX_INFO(("next_change_time: %d",thisctr.next_change_time));
BX_INFO(("End Counter Printout"));
#endif
}
void pit_82C54::print_cnum(Bit8u cnum) {
if(cnum>MAX_COUNTER) {
BX_ERROR(("Bad counter index to print_cnum"));
} else {
print_counter(counter[cnum]);
}
}
void pit_82C54::latch_counter(counter_type & thisctr) {
if(thisctr.count_LSB_latched || thisctr.count_MSB_latched) {
//Do nothing because previous latch has not been read.;
} else {
switch(thisctr.read_state) {
case MSByte:
thisctr.outlatch=thisctr.count & 0xFFFF;
thisctr.count_MSB_latched=1;
break;
case LSByte:
thisctr.outlatch=thisctr.count & 0xFFFF;
thisctr.count_LSB_latched=1;
break;
case LSByte_multiple:
thisctr.outlatch=thisctr.count & 0xFFFF;
thisctr.count_LSB_latched=1;
thisctr.count_MSB_latched=1;
break;
case MSByte_multiple:
if(!(seen_problems & UNL_2P_READ)) {
// seen_problems|=UNL_2P_READ;
BX_ERROR(("Unknown behavior when latching during 2-part read."));
BX_ERROR((" This message will not be repeated."));
}
//I guess latching and resetting to LSB first makes sense;
BX_DEBUG(("Setting read_state to LSB_mult"));
thisctr.read_state=LSByte_multiple;
thisctr.outlatch=thisctr.count & 0xFFFF;
thisctr.count_LSB_latched=1;
thisctr.count_MSB_latched=1;
break;
default:
BX_ERROR(("Unknown read mode found during latch command."));
break;
}
}
}
void pit_82C54::set_OUT (counter_type & thisctr, bool data) {
//This will probably have a callback, so I put it here.
thisctr.OUTpin=data;
}
void BX_CPP_AttrRegparmN(2)
pit_82C54::set_count (counter_type & thisctr, Bit32u data) {
thisctr.count=data & 0xFFFF;
set_binary_to_count(thisctr);
}
void BX_CPP_AttrRegparmN(1)
pit_82C54::set_count_to_binary(counter_type & thisctr) {
if(thisctr.bcd_mode) {
thisctr.count=
(((thisctr.count_binary/1)%10)<<0) |
(((thisctr.count_binary/10)%10)<<4) |
(((thisctr.count_binary/100)%10)<<8) |
(((thisctr.count_binary/1000)%10)<<12)
;
} else {
thisctr.count=thisctr.count_binary;
}
}
void BX_CPP_AttrRegparmN(1)
pit_82C54::set_binary_to_count(counter_type & thisctr) {
if(thisctr.bcd_mode) {
thisctr.count_binary=
(1*((thisctr.count>>0)&0xF)) +
(10*((thisctr.count>>4)&0xF)) +
(100*((thisctr.count>>8)&0xF)) +
(1000*((thisctr.count>>12)&0xF))
;
} else {
thisctr.count_binary=thisctr.count;
}
}
void BX_CPP_AttrRegparmN(1)
pit_82C54::decrement (counter_type & thisctr) {
if(!thisctr.count) {
if(thisctr.bcd_mode) {
thisctr.count=0x9999;
thisctr.count_binary=9999;
} else {
thisctr.count=0xFFFF;
thisctr.count_binary=0xFFFF;
}
} else {
thisctr.count_binary--;
set_count_to_binary(thisctr);
}
}
void pit_82C54::init (void) {
Bit8u i;
put("PIT81");
settype(PIT81LOG);
for(i=0;i<3;i++) {
BX_DEBUG(("Setting read_state to LSB"));
counter[i].read_state=LSByte;
counter[i].write_state=LSByte;
counter[i].GATE=1;
counter[i].OUTpin=1;
counter[i].triggerGATE=0;
counter[i].mode=4;
counter[i].first_pass=0;
counter[i].bcd_mode=0;
counter[i].count=0;
counter[i].count_binary=0;
counter[i].state_bit_1=0;
counter[i].state_bit_2=0;
counter[i].null_count=0;
counter[i].rw_mode=1;
counter[i].count_written=1;
counter[i].count_LSB_latched=0;
counter[i].count_MSB_latched=0;
counter[i].status_latched=0;
counter[i].next_change_time=0;
}
seen_problems=0;
}
pit_82C54::pit_82C54 (void) {
init();
}
void pit_82C54::reset (unsigned type) {
}
void BX_CPP_AttrRegparmN(2)
pit_82C54::decrement_multiple(counter_type & thisctr, Bit32u cycles) {
while(cycles>0) {
if(cycles<=thisctr.count_binary) {
thisctr.count_binary-=cycles;
cycles-=cycles;
set_count_to_binary(thisctr);
} else {
cycles-=(thisctr.count_binary+1);
thisctr.count_binary-=thisctr.count_binary;
set_count_to_binary(thisctr);
decrement(thisctr);
}
}
}
void pit_82C54::clock_multiple(Bit8u cnum, Bit32u cycles) {
if(cnum>MAX_COUNTER) {
BX_ERROR(("Counter number too high in clock"));
} else {
counter_type & thisctr = counter[cnum];
while(cycles>0) {
if(thisctr.next_change_time==0) {
if(thisctr.count_written) {
switch(thisctr.mode) {
case 0:
if(thisctr.GATE && (thisctr.write_state!=MSByte_multiple)) {
decrement_multiple(thisctr, cycles);
}
break;
case 1:
decrement_multiple(thisctr, cycles);
break;
case 2:
if( (!thisctr.first_pass) && thisctr.GATE ) {
decrement_multiple(thisctr, cycles);
}
break;
case 3:
if( (!thisctr.first_pass) && thisctr.GATE ) {
decrement_multiple(thisctr, 2*cycles);
}
break;
case 4:
if(thisctr.GATE) {
decrement_multiple(thisctr, cycles);
}
break;
case 5:
decrement_multiple(thisctr, cycles);
break;
default:
break;
}
}
cycles-=cycles;
} else {
switch(thisctr.mode) {
case 0:
case 1:
case 2:
case 4:
case 5:
if( thisctr.next_change_time > cycles ) {
decrement_multiple(thisctr,cycles);
thisctr.next_change_time-=cycles;
cycles-=cycles;
} else {
decrement_multiple(thisctr,(thisctr.next_change_time-1));
cycles-=thisctr.next_change_time;
clock(cnum);
}
break;
case 3:
if( thisctr.next_change_time > cycles ) {
decrement_multiple(thisctr,cycles*2);
thisctr.next_change_time-=cycles;
cycles-=cycles;
} else {
decrement_multiple(thisctr,(thisctr.next_change_time-1)*2);
cycles-=thisctr.next_change_time;
clock(cnum);
}
break;
default:
cycles-=cycles;
break;
}
}
}
#if 0
print_counter(thisctr);
#endif
}
}
void BX_CPP_AttrRegparmN(1)
pit_82C54::clock(Bit8u cnum) {
if(cnum>MAX_COUNTER) {
BX_ERROR(("Counter number too high in clock"));
} else {
counter_type & thisctr = counter[cnum];
switch(thisctr.mode) {
case 0:
if(thisctr.count_written) {
if(thisctr.null_count) {
set_count(thisctr, thisctr.inlatch);
if(thisctr.GATE) {
if(thisctr.count_binary==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
}
} else {
thisctr.next_change_time=0;
}
thisctr.null_count=0;
} else {
if(thisctr.GATE && (thisctr.write_state!=MSByte_multiple)) {
decrement(thisctr);
if(!thisctr.OUTpin) {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
if(!thisctr.count) {
set_OUT(thisctr,1);
}
} else {
thisctr.next_change_time=0;
}
} else {
thisctr.next_change_time=0; //if the clock isn't moving.
}
}
} else {
thisctr.next_change_time=0; //default to 0.
}
thisctr.triggerGATE=0;
break;
case 1:
if(thisctr.count_written) {
if(thisctr.triggerGATE) {
set_count(thisctr, thisctr.inlatch);
if(thisctr.count_binary==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
}
thisctr.null_count=0;
set_OUT(thisctr,0);
if(thisctr.write_state==MSByte_multiple) {
BX_ERROR(("Undefined behavior when loading a half loaded count."));
}
} else {
decrement(thisctr);
if(!thisctr.OUTpin) {
if(thisctr.count_binary==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
}
if(thisctr.count==0) {
set_OUT(thisctr,1);
}
} else {
thisctr.next_change_time=0;
}
}
} else {
thisctr.next_change_time=0; //default to 0.
}
thisctr.triggerGATE=0;
break;
case 2:
if(thisctr.count_written) {
if(thisctr.triggerGATE || thisctr.first_pass) {
set_count(thisctr, thisctr.inlatch);
thisctr.next_change_time=(thisctr.count_binary-1) & 0xFFFF;
thisctr.null_count=0;
if(thisctr.inlatch==1) {
BX_ERROR(("ERROR: count of 1 is invalid in pit mode 2."));
}
if(!thisctr.OUTpin) {
set_OUT(thisctr,1);
}
if(thisctr.write_state==MSByte_multiple) {
BX_ERROR(("Undefined behavior when loading a half loaded count."));
}
thisctr.first_pass=0;
} else {
if(thisctr.GATE) {
decrement(thisctr);
thisctr.next_change_time=(thisctr.count_binary-1) & 0xFFFF;
if(thisctr.count==1) {
thisctr.next_change_time=1;
set_OUT(thisctr,0);
thisctr.first_pass=1;
}
} else {
thisctr.next_change_time=0;
}
}
} else {
thisctr.next_change_time=0;
}
thisctr.triggerGATE=0;
break;
case 3:
if(thisctr.count_written) {
if( (thisctr.triggerGATE || thisctr.first_pass
|| thisctr.state_bit_2) && thisctr.GATE ) {
set_count(thisctr, thisctr.inlatch & 0xFFFE);
thisctr.state_bit_1=thisctr.inlatch & 0x1;
if( (!thisctr.OUTpin) || (!(thisctr.state_bit_1))) {
if(((thisctr.count_binary/2)-1)==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=((thisctr.count_binary/2)-1) & 0xFFFF;
}
} else {
if((thisctr.count_binary/2)==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=(thisctr.count_binary/2) & 0xFFFF;
}
}
thisctr.null_count=0;
if(thisctr.inlatch==1) {
BX_ERROR(("Count of 1 is invalid in pit mode 3."));
}
if(!thisctr.OUTpin) {
set_OUT(thisctr,1);
} else if(thisctr.OUTpin && !thisctr.first_pass) {
set_OUT(thisctr,0);
}
if(thisctr.write_state==MSByte_multiple) {
BX_ERROR(("Undefined behavior when loading a half loaded count."));
}
thisctr.state_bit_2=0;
thisctr.first_pass=0;
} else {
if(thisctr.GATE) {
decrement(thisctr);
decrement(thisctr);
if( (!thisctr.OUTpin) || (!(thisctr.state_bit_1))) {
thisctr.next_change_time=((thisctr.count_binary/2)-1) & 0xFFFF;
} else {
thisctr.next_change_time=(thisctr.count_binary/2) & 0xFFFF;
}
if(thisctr.count==0) {
thisctr.state_bit_2=1;
thisctr.next_change_time=1;
}
if( (thisctr.count==2) &&
( (!thisctr.OUTpin) || (!(thisctr.state_bit_1)))
) {
thisctr.state_bit_2=1;
thisctr.next_change_time=1;
}
} else {
thisctr.next_change_time=0;
}
}
} else {
thisctr.next_change_time=0;
}
thisctr.triggerGATE=0;
break;
case 4:
if(thisctr.count_written) {
if(!thisctr.OUTpin) {
set_OUT(thisctr,1);
}
if(thisctr.null_count) {
set_count(thisctr, thisctr.inlatch);
if(thisctr.GATE) {
if(thisctr.count_binary==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
}
} else {
thisctr.next_change_time=0;
}
thisctr.null_count=0;
if(thisctr.write_state==MSByte_multiple) {
BX_ERROR(("Undefined behavior when loading a half loaded count."));
}
thisctr.first_pass=1;
} else {
if(thisctr.GATE) {
decrement(thisctr);
if(thisctr.first_pass) {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
if(!thisctr.count) {
set_OUT(thisctr,0);
thisctr.next_change_time=1;
thisctr.first_pass=0;
}
} else {
thisctr.next_change_time=0;
}
} else {
thisctr.next_change_time=0;
}
}
} else {
thisctr.next_change_time=0;
}
thisctr.triggerGATE=0;
break;
case 5:
if(thisctr.count_written) {
if(!thisctr.OUTpin) {
set_OUT(thisctr,1);
}
if(thisctr.triggerGATE) {
set_count(thisctr, thisctr.inlatch);
if(thisctr.count_binary==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
}
thisctr.null_count=0;
if(thisctr.write_state==MSByte_multiple) {
BX_ERROR(("Undefined behavior when loading a half loaded count."));
}
thisctr.first_pass=1;
} else {
decrement(thisctr);
if(thisctr.first_pass) {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
if(!thisctr.count) {
set_OUT(thisctr,0);
thisctr.next_change_time=1;
thisctr.first_pass=0;
}
} else {
thisctr.next_change_time=0;
}
}
} else {
thisctr.next_change_time=0;
}
thisctr.triggerGATE=0;
break;
default:
BX_ERROR(("Mode not implemented."));
thisctr.next_change_time=0;
thisctr.triggerGATE=0;
break;
}
}
}
void pit_82C54::clock_all(Bit32u cycles) {
BX_DEBUG(("clock_all: cycles=%d",cycles));
clock_multiple(0,cycles);
clock_multiple(1,cycles);
clock_multiple(2,cycles);
}
Bit8u pit_82C54::read(Bit8u address) {
if(address>MAX_ADDRESS) {
BX_ERROR(("Counter address incorrect in data read."));
} else if(address==CONTROL_ADDRESS) {
BX_DEBUG(("PIT Read: Control Word Register."));
//Read from control word register;
/* This might be okay. If so, 0 seems the most logical
* return value from looking at the docs.
*/
BX_ERROR(("Read from control word register not defined."));
return 0;
} else {
//Read from a counter;
BX_DEBUG(("PIT Read: Counter %d.",address));
counter_type & thisctr=counter[address];
if(thisctr.status_latched) {
//Latched Status Read;
if(thisctr.count_MSB_latched &&
(thisctr.read_state==MSByte_multiple) ) {
BX_ERROR(("Undefined output when status latched and count half read."));
} else {
thisctr.status_latched=0;
return thisctr.status_latch;
}
} else {
//Latched Count Read;
if(thisctr.count_LSB_latched) {
//Read Least Significant Byte;
if(thisctr.read_state==LSByte_multiple) {
BX_DEBUG(("Setting read_state to MSB_mult"));
thisctr.read_state=MSByte_multiple;
}
thisctr.count_LSB_latched=0;
return (thisctr.outlatch & 0xFF);
} else if(thisctr.count_MSB_latched) {
//Read Most Significant Byte;
if(thisctr.read_state==MSByte_multiple) {
BX_DEBUG(("Setting read_state to LSB_mult"));
thisctr.read_state=LSByte_multiple;
}
thisctr.count_MSB_latched=0;
return ((thisctr.outlatch>>8) & 0xFF);
} else {
//Unlatched Count Read;
if(!(thisctr.read_state & 0x1)) {
//Read Least Significant Byte;
if(thisctr.read_state==LSByte_multiple) {
thisctr.read_state=MSByte_multiple;
BX_DEBUG(("Setting read_state to MSB_mult"));
}
return (thisctr.count & 0xFF);
} else {
//Read Most Significant Byte;
if(thisctr.read_state==MSByte_multiple) {
BX_DEBUG(("Setting read_state to LSB_mult"));
thisctr.read_state=LSByte_multiple;
}
return ((thisctr.count>>8) & 0xFF);
}
}
}
}
//Should only get here on errors;
return 0;
}
void pit_82C54::write(Bit8u address, Bit8u data) {
if(address>MAX_ADDRESS) {
BX_ERROR(("Counter address incorrect in data write."));
} else if(address==CONTROL_ADDRESS) {
Bit8u SC, RW, M, BCD;
controlword=data;
BX_DEBUG(("Control Word Write."));
SC = (controlword>>6) & 0x3;
RW = (controlword>>4) & 0x3;
M = (controlword>>1) & 0x7;
BCD = controlword & 0x1;
if(SC == 3) {
//READ_BACK command;
int i;
BX_DEBUG(("READ_BACK command."));
for(i=0;i<=MAX_COUNTER;i++) {
if((M>>i) & 0x1) {
//If we are using this counter;
counter_type & thisctr=counter[i];
if(!((controlword>>5) & 1)) {
//Latch Count;
latch_counter(thisctr);
}
if(!((controlword>>4) & 1)) {
//Latch Status;
if(thisctr.status_latched) {
//Do nothing because latched status has not been read.;
} else {
thisctr.status_latch=
((thisctr.OUTpin & 0x1) << 7) |
((thisctr.null_count & 0x1) << 6) |
((thisctr.rw_mode & 0x3) << 4) |
((thisctr.mode & 0x7) << 1) |
(thisctr.bcd_mode&0x1)
;
thisctr.status_latched=1;
}
}
}
}
} else {
counter_type & thisctr = counter[SC];
if(!RW) {
//Counter Latch command;
BX_DEBUG(("Counter Latch command. SC=%d",SC));
latch_counter(thisctr);
} else {
//Counter Program Command;
BX_DEBUG(("Counter Program command. SC=%d, RW=%d, M=%d, BCD=%d",SC,RW,M,BCD));
thisctr.null_count=1;
thisctr.count_LSB_latched=0;
thisctr.count_MSB_latched=0;
thisctr.status_latched=0;
thisctr.inlatch=0;
thisctr.count_written=0;
thisctr.first_pass=1;
thisctr.rw_mode=RW;
thisctr.bcd_mode=BCD;
thisctr.mode=M;
switch(RW) {
case 0x1:
BX_DEBUG(("Setting read_state to LSB"));
thisctr.read_state=LSByte;
thisctr.write_state=LSByte;
break;
case 0x2:
BX_DEBUG(("Setting read_state to MSB"));
thisctr.read_state=MSByte;
thisctr.write_state=MSByte;
break;
case 0x3:
BX_DEBUG(("Setting read_state to LSB_mult"));
thisctr.read_state=LSByte_multiple;
thisctr.write_state=LSByte_multiple;
break;
default:
BX_ERROR(("RW field invalid in control word write."));
break;
}
//All modes except mode 0 have initial output of 1.;
if(M) {
set_OUT(thisctr, 1);
} else {
set_OUT(thisctr, 0);
}
thisctr.next_change_time=0;
}
}
} else {
//Write to counter initial value.
counter_type & thisctr = counter[address];
BX_DEBUG(("Write Initial Count: counter=%d, count=%d",address,data));
switch(thisctr.write_state) {
case LSByte_multiple:
thisctr.inlatch=(thisctr.inlatch & (0xFF<<8)) | data;
thisctr.write_state=MSByte_multiple;
break;
case LSByte:
thisctr.inlatch=(thisctr.inlatch & (0xFF<<8)) | data;
thisctr.null_count=1;
thisctr.count_written=1;
break;
case MSByte_multiple:
thisctr.write_state=LSByte_multiple;
case MSByte: //shared between MSB_multiple and MSByte
thisctr.inlatch=(thisctr.inlatch & 0xFF) | (data<<8);
thisctr.null_count=1;
thisctr.count_written=1;
break;
default:
BX_ERROR(("write counter in invalid write state."));
break;
}
switch(thisctr.mode) {
case 0:
if(thisctr.write_state==MSByte_multiple) {
set_OUT(thisctr,0);
}
thisctr.next_change_time=1;
break;
case 1:
if(thisctr.triggerGATE) { //for initial writes, if already saw trigger.
thisctr.next_change_time=1;
} //Otherwise, no change.
break;
case 6:
case 2:
thisctr.next_change_time=1; //FIXME: this could be loosened.
break;
case 7:
case 3:
thisctr.next_change_time=1; //FIXME: this could be loosened.
break;
case 4:
thisctr.next_change_time=1;
break;
case 5:
if(thisctr.triggerGATE) { //for initial writes, if already saw trigger.
thisctr.next_change_time=1;
} //Otherwise, no change.
break;
}
}
}
void pit_82C54::set_GATE(Bit8u cnum, bool data) {
if(cnum>MAX_COUNTER) {
BX_ERROR(("Counter number incorrect in 82C54 set_GATE"));
} else {
counter_type & thisctr = counter[cnum];
if(!( (thisctr.GATE&&data) || (!(thisctr.GATE||data)) )) {
BX_INFO(("Changing GATE %d to: %d",cnum,data));
thisctr.GATE=data;
if(thisctr.GATE) {
thisctr.triggerGATE=1;
}
switch(thisctr.mode) {
case 0:
if(data && thisctr.count_written) {
if(thisctr.null_count) {
thisctr.next_change_time=1;
} else {
if( (!thisctr.OUTpin) &&
(thisctr.write_state!=MSByte_multiple)
) {
if(thisctr.count_binary==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
}
} else {
thisctr.next_change_time=0;
}
}
} else {
if(thisctr.null_count) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=0;
}
}
break;
case 1:
if(data && thisctr.count_written) { //only triggers cause a change.
thisctr.next_change_time=1;
}
break;
case 2:
if(!data) {
set_OUT(thisctr,1);
thisctr.next_change_time=0;
} else {
if(thisctr.count_written) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=0;
}
}
break;
case 3:
if(!data) {
set_OUT(thisctr,1);
thisctr.first_pass=1;
thisctr.next_change_time=0;
} else {
if(thisctr.count_written) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=0;
}
}
break;
case 4:
if(!thisctr.OUTpin || thisctr.null_count) {
thisctr.next_change_time=1;
} else {
if(data && thisctr.count_written) {
if(thisctr.first_pass) {
if(thisctr.count_binary==0) {
thisctr.next_change_time=1;
} else {
thisctr.next_change_time=thisctr.count_binary & 0xFFFF;
}
} else {
thisctr.next_change_time=0;
}
} else {
thisctr.next_change_time=0;
}
}
break;
case 5:
if(data && thisctr.count_written) { //only triggers cause a change.
thisctr.next_change_time=1;
}
break;
default:
break;
}
}
}
}
bool pit_82C54::read_OUT(Bit8u cnum) {
if(cnum>MAX_COUNTER) {
BX_ERROR(("Counter number incorrect in 82C54 read_OUT"));
return 0;
} else {
return counter[cnum].OUTpin;
}
}
bool pit_82C54::read_GATE(Bit8u cnum) {
if(cnum>MAX_COUNTER) {
BX_ERROR(("Counter number incorrect in 82C54 read_GATE"));
return 0;
} else {
return counter[cnum].GATE;
}
}
Bit32u pit_82C54::get_clock_event_time(Bit8u cnum) {
if(cnum>MAX_COUNTER) {
BX_ERROR(("Counter number incorrect in 82C54 read_GATE"));
return 0;
} else {
return counter[cnum].next_change_time;
}
}
Bit32u pit_82C54::get_next_event_time(void) {
Bit32u out;
Bit32u time0=get_clock_event_time(0);
Bit32u time1=get_clock_event_time(1);
Bit32u time2=get_clock_event_time(2);
out=time0;
if(time1 && (time1<out))
out=time1;
if(time2 && (time2<out))
out=time2;
return out;
}